The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios

Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergen...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology Vol. 29; no. 15; pp. 4368 - 4382
Main Authors: Dudney, Joan, Latimer, Andrew M., Mantgem, Phillip, Zald, Harold, Willing, Claire E., Nesmith, Jonathan C. B., Cribbs, Jennifer, Milano, Elizabeth
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01-08-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada. Contrary to expectation, sometimes extreme drought leads to increases in tree growth. Using a comprehensive dataset, we quantified threshold drought responses in whitebark pine across a large temperature gradient. Specifically, multiple thresholds in source and sink processes limiting tree growth occurred at 8.4°C (7.12–9.51°C)—the energy–water limitation threshold. These co‐occurring thresholds in tree growth, δ13C, and δ15N that emerged during drought have important implications for understanding shifts in carbon and nutrient cycling under climate change.
AbstractList Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada. Contrary to expectation, sometimes extreme drought leads to increases in tree growth. Using a comprehensive dataset, we quantified threshold drought responses in whitebark pine across a large temperature gradient. Specifically, multiple thresholds in source and sink processes limiting tree growth occurred at 8.4°C (7.12–9.51°C)—the energy–water limitation threshold. These co‐occurring thresholds in tree growth, δ13C, and δ15N that emerged during drought have important implications for understanding shifts in carbon and nutrient cycling under climate change.
Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada.
Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co-occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12-9.51°C; estimated using fall-spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ C) and nitrogen (δ N) stable isotope ratios, that emerged during drought. These co-occurring thresholds reflected the transition between energy- and water-limited tree growth (i.e., the E-W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth-defense trade-offs and drought adaptations. Furthermore, whitebark pine growing in energy-limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water-limited regions, threatening the long-term sustainability of the recently listed whitebark pine species in the Sierra Nevada.
Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's ( Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada.
Author Nesmith, Jonathan C. B.
Milano, Elizabeth
Dudney, Joan
Zald, Harold
Mantgem, Phillip
Willing, Claire E.
Latimer, Andrew M.
Cribbs, Jennifer
Author_xml – sequence: 1
  givenname: Joan
  orcidid: 0000-0003-3986-065X
  surname: Dudney
  fullname: Dudney, Joan
  email: dudney@ucsb.edu
  organization: UC Santa Barbara
– sequence: 2
  givenname: Andrew M.
  surname: Latimer
  fullname: Latimer, Andrew M.
  organization: University of California
– sequence: 3
  givenname: Phillip
  surname: Mantgem
  fullname: Mantgem, Phillip
  organization: Western Ecological Research Center
– sequence: 4
  givenname: Harold
  surname: Zald
  fullname: Zald, Harold
  organization: Pacific Northwest Research Station
– sequence: 5
  givenname: Claire E.
  orcidid: 0000-0002-7563-242X
  surname: Willing
  fullname: Willing, Claire E.
  organization: University of Washington
– sequence: 6
  givenname: Jonathan C. B.
  surname: Nesmith
  fullname: Nesmith, Jonathan C. B.
  organization: Pacific Northwest Research Station
– sequence: 7
  givenname: Jennifer
  surname: Cribbs
  fullname: Cribbs, Jennifer
  organization: University of California
– sequence: 8
  givenname: Elizabeth
  surname: Milano
  fullname: Milano, Elizabeth
  organization: Rocky Mountain Research Station
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37089078$$D View this record in MEDLINE/PubMed
BookMark eNp10ctu1DAUBmALFdELLHgBZIkNSKQ9TuKJs4QRFKRKbMo6OnHOJK48drAdhtmx4Ql4Q54ED1NYIOGNL_r829J_zk6cd8TYUwGXIo-rUfeXYtXU8ICdiWoli7JWq5PDWtaFAFGdsvMY7wCgKmH1iJ1WDagWGnXGvt9OxMlRGPc_v_3YYaLArdmahMl4x9MUKE7eDpy-zhaNi3wwX7Iml_gQ_DJOiWcyexcpcpNvBCI-Br9L0yvuiAZL3JIbD1t0A48J-3xkok9-Jh4O78TH7OEGbaQn9_MF-_Tu7e36fXHz8frD-vVNoSuloKikUogbbJpa0UZqANKgCfq2Aa1ViW2thhZFWwMhNjj0vewb3ddKSkBQ1QV7ccydg_-8UEzd1kRN1qIjv8SuVCClaKUQmT7_h975Jbj8u6yqUpU1QJnVy6PSwccYaNPNwWwx7DsB3aGbLnfT_e4m22f3iUu_peGv_FNGBldHsDOW9v9P6q7Xb46RvwCqN51g
CitedBy_id crossref_primary_10_1038_s41467_023_43430_9
crossref_primary_10_1111_nph_19931
crossref_primary_10_3390_agriculture13112111
Cites_doi 10.1038/s41467-021-25182-6
10.1186/s40663-018-0141-3
10.1111/j.1469-8137.2008.02436.x
10.1890/ES15-00203.1
10.1111/gcb.16313
10.1002/eco.217
10.1016/S0169-5347(00)02098-X
10.1007/BF00380080
10.1104/pp.96.4.1246
10.1111/1365-2435.12857
10.1002/joc.1688
10.1029/2005GL023252
10.1038/nclimate2067
10.3390/f9030131
10.1038/s41586-019-1128-0
10.1007/s10021-005-0082-x
10.1007/s40641-018-0093-2
10.1046/j.1365-2699.1998.00233.x
10.1088/1748-9326/9/11/114007
10.1111/j.1365-2486.2009.01994.x
10.1525/bio.2010.60.8.6
10.1146/annurev.pp.40.060189.002443
10.1111/j.1466-8238.2008.00441.x
10.1111/gcb.12063
10.1111/gcb.13541
10.1093/treephys/tpu040
10.3354/cr01226
10.1111/nph.16456
10.1126/science.aat7850
10.1007/s004420050986
10.1038/s41559-020-1256-9
10.1080/07060660709507433
10.1016/j.foreco.2009.09.001
10.1111/1365-2435.12289
10.21105/joss.00772
10.1073/pnas.1216053111
10.1126/science.aay5958
10.1111/nph.13477
10.1126/science.aat7631
10.1139/cjfr-2019-0423
10.5194/hess-24-4625-2020
10.17221/47/2019-JFS
10.1002/ece3.3743
10.1111/gcb.16136
10.1038/s41467-022-29289-2
10.1073/pnas.1216054110
10.1002/ecs2.3263
10.1086/417659
10.1002/2015GL064593
10.1111/j.1749-8198.2011.00447.x
10.1016/j.foreco.2021.119322
10.1139/b98-169
10.1111/gcb.13030
10.1016/0038-0717(94)00242-S
10.1111/nph.13422
10.1525/california/9780520249554.003.0017
10.1111/j.1469-8137.2009.02917.x
10.1111/1365-2745.12211
10.3390/f9020091
10.1016/j.foreco.2015.09.047
10.1111/nph.16485
10.1111/gcb.14747
10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2
10.1016/j.foreco.2022.120107
10.1016/j.ecolmodel.2009.05.016
10.1111/j.1466-8238.2006.00268.x
10.1093/treephys/tpp123
10.1046/j.1365-2486.2000.06021.x
10.1126/sciadv.aat4313
10.3732/ajb.1100235
10.1029/2002GB001903
10.1080/15230430.2020.1794098
10.1007/s00704-013-1025-7
10.1111/gcb.13554
10.3133/tm6H1
10.1111/j.1469-8137.2009.02830.x
10.3389/fpls.2020.01031
10.1139/x2012-031
10.1016/j.dendro.2009.12.001
10.1007/s13595-012-0241-0
10.1126/science.aaz7005
10.1111/1365-2435.12946
10.1038/s43017-022-00272-1
10.1126/science.abm4875
10.1093/treephys/2.1-2-3.143
10.1111/1365-2745.13176
10.1016/B978-0-08-091801-3.50020-9
10.1111/j.1469-8137.2005.01543.x
10.1093/jxb/erq438
10.1071/PP98146
10.1111/j.1365-2486.2010.02351.x
10.1890/04-1910
10.1046/j.1469-8137.2003.00657.x
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Copyright © 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: Copyright © 2023 John Wiley & Sons Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
DOI 10.1111/gcb.16740
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 4382
ExternalDocumentID 10_1111_gcb_16740
37089078
GCB16740
Genre researchArticle
Journal Article
GeographicLocations United States--US
Nevada
GeographicLocations_xml – name: Nevada
– name: United States--US
GrantInformation_xml – fundername: Hatch Project
  funderid: CA‐D‐PLS‐2017‐H
– fundername: National Science Foundation
– fundername: David H. Smith Conservation Fellowship
– fundername: Hatch Project
  grantid: CA-D-PLS-2017-H
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
ID FETCH-LOGICAL-c3880-3588aafa7748ef5c00ec0ce0b970cc82a948d9a1940eaa7adbb5b7cb48550a083
IEDL.DBID 33P
ISSN 1354-1013
IngestDate Fri Aug 16 23:25:05 EDT 2024
Tue Nov 19 05:45:57 EST 2024
Thu Nov 21 23:03:08 EST 2024
Wed Oct 16 00:38:41 EDT 2024
Sat Aug 24 01:20:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords dendrochronology
foliar nitrogen
stable nitrogen isotopes
photosynthesis
forest productivity
threshold responses
whitebark pine
ecohydrological classes
climate change
Language English
License 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-3588aafa7748ef5c00ec0ce0b970cc82a948d9a1940eaa7adbb5b7cb48550a083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3986-065X
0000-0002-7563-242X
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/gcb.16740
PMID 37089078
PQID 2832824002
PQPubID 30327
PageCount 15
ParticipantIDs proquest_miscellaneous_2805519511
proquest_journals_2832824002
crossref_primary_10_1111_gcb_16740
pubmed_primary_37089078
wiley_primary_10_1111_gcb_16740_GCB16740
PublicationCentury 2000
PublicationDate August 2023
2023-Aug
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1989; 40
2018; 362
2022; 376
2010; 16
2000; 6
1989; 80
1991; 96
2011; 62
2020; 368
2013; 70
2003; 17
2020; 367
2020; 11
2014; 28
2019; 569
2011; 17
2003; 157
2014; 60
2012; 99
2022; 28
2010; 60
2013; 19
2007; 29
2018; 9
2017; 31
1986; 2
2018; 8
2020; 4
2018; 3
2014; 4
2018; 5
2018; 4
2000; 15
1995; 27
2020; 52
2020; 50
2010; 28
2019; 65
2015; 42
2008; 28
2019; 25
2005; 32
2016; 359
2001; 16
2000; 123
2014; 9
2010; 30
2009; 18
1988
2014; 117
2015; 6
2019; 5
2012
2011
2010
2009; 182
1999; 26
2006; 9
2017; 23
2020; 226
2005; 86
2007
2015; 208
1993
2015; 207
2019; 107
2014; 111
2011; 5
1998; 25
2007; 16
2022; 510
2021; 12
2023
2022; 3
2022
2010; 259
2021
2020
2005; 168
2015; 21
2009; 220
2022; 13
2009; 183
2016
2020; 24
2021; 494
2008; 178
1998; 76
1992; 67
2012; 5
2014; 34
2012; 42
2014; 102
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_46_1
e_1_2_10_42_1
Millar C. I. (e_1_2_10_69_1) 2016
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
Mantgem P. (e_1_2_10_101_1)
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
Speer J. H. (e_1_2_10_87_1) 2010
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
Fritts H. (e_1_2_10_37_1) 2012
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
Cripps C. L. (e_1_2_10_23_1) 2011
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 367
  start-page: 787
  year: 2020
  end-page: 790
  article-title: Global ecosystem thresholds driven by aridity
  publication-title: Science
– volume: 52
  start-page: 390
  year: 2020
  end-page: 407
  article-title: From treeline to species line: Thermal patterns and growth relationships across the krummholz zone of whitebark pine, Sierra Nevada, California, USA
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 117
  start-page: 607
  year: 2014
  end-page: 611
  article-title: The impracticality of a universal drought definition
  publication-title: Theoretical and Applied Climatology
– volume: 3
  start-page: 294
  year: 2022
  end-page: 308
  article-title: Mechanisms of woody‐plant mortality under rising drought, CO and vapour pressure deficit
  publication-title: Nature Reviews Earth &
– volume: 23
  start-page: 2705
  year: 2017
  end-page: 2719
  article-title: Assessing forest vulnerability to climate warming using a process‐based model of tree growth: Bad prospects for rear‐edges
  publication-title: Global Change Biology
– volume: 9
  start-page: 1128
  year: 2006
  end-page: 1144
  article-title: Response of net ecosystem productivity of three boreal forest stands to drought
  publication-title: Ecosystems
– volume: 62
  start-page: 1715
  year: 2011
  end-page: 1729
  article-title: Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs
  publication-title: Journal of Experimental Botany
– volume: 16
  start-page: 76
  year: 2007
  end-page: 89
  article-title: Geographical gradients of species richness: a test of the water‐energy conjecture of Hawkins et al. (2003) using European data for five taxa
  publication-title: Global Ecology and Biogeography
– volume: 207
  start-page: 1005
  year: 2015
  end-page: 1014
  article-title: Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold‐edge range limit under ambient and warmed conditions
  publication-title: New Phytologist
– volume: 17
  start-page: 1884
  year: 2011
  end-page: 1899
  article-title: Reduced N cycling in response to elevated CO , warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments
  publication-title: Global Change Biology
– volume: 15
  start-page: 583
  year: 2000
  end-page: 592
  article-title: A method to determine precipitation types
  publication-title: Weather and Forecasting
– volume: 28
  start-page: 251
  year: 2010
  end-page: 258
  article-title: Statistical and visual crossdating in R using the dplR library
  publication-title: Dendrochronologia
– volume: 510
  year: 2022
  article-title: Tree growth responses to extreme drought after mechanical thinning and prescribed fire in a Sierra Nevada mixed‐conifer forest, USA
  publication-title: Forest Ecology and Management
– volume: 157
  start-page: 115
  year: 2003
  end-page: 126
  article-title: Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants
  publication-title: New Phytologist
– volume: 4
  start-page: 164
  year: 2018
  end-page: 179
  article-title: Climate change and drought: From past to future
  publication-title: Current Climate Change Reports
– volume: 376
  start-page: 758
  year: 2022
  end-page: 761
  article-title: Cross‐biome synthesis of source versus sink limits to tree growth
  publication-title: Science
– volume: 226
  start-page: 1550
  year: 2020
  end-page: 1566
  article-title: Plant responses to rising vapor pressure deficit
  publication-title: New Phytologist
– volume: 259
  start-page: 660
  year: 2010
  end-page: 684
  article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests
  publication-title: Forest Ecology and Management
– year: 2022
– volume: 23
  start-page: 1926
  year: 2017
  end-page: 1941
  article-title: Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles
  publication-title: Global Change Biology
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  article-title: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 31
  start-page: 1359
  year: 2017
  end-page: 1370
  article-title: Increasing drought effects on five European pines modulate Δ13C‐growth coupling along a Mediterranean altitudinal gradient
  publication-title: Functional Ecology
– volume: 182
  start-page: 565
  year: 2009
  end-page: 588
  article-title: Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis
  publication-title: New Phytologist
– volume: 19
  start-page: 662
  year: 2013
  end-page: 676
  article-title: Warming and drought reduce temperature sensitivity of nitrogen transformations
  publication-title: Global Change Biology
– start-page: 37
  year: 2011
  end-page: 44
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast–slow’ plant economics spectrum: A traits manifesto
  publication-title: Journal of Ecology
– volume: 76
  start-page: 1991
  year: 1998
  end-page: 2001
  article-title: Phenology and growth of shoots, needles, and buds of Douglas‐fir seedlings with elevated CO and (or) temperature
  publication-title: Canadian Journal of Botany
– volume: 96
  start-page: 1246
  year: 1991
  end-page: 1254
  article-title: Limitations of photosynthesis in L. (Loblolly Pine) at low soil temperatures 1
  publication-title: Plant Physiology
– volume: 5
  start-page: 623
  year: 2011
  end-page: 640
  article-title: Monitoring Forest‐tundra ecotones at multiple scales
  publication-title: Geography Compass
– volume: 60
  start-page: 602
  year: 2010
  end-page: 613
  article-title: Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects
  publication-title: Bioscience
– volume: 8
  start-page: 1655
  year: 2018
  end-page: 1672
  article-title: Interannual variations in needle and sapwood traits of branches under an experimental drought
  publication-title: Ecology and Evolution
– volume: 123
  start-page: 32
  year: 2000
  end-page: 40
  article-title: Altitude trends in conifer leaf morphology and stable carbon isotope composition
  publication-title: Oecologia
– volume: 16
  start-page: 399
  year: 2010
  end-page: 415
  article-title: Growth, carbon‐isotope discrimination, and drought‐associated mortality across a elevational transect
  publication-title: Global Change Biology
– start-page: 579
  year: 2016
  end-page: 612
– year: 2010
– volume: 226
  start-page: 1325
  year: 2020
  end-page: 1340
  article-title: Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient
  publication-title: New Phytologist
– volume: 368
  start-page: 891
  year: 2020
  end-page: 901
  article-title: Climate‐driven risks to the climate mitigation potential of forests
  publication-title: Science
– volume: 11
  year: 2020
  article-title: Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species
  publication-title: Ecosphere
– volume: 28
  start-page: 2031
  year: 2008
  end-page: 2064
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: International Journal of Climatology
– volume: 3
  start-page: 772
  year: 2018
  article-title: Ggeffects: Tidy data frames of marginal effects from regression models
  publication-title: Journal of Open Source Software
– start-page: 187
  year: 1993
  end-page: 199
– article-title: Growth, drought response, and climate‐associated genomic structure in whitebark pine in the Sierra Nevada of California
  publication-title: Ecology and Evolution
– volume: 60
  start-page: 119
  year: 2014
  end-page: 132
  article-title: Vulnerability of Norway spruce to climate change in mountain forests of the European Alps
  publication-title: Climate Research
– volume: 6
  start-page: 196
  year: 2000
  end-page: 210
  article-title: Controls over carbon storage and turnover in high‐latitude soils
  publication-title: Global Change Biology
– volume: 99
  start-page: 827
  year: 2012
  end-page: 837
  article-title: Variation in intra‐annual wood formation, and foliage and shoot development of three major Canadian boreal tree species
  publication-title: American Journal of Botany
– volume: 17
  start-page: 1031
  year: 2003
  article-title: Global patterns of the isotopic composition of soil and plant nitrogen
  publication-title: Global Biogeochemical Cycles
– volume: 168
  start-page: 275
  year: 2005
  end-page: 292
  article-title: The control of stomata by water balance
  publication-title: New Phytologist
– volume: 362
  start-page: 1379
  year: 2018
  end-page: 1383
  article-title: Cascading regime shifts within and across scales
  publication-title: Science
– volume: 5
  start-page: 184
  year: 2012
  end-page: 199
  article-title: Organization of complexity in water limited ecohydrology
  publication-title: Ecohydrology
– volume: 569
  start-page: 404
  year: 2019
  end-page: 408
  article-title: Climatic controls of decomposition drive the global biogeography of forest‐tree symbioses
  publication-title: Nature
– volume: 26
  start-page: 185
  year: 1999
  end-page: 199
  article-title: The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability
  publication-title: Functional Plant Biology
– volume: 9
  start-page: 91
  year: 2018
  article-title: Drought impact on phenology and Green biomass production of Alpine Mountain Forest—Case study of South Tyrol 2001–2012 inspected with MODIS time series
  publication-title: Forests
– volume: 111
  start-page: 13721
  year: 2014
  end-page: 13726
  article-title: Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 6
  start-page: 1
  year: 2015
  end-page: 55
  article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene
  publication-title: Ecosphere
– volume: 31
  start-page: 2212
  year: 2017
  end-page: 2223
  article-title: Cold adaptation drives variability in needle structure and anatomy in L. along a 1,900 km temperate–boreal transect
  publication-title: Functional Ecology
– volume: 18
  start-page: 137
  year: 2009
  end-page: 149
  article-title: A global study of relationships between leaf traits, climate and soil measures of nutrient fertility
  publication-title: Global Ecology and Biogeography
– volume: 16
  start-page: 153
  year: 2001
  end-page: 162
  article-title: δ15N as an integrator of the nitrogen cycle
  publication-title: Trends in Ecology & Evolution
– volume: 34
  start-page: 796
  year: 2014
  end-page: 818
  article-title: Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood
  publication-title: Tree Physiology
– volume: 42
  start-page: 6771
  year: 2015
  end-page: 6779
  article-title: Revisiting the recent California drought as an extreme value
  publication-title: Geophysical Research Letters
– volume: 70
  start-page: 185
  year: 2013
  end-page: 193
  article-title: Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany
  publication-title: Annals of Forest Science
– year: 2021
– volume: 183
  start-page: 980
  year: 2009
  end-page: 992
  article-title: Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability
  publication-title: New Phytologist
– volume: 32
  year: 2005
  article-title: Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps
  publication-title: Geophysical Research Letters
– volume: 12
  start-page: 5102
  year: 2021
  article-title: Nonlinear shifts in infectious rust disease due to climate change
  publication-title: Nature Communications
– start-page: 456
  year: 2007
  end-page: 501
– volume: 67
  start-page: 283
  year: 1992
  end-page: 335
  article-title: The dilemma of plants: To grow or defend
  publication-title: The Quarterly Review of Biology
– volume: 29
  start-page: 18
  year: 2007
  end-page: 24
  article-title: Initiation of stem infection in western white pine by blister rust [ ]
  publication-title: Canadian Journal of Plant Pathology
– volume: 9
  year: 2014
  article-title: Changing climate response in near‐treeline bristlecone pine with elevation and aspect
  publication-title: Environmental Research Letters
– volume: 50
  start-page: 905
  year: 2020
  end-page: 916
  article-title: Water relations and drought response of
  publication-title: Canadian Journal of Forest Research
– volume: 111
  start-page: 13703
  year: 2014
  end-page: 13708
  article-title: Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 21
  start-page: 4210
  year: 2015
  end-page: 4220
  article-title: Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees
  publication-title: Global Change Biology
– volume: 5
  start-page: 23
  year: 2018
  article-title: Detecting treeline dynamics in response to climate warming using forest stand maps and Landsat data in a temperate forest
  publication-title: Forest Ecosystems
– volume: 107
  start-page: 2383
  year: 2019
  end-page: 2401
  article-title: Which trees die during drought? The key role of insect host‐tree selection
  publication-title: Journal of Ecology
– volume: 494
  year: 2021
  article-title: Resin ducts and bark thickness influence pine resistance to bark beetles after prescribed fire
  publication-title: Forest Ecology and Management
– volume: 5
  year: 2019
  article-title: Twentieth century redistribution in climatic drivers of global tree growth
  publication-title: Science Advances
– volume: 11
  start-page: 1031
  year: 2020
  article-title: Probability of spring frosts, not growing degree‐days, drives onset of spruce bud burst in plantations at the boreal‐temperate Forest ecotone
  publication-title: Frontiers in Plant Science
– volume: 13
  start-page: 1761
  year: 2022
  article-title: Global field observations of tree die‐off reveal hotter‐drought fingerprint for Earth's forests
  publication-title: Nature Communications
– volume: 86
  start-page: 2263
  year: 2005
  end-page: 2277
  article-title: Global models for predicting Woody Plant richness from climate: Development and evaluation
  publication-title: Ecology
– volume: 359
  start-page: 174
  year: 2016
  end-page: 189
  article-title: Isotopic heterogeneity in whitebark pine ( Engelm.) nuts across geographic, edaphic and climatic gradients in the northern Rockies (USA)
  publication-title: Forest Ecology and Management
– volume: 4
  start-page: 17
  year: 2014
  end-page: 22
  article-title: Global warming and changes in drought
  publication-title: Nature Climate Change
– volume: 208
  start-page: 674
  year: 2015
  end-page: 683
  article-title: Tree mortality from drought, insects, and their interactions in a changing climate
  publication-title: New Phytologist
– volume: 80
  start-page: 546
  year: 1989
  end-page: 552
  article-title: Influence of cold soil and snowcover on photosynthesis and leaf conductance in two Rocky Mountain conifers
  publication-title: Oecologia
– volume: 65
  start-page: 313
  year: 2019
  end-page: 320
  article-title: Variations in the length of Scots pine ( L.) needles under the influence of climatic factors and solar activity in different conditions of northern taiga
  publication-title: Journal of Forest Science
– volume: 28
  start-page: 6002
  year: 2022
  end-page: 6020
  article-title: New tree‐level temperature response curves document sensitivity of tree growth to high temperatures across a US‐wide climatic gradient
  publication-title: Global Change Biology
– volume: 28
  start-page: 1313
  year: 2014
  end-page: 1320
  article-title: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours
  publication-title: Functional Ecology
– volume: 25
  start-page: 3193
  year: 2019
  end-page: 3200
  article-title: How ecologists define drought, and why we should do better
  publication-title: Global Change Biology
– volume: 220
  start-page: 3362
  year: 2009
  end-page: 3371
  article-title: Leaf litter decomposition—Estimates of global variability based on Yasso07 model
  publication-title: Ecological Modelling
– volume: 40
  start-page: 503
  year: 1989
  end-page: 537
  article-title: Carbon isotope discrimination and photosynthesis
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 28
  start-page: 2956
  year: 2022
  end-page: 2978
  article-title: Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought
  publication-title: Global Change Biology
– volume: 2
  start-page: 143
  year: 1986
  end-page: 154
  article-title: Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce ( Parry ex Engelm.) seedlings
  publication-title: Tree Physiology
– volume: 30
  start-page: 346
  year: 2010
  end-page: 360
  article-title: Effect of irrigation on needle morphology, shoot and stem growth in a drought‐exposed forest
  publication-title: Tree Physiology
– volume: 368
  start-page: 261
  year: 2020
  end-page: 266
  article-title: Hanging by a thread? Forests and drought
  publication-title: Science
– year: 2012
– volume: 24
  start-page: 4625
  year: 2020
  end-page: 4639
  article-title: Global distribution of hydrologic controls on forest growth
  publication-title: Hydrology and Earth System Sciences
– volume: 9
  start-page: 131
  year: 2018
  article-title: Pinus albicaulis Engelm. (Whitebark pine) in mixed‐species stands throughout its US range: Broad‐scale indicators of extent and recent decline
  publication-title: Forests
– year: 1988
– volume: 42
  start-page: 749
  year: 2012
  end-page: 765
  article-title: Forest mortality in high‐elevation whitebark pine ( ) forests of eastern California, USA: Influence of environmental context, bark beetles, climatic water deficit, and warming
  publication-title: Canadian Journal of Forest Research
– year: 2020
– year: 2023
– volume: 4
  start-page: 1502
  year: 2020
  end-page: 1509
  article-title: Thresholds for ecological responses to global change do not emerge from empirical data
  publication-title: Nature Ecology & Evolution
– volume: 25
  start-page: 855
  year: 1998
  end-page: 870
  article-title: Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales
  publication-title: Journal of Biogeography
– volume: 27
  start-page: 753
  year: 1995
  end-page: 760
  article-title: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_10_32_1
  doi: 10.1038/s41467-021-25182-6
– ident: e_1_2_10_30_1
– ident: e_1_2_10_8_1
  doi: 10.1186/s40663-018-0141-3
– ident: e_1_2_10_65_1
  doi: 10.1111/j.1469-8137.2008.02436.x
– ident: e_1_2_10_3_1
  doi: 10.1890/ES15-00203.1
– ident: e_1_2_10_38_1
  doi: 10.1111/gcb.16313
– start-page: 37
  volume-title: The future of high‐elevation, five‐needle white pines in Western North America: proceedings of the High Five Symposium (RMRS‐P‐63)
  year: 2011
  ident: e_1_2_10_23_1
  contributor:
    fullname: Cripps C. L.
– ident: e_1_2_10_53_1
  doi: 10.1002/eco.217
– ident: e_1_2_10_80_1
  doi: 10.1016/S0169-5347(00)02098-X
– ident: e_1_2_10_104_1
– ident: e_1_2_10_26_1
  doi: 10.1007/BF00380080
– ident: e_1_2_10_27_1
  doi: 10.1104/pp.96.4.1246
– ident: e_1_2_10_85_1
  doi: 10.1111/1365-2435.12857
– ident: e_1_2_10_24_1
  doi: 10.1002/joc.1688
– ident: e_1_2_10_54_1
  doi: 10.1029/2005GL023252
– ident: e_1_2_10_93_1
  doi: 10.1038/nclimate2067
– ident: e_1_2_10_40_1
  doi: 10.3390/f9030131
– ident: e_1_2_10_88_1
  doi: 10.1038/s41586-019-1128-0
– ident: e_1_2_10_57_1
  doi: 10.1007/s10021-005-0082-x
– ident: e_1_2_10_21_1
  doi: 10.1007/s40641-018-0093-2
– ident: e_1_2_10_89_1
  doi: 10.1046/j.1365-2699.1998.00233.x
– ident: e_1_2_10_83_1
  doi: 10.1088/1748-9326/9/11/114007
– ident: e_1_2_10_66_1
  doi: 10.1111/j.1365-2486.2009.01994.x
– ident: e_1_2_10_12_1
  doi: 10.1525/bio.2010.60.8.6
– ident: e_1_2_10_101_1
  article-title: Growth, drought response, and climate‐associated genomic structure in whitebark pine in the Sierra Nevada of California
  publication-title: Ecology and Evolution
  contributor:
    fullname: Mantgem P.
– ident: e_1_2_10_33_1
  doi: 10.1146/annurev.pp.40.060189.002443
– ident: e_1_2_10_74_1
  doi: 10.1111/j.1466-8238.2008.00441.x
– ident: e_1_2_10_9_1
  doi: 10.1111/gcb.12063
– ident: e_1_2_10_84_1
  doi: 10.1111/gcb.13541
– ident: e_1_2_10_39_1
  doi: 10.1093/treephys/tpu040
– ident: e_1_2_10_45_1
  doi: 10.3354/cr01226
– ident: e_1_2_10_20_1
  doi: 10.1111/nph.16456
– start-page: 579
  volume-title: TWENTY‐EIGHT. Subalpine forests
  year: 2016
  ident: e_1_2_10_69_1
  contributor:
    fullname: Millar C. I.
– ident: e_1_2_10_81_1
  doi: 10.1126/science.aat7850
– ident: e_1_2_10_90_1
– ident: e_1_2_10_50_1
  doi: 10.1007/s004420050986
– ident: e_1_2_10_47_1
  doi: 10.1038/s41559-020-1256-9
– ident: e_1_2_10_51_1
  doi: 10.1080/07060660709507433
– ident: e_1_2_10_4_1
  doi: 10.1016/j.foreco.2009.09.001
– ident: e_1_2_10_56_1
  doi: 10.1111/1365-2435.12289
– ident: e_1_2_10_61_1
  doi: 10.21105/joss.00772
– ident: e_1_2_10_77_1
  doi: 10.1073/pnas.1216053111
– ident: e_1_2_10_13_1
  doi: 10.1126/science.aay5958
– ident: e_1_2_10_6_1
  doi: 10.1111/nph.13477
– ident: e_1_2_10_15_1
  doi: 10.1126/science.aat7631
– ident: e_1_2_10_16_1
  doi: 10.1139/cjfr-2019-0423
– ident: e_1_2_10_82_1
  doi: 10.5194/hess-24-4625-2020
– ident: e_1_2_10_11_1
– ident: e_1_2_10_95_1
  doi: 10.17221/47/2019-JFS
– ident: e_1_2_10_42_1
  doi: 10.1002/ece3.3743
– ident: e_1_2_10_92_1
  doi: 10.1111/gcb.16136
– ident: e_1_2_10_43_1
  doi: 10.1038/s41467-022-29289-2
– ident: e_1_2_10_78_1
  doi: 10.1073/pnas.1216054110
– ident: e_1_2_10_31_1
  doi: 10.1002/ecs2.3263
– volume-title: Fundamentals of tree‐ring research
  year: 2010
  ident: e_1_2_10_87_1
  contributor:
    fullname: Speer J. H.
– ident: e_1_2_10_46_1
  doi: 10.1086/417659
– ident: e_1_2_10_97_1
– ident: e_1_2_10_79_1
  doi: 10.1002/2015GL064593
– ident: e_1_2_10_25_1
  doi: 10.1111/j.1749-8198.2011.00447.x
– ident: e_1_2_10_99_1
  doi: 10.1016/j.foreco.2021.119322
– ident: e_1_2_10_73_1
  doi: 10.1139/b98-169
– ident: e_1_2_10_2_1
  doi: 10.1111/gcb.13030
– ident: e_1_2_10_96_1
– ident: e_1_2_10_55_1
  doi: 10.1016/0038-0717(94)00242-S
– ident: e_1_2_10_71_1
  doi: 10.1111/nph.13422
– ident: e_1_2_10_35_1
  doi: 10.1525/california/9780520249554.003.0017
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1469-8137.2009.02917.x
– ident: e_1_2_10_76_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_10_59_1
  doi: 10.3390/f9020091
– ident: e_1_2_10_62_1
  doi: 10.1016/j.foreco.2015.09.047
– ident: e_1_2_10_41_1
  doi: 10.1111/nph.16485
– ident: e_1_2_10_86_1
  doi: 10.1111/gcb.14747
– ident: e_1_2_10_14_1
  doi: 10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2
– ident: e_1_2_10_105_1
  doi: 10.1016/j.foreco.2022.120107
– ident: e_1_2_10_94_1
  doi: 10.1016/j.ecolmodel.2009.05.016
– ident: e_1_2_10_102_1
  doi: 10.1111/j.1466-8238.2006.00268.x
– ident: e_1_2_10_29_1
  doi: 10.1093/treephys/tpp123
– ident: e_1_2_10_49_1
  doi: 10.1046/j.1365-2486.2000.06021.x
– volume-title: Tree rings and climate
  year: 2012
  ident: e_1_2_10_37_1
  contributor:
    fullname: Fritts H.
– ident: e_1_2_10_10_1
  doi: 10.1126/sciadv.aat4313
– ident: e_1_2_10_106_1
  doi: 10.3732/ajb.1100235
– ident: e_1_2_10_5_1
  doi: 10.1029/2002GB001903
– ident: e_1_2_10_68_1
  doi: 10.1080/15230430.2020.1794098
– ident: e_1_2_10_60_1
  doi: 10.1007/s00704-013-1025-7
– ident: e_1_2_10_103_1
  doi: 10.1111/gcb.13554
– ident: e_1_2_10_36_1
  doi: 10.3133/tm6H1
– ident: e_1_2_10_75_1
  doi: 10.1111/j.1469-8137.2009.02830.x
– ident: e_1_2_10_63_1
  doi: 10.3389/fpls.2020.01031
– ident: e_1_2_10_70_1
  doi: 10.1139/x2012-031
– ident: e_1_2_10_18_1
  doi: 10.1016/j.dendro.2009.12.001
– ident: e_1_2_10_100_1
  doi: 10.1007/s13595-012-0241-0
– ident: e_1_2_10_7_1
  doi: 10.1126/science.aaz7005
– ident: e_1_2_10_52_1
  doi: 10.1111/1365-2435.12946
– ident: e_1_2_10_67_1
  doi: 10.1038/s43017-022-00272-1
– ident: e_1_2_10_19_1
  doi: 10.1126/science.abm4875
– ident: e_1_2_10_28_1
  doi: 10.1093/treephys/2.1-2-3.143
– ident: e_1_2_10_98_1
– ident: e_1_2_10_91_1
  doi: 10.1111/1365-2745.13176
– ident: e_1_2_10_64_1
  doi: 10.1016/B978-0-08-091801-3.50020-9
– ident: e_1_2_10_17_1
  doi: 10.1111/j.1469-8137.2005.01543.x
– ident: e_1_2_10_72_1
  doi: 10.1093/jxb/erq438
– ident: e_1_2_10_44_1
  doi: 10.1071/PP98146
– ident: e_1_2_10_58_1
  doi: 10.1111/j.1365-2486.2010.02351.x
– ident: e_1_2_10_34_1
  doi: 10.1890/04-1910
– ident: e_1_2_10_48_1
  doi: 10.1046/j.1469-8137.2003.00657.x
SSID ssj0003206
Score 2.491919
Snippet Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 4368
SubjectTerms Carbon
Carbon cycle
Carbon sequestration
Climate change
Cores
dendrochronology
Divergence
Drought
Droughts
ecohydrological classes
Energy
Extreme drought
foliar nitrogen
forest productivity
Growth patterns
Isotope ratios
Isotopes
Nonlinear response
Nutrient cycles
photosynthesis
Pine
Pine needles
Pine trees
Pinus - physiology
Pinus albicaulis
Ratios
Stable isotopes
stable nitrogen isotopes
Sustainability
Temperature
threshold responses
Thresholds
Trees
Water
whitebark pine
Title The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16740
https://www.ncbi.nlm.nih.gov/pubmed/37089078
https://www.proquest.com/docview/2832824002
https://search.proquest.com/docview/2805519511
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VSpW48LNQCBRkEEIcCHI2SROLEyzb9gJCAiRuke1MykqrZBVn1XLjwhPwhn2SzjjZQFVVQuotTmw50nzj-WzPD8CLqiIbnFdxmOhMh0lsVKjKxISVocVwaqWRyOcdR1-yT9_zD3NOk_N2EwvT54cYD9xYM_x6zQqujftHyY-tecMu9Lxfp12CD9-IP4-rcDz1dTWjOE1oqYniIasQe_GMIy_aoksE8yJf9Qbn4Pa1fvUO3Bp4pnjXA-MubGE9gZ2-8uTPCezO_wa4UbdBw90Ego_EopvWdxMvxWy5IErrW_fgN2FKoA8WPPv154RYaiuWHCDlpSs6goXj2yyBp6ulXtROlOz1wcFbovTlgDrR9j656MSCRrSI4rhtTrofr0VNdnSJgiu7cFPXpSDmaujVwjVds0Lhweruw7eD-dfZUTiUcQgtZ5oJCQu51pUmopljlVop0UqL0qhMWptPtUryUulIJRI1IaY0JjWZNT7XmiaKuAvbdVPjQxDKJphlGEdkYZKs1IbYo9H7tBPGlCyICuD5RqDFqs_WUWx2OSSEwgshgL2NqItBYV3BFZty9qedBvBs_EyqxvcnusZmzX1kysl4oiiABz1ExlniTOaK6FYArzwSrp6-OJy99w-P_r_rY7jJZe57x8M92O7aNT6BG65cP_WoPwfC-weJ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB-0Ivrin9PWaNVVRHxoyuaSNFnwRc-rJ7ZFsIJvYXczqQdHciQ5qm---An8hv0kndnkokUEwbdssssG5jc7v92dPwDPioJscFqEfqQT7UehUb7KI-MXhhbDsZVGIp93zD4mR5_TN1NOk_NyHQvT5YcYDtxYM9x6zQrOB9K_afmJNbvsQ08b9ivRHgGRAzjCD8M6HI5dZc0gjCNabIKwzyvEfjzD0IvW6A-KeZGxOpOzf_P_fvYW3OippnjVYeM2XMJyBFe74pPfRrA5_RXjRt16JW9G4B0Ska5q1008F5PFnFita92BHwQrgS5e8Oz7z1MiqrVYcIyUE7BoCRkNX2gJ_Lpc6HnZiJwdPzh-S-SuIlAr6s4tFxsxpxE1ojipq9P2y44oyZQuUHBxF27qMhdEXg29mjdVWy1ROLw2d-HT_vR4MvP7Sg6-5WQzPsEh1brQxDVTLGIrJVppURqVSGvTsVZRmisdqEiiJtDkxsQmscalW9PEEjdho6xKvAdC2QiTBMOAjEyU5NoQgTR6jzbDGJMRUR48XUs0W3YJO7L1RoeEkDkheLC9lnXW62yTcdGmlF1qxx48GT6TtvEVii6xWnEfGXM-niDwYKvDyDBLmMhUEePy4IWDwt-nz95OXruH-__e9TFcmx0fHmQH747eP4DrXPW-80Pcho22XuFDuNzkq0dOBc4BUGULsQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pa9RAFH9oRfHS6mptbNVRRDw0MtlMTIIn3e5aUUtBBW9hZvJSF5ZkSbJUb734CfoN_SS-N8lGiwiCt0zyhgm8f7-ZeX8AHhcF-eCkCH2lY-2r0KR-mivjF4aM4dhKI5HPOw4_xEefk4Mpl8l5sc6F6epDDAdurBnOXrOCL_PiNyU_seYZh9DTfv2KIhjOhfPD8Hgww-HYNdYMwkiRrQnCvqwQh_EMUy86oz8Q5kXA6jzObOu__vUGbPZAU7zsJOMmXMJyBFe71pPfRrA9_ZXhRmS9ijcj8N4TjK5qRyaeiMliTpjWjW7BdxIqgS5b8MfZ-SnB1FosOEPKsVe0JBcNX2cJ_Lpc6HnZiJzDPjh7S-SuH1Ar6i4oFxsxpxk1ojipq9P2y74oyZEuUHBrFx7qMhcEXQ29mjdVWy1ROGltbsOn2fTj5NDv-zj4lkvN-CQMidaFJqSZYBFZKdFKi9KksbQ2GetUJXmqg1RJ1CQyuTGRia1xxdY0YcRt2CirEndApFZhHGMYkItRca4NwUejn9NWGCNyIakHj9YMzZZduY5svc0hJmSOCR7srVmd9RrbZNyyKeGA2rEHD4fPpGt8gaJLrFZMIyOuxhMEHtzpRGRYJYxlkhLe8uCpk4S_L5-9nrxyD3f_nfQBXDs-mGXv3hy93YXr3PK-C0Lcg422XuE9uNzkq_tOAX4CEXIKVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+energy%E2%80%93water+limitation+threshold+explains+divergent+drought+responses+in+tree+growth%2C+needle+length%2C+and+stable+isotope+ratios&rft.jtitle=Global+change+biology&rft.au=Dudney%2C+Joan&rft.au=Latimer%2C+Andrew+M.&rft.au=Mantgem%2C+Phillip&rft.au=Zald%2C+Harold&rft.date=2023-08-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=29&rft.issue=15&rft.spage=4368&rft.epage=4382&rft_id=info:doi/10.1111%2Fgcb.16740&rft.externalDBID=10.1111%252Fgcb.16740&rft.externalDocID=GCB16740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon