The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios
Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergen...
Saved in:
Published in: | Global change biology Vol. 29; no. 15; pp. 4368 - 4382 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Blackwell Publishing Ltd
01-08-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada.
Contrary to expectation, sometimes extreme drought leads to increases in tree growth. Using a comprehensive dataset, we quantified threshold drought responses in whitebark pine across a large temperature gradient. Specifically, multiple thresholds in source and sink processes limiting tree growth occurred at 8.4°C (7.12–9.51°C)—the energy–water limitation threshold. These co‐occurring thresholds in tree growth, δ13C, and δ15N that emerged during drought have important implications for understanding shifts in carbon and nutrient cycling under climate change. |
---|---|
AbstractList | Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada.
Contrary to expectation, sometimes extreme drought leads to increases in tree growth. Using a comprehensive dataset, we quantified threshold drought responses in whitebark pine across a large temperature gradient. Specifically, multiple thresholds in source and sink processes limiting tree growth occurred at 8.4°C (7.12–9.51°C)—the energy–water limitation threshold. These co‐occurring thresholds in tree growth, δ13C, and δ15N that emerged during drought have important implications for understanding shifts in carbon and nutrient cycling under climate change. Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada. Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co-occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12-9.51°C; estimated using fall-spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ C) and nitrogen (δ N) stable isotope ratios, that emerged during drought. These co-occurring thresholds reflected the transition between energy- and water-limited tree growth (i.e., the E-W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth-defense trade-offs and drought adaptations. Furthermore, whitebark pine growing in energy-limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water-limited regions, threatening the long-term sustainability of the recently listed whitebark pine species in the Sierra Nevada. Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's ( Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada. |
Author | Nesmith, Jonathan C. B. Milano, Elizabeth Dudney, Joan Zald, Harold Mantgem, Phillip Willing, Claire E. Latimer, Andrew M. Cribbs, Jennifer |
Author_xml | – sequence: 1 givenname: Joan orcidid: 0000-0003-3986-065X surname: Dudney fullname: Dudney, Joan email: dudney@ucsb.edu organization: UC Santa Barbara – sequence: 2 givenname: Andrew M. surname: Latimer fullname: Latimer, Andrew M. organization: University of California – sequence: 3 givenname: Phillip surname: Mantgem fullname: Mantgem, Phillip organization: Western Ecological Research Center – sequence: 4 givenname: Harold surname: Zald fullname: Zald, Harold organization: Pacific Northwest Research Station – sequence: 5 givenname: Claire E. orcidid: 0000-0002-7563-242X surname: Willing fullname: Willing, Claire E. organization: University of Washington – sequence: 6 givenname: Jonathan C. B. surname: Nesmith fullname: Nesmith, Jonathan C. B. organization: Pacific Northwest Research Station – sequence: 7 givenname: Jennifer surname: Cribbs fullname: Cribbs, Jennifer organization: University of California – sequence: 8 givenname: Elizabeth surname: Milano fullname: Milano, Elizabeth organization: Rocky Mountain Research Station |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37089078$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ctu1DAUBmALFdELLHgBZIkNSKQ9TuKJs4QRFKRKbMo6OnHOJK48drAdhtmx4Ql4Q54ED1NYIOGNL_r829J_zk6cd8TYUwGXIo-rUfeXYtXU8ICdiWoli7JWq5PDWtaFAFGdsvMY7wCgKmH1iJ1WDagWGnXGvt9OxMlRGPc_v_3YYaLArdmahMl4x9MUKE7eDpy-zhaNi3wwX7Iml_gQ_DJOiWcyexcpcpNvBCI-Br9L0yvuiAZL3JIbD1t0A48J-3xkok9-Jh4O78TH7OEGbaQn9_MF-_Tu7e36fXHz8frD-vVNoSuloKikUogbbJpa0UZqANKgCfq2Aa1ViW2thhZFWwMhNjj0vewb3ddKSkBQ1QV7ccydg_-8UEzd1kRN1qIjv8SuVCClaKUQmT7_h975Jbj8u6yqUpU1QJnVy6PSwccYaNPNwWwx7DsB3aGbLnfT_e4m22f3iUu_peGv_FNGBldHsDOW9v9P6q7Xb46RvwCqN51g |
CitedBy_id | crossref_primary_10_1038_s41467_023_43430_9 crossref_primary_10_1111_nph_19931 crossref_primary_10_3390_agriculture13112111 |
Cites_doi | 10.1038/s41467-021-25182-6 10.1186/s40663-018-0141-3 10.1111/j.1469-8137.2008.02436.x 10.1890/ES15-00203.1 10.1111/gcb.16313 10.1002/eco.217 10.1016/S0169-5347(00)02098-X 10.1007/BF00380080 10.1104/pp.96.4.1246 10.1111/1365-2435.12857 10.1002/joc.1688 10.1029/2005GL023252 10.1038/nclimate2067 10.3390/f9030131 10.1038/s41586-019-1128-0 10.1007/s10021-005-0082-x 10.1007/s40641-018-0093-2 10.1046/j.1365-2699.1998.00233.x 10.1088/1748-9326/9/11/114007 10.1111/j.1365-2486.2009.01994.x 10.1525/bio.2010.60.8.6 10.1146/annurev.pp.40.060189.002443 10.1111/j.1466-8238.2008.00441.x 10.1111/gcb.12063 10.1111/gcb.13541 10.1093/treephys/tpu040 10.3354/cr01226 10.1111/nph.16456 10.1126/science.aat7850 10.1007/s004420050986 10.1038/s41559-020-1256-9 10.1080/07060660709507433 10.1016/j.foreco.2009.09.001 10.1111/1365-2435.12289 10.21105/joss.00772 10.1073/pnas.1216053111 10.1126/science.aay5958 10.1111/nph.13477 10.1126/science.aat7631 10.1139/cjfr-2019-0423 10.5194/hess-24-4625-2020 10.17221/47/2019-JFS 10.1002/ece3.3743 10.1111/gcb.16136 10.1038/s41467-022-29289-2 10.1073/pnas.1216054110 10.1002/ecs2.3263 10.1086/417659 10.1002/2015GL064593 10.1111/j.1749-8198.2011.00447.x 10.1016/j.foreco.2021.119322 10.1139/b98-169 10.1111/gcb.13030 10.1016/0038-0717(94)00242-S 10.1111/nph.13422 10.1525/california/9780520249554.003.0017 10.1111/j.1469-8137.2009.02917.x 10.1111/1365-2745.12211 10.3390/f9020091 10.1016/j.foreco.2015.09.047 10.1111/nph.16485 10.1111/gcb.14747 10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2 10.1016/j.foreco.2022.120107 10.1016/j.ecolmodel.2009.05.016 10.1111/j.1466-8238.2006.00268.x 10.1093/treephys/tpp123 10.1046/j.1365-2486.2000.06021.x 10.1126/sciadv.aat4313 10.3732/ajb.1100235 10.1029/2002GB001903 10.1080/15230430.2020.1794098 10.1007/s00704-013-1025-7 10.1111/gcb.13554 10.3133/tm6H1 10.1111/j.1469-8137.2009.02830.x 10.3389/fpls.2020.01031 10.1139/x2012-031 10.1016/j.dendro.2009.12.001 10.1007/s13595-012-0241-0 10.1126/science.aaz7005 10.1111/1365-2435.12946 10.1038/s43017-022-00272-1 10.1126/science.abm4875 10.1093/treephys/2.1-2-3.143 10.1111/1365-2745.13176 10.1016/B978-0-08-091801-3.50020-9 10.1111/j.1469-8137.2005.01543.x 10.1093/jxb/erq438 10.1071/PP98146 10.1111/j.1365-2486.2010.02351.x 10.1890/04-1910 10.1046/j.1469-8137.2003.00657.x |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. Copyright © 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. – notice: Copyright © 2023 John Wiley & Sons Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 |
DOI | 10.1111/gcb.16740 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 4382 |
ExternalDocumentID | 10_1111_gcb_16740 37089078 GCB16740 |
Genre | researchArticle Journal Article |
GeographicLocations | United States--US Nevada |
GeographicLocations_xml | – name: Nevada – name: United States--US |
GrantInformation_xml | – fundername: Hatch Project funderid: CA‐D‐PLS‐2017‐H – fundername: National Science Foundation – fundername: David H. Smith Conservation Fellowship – fundername: Hatch Project grantid: CA-D-PLS-2017-H |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 |
ID | FETCH-LOGICAL-c3880-3588aafa7748ef5c00ec0ce0b970cc82a948d9a1940eaa7adbb5b7cb48550a083 |
IEDL.DBID | 33P |
ISSN | 1354-1013 |
IngestDate | Fri Aug 16 23:25:05 EDT 2024 Tue Nov 19 05:45:57 EST 2024 Thu Nov 21 23:03:08 EST 2024 Wed Oct 16 00:38:41 EDT 2024 Sat Aug 24 01:20:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | dendrochronology foliar nitrogen stable nitrogen isotopes photosynthesis forest productivity threshold responses whitebark pine ecohydrological classes climate change |
Language | English |
License | 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3880-3588aafa7748ef5c00ec0ce0b970cc82a948d9a1940eaa7adbb5b7cb48550a083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3986-065X 0000-0002-7563-242X |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/gcb.16740 |
PMID | 37089078 |
PQID | 2832824002 |
PQPubID | 30327 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2805519511 proquest_journals_2832824002 crossref_primary_10_1111_gcb_16740 pubmed_primary_37089078 wiley_primary_10_1111_gcb_16740_GCB16740 |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-Aug 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1989; 40 2018; 362 2022; 376 2010; 16 2000; 6 1989; 80 1991; 96 2011; 62 2020; 368 2013; 70 2003; 17 2020; 367 2020; 11 2014; 28 2019; 569 2011; 17 2003; 157 2014; 60 2012; 99 2022; 28 2010; 60 2013; 19 2007; 29 2018; 9 2017; 31 1986; 2 2018; 8 2020; 4 2018; 3 2014; 4 2018; 5 2018; 4 2000; 15 1995; 27 2020; 52 2020; 50 2010; 28 2019; 65 2015; 42 2008; 28 2019; 25 2005; 32 2016; 359 2001; 16 2000; 123 2014; 9 2010; 30 2009; 18 1988 2014; 117 2015; 6 2019; 5 2012 2011 2010 2009; 182 1999; 26 2006; 9 2017; 23 2020; 226 2005; 86 2007 2015; 208 1993 2015; 207 2019; 107 2014; 111 2011; 5 1998; 25 2007; 16 2022; 510 2021; 12 2023 2022; 3 2022 2010; 259 2021 2020 2005; 168 2015; 21 2009; 220 2022; 13 2009; 183 2016 2020; 24 2021; 494 2008; 178 1998; 76 1992; 67 2012; 5 2014; 34 2012; 42 2014; 102 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_46_1 e_1_2_10_42_1 Millar C. I. (e_1_2_10_69_1) 2016 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 Mantgem P. (e_1_2_10_101_1) e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 Speer J. H. (e_1_2_10_87_1) 2010 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 Fritts H. (e_1_2_10_37_1) 2012 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 Cripps C. L. (e_1_2_10_23_1) 2011 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 367 start-page: 787 year: 2020 end-page: 790 article-title: Global ecosystem thresholds driven by aridity publication-title: Science – volume: 52 start-page: 390 year: 2020 end-page: 407 article-title: From treeline to species line: Thermal patterns and growth relationships across the krummholz zone of whitebark pine, Sierra Nevada, California, USA publication-title: Arctic, Antarctic, and Alpine Research – volume: 117 start-page: 607 year: 2014 end-page: 611 article-title: The impracticality of a universal drought definition publication-title: Theoretical and Applied Climatology – volume: 3 start-page: 294 year: 2022 end-page: 308 article-title: Mechanisms of woody‐plant mortality under rising drought, CO and vapour pressure deficit publication-title: Nature Reviews Earth & – volume: 23 start-page: 2705 year: 2017 end-page: 2719 article-title: Assessing forest vulnerability to climate warming using a process‐based model of tree growth: Bad prospects for rear‐edges publication-title: Global Change Biology – volume: 9 start-page: 1128 year: 2006 end-page: 1144 article-title: Response of net ecosystem productivity of three boreal forest stands to drought publication-title: Ecosystems – volume: 62 start-page: 1715 year: 2011 end-page: 1729 article-title: Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs publication-title: Journal of Experimental Botany – volume: 16 start-page: 76 year: 2007 end-page: 89 article-title: Geographical gradients of species richness: a test of the water‐energy conjecture of Hawkins et al. (2003) using European data for five taxa publication-title: Global Ecology and Biogeography – volume: 207 start-page: 1005 year: 2015 end-page: 1014 article-title: Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold‐edge range limit under ambient and warmed conditions publication-title: New Phytologist – volume: 17 start-page: 1884 year: 2011 end-page: 1899 article-title: Reduced N cycling in response to elevated CO , warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments publication-title: Global Change Biology – volume: 15 start-page: 583 year: 2000 end-page: 592 article-title: A method to determine precipitation types publication-title: Weather and Forecasting – volume: 28 start-page: 251 year: 2010 end-page: 258 article-title: Statistical and visual crossdating in R using the dplR library publication-title: Dendrochronologia – volume: 510 year: 2022 article-title: Tree growth responses to extreme drought after mechanical thinning and prescribed fire in a Sierra Nevada mixed‐conifer forest, USA publication-title: Forest Ecology and Management – volume: 157 start-page: 115 year: 2003 end-page: 126 article-title: Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants publication-title: New Phytologist – volume: 4 start-page: 164 year: 2018 end-page: 179 article-title: Climate change and drought: From past to future publication-title: Current Climate Change Reports – volume: 376 start-page: 758 year: 2022 end-page: 761 article-title: Cross‐biome synthesis of source versus sink limits to tree growth publication-title: Science – volume: 226 start-page: 1550 year: 2020 end-page: 1566 article-title: Plant responses to rising vapor pressure deficit publication-title: New Phytologist – volume: 259 start-page: 660 year: 2010 end-page: 684 article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests publication-title: Forest Ecology and Management – year: 2022 – volume: 23 start-page: 1926 year: 2017 end-page: 1941 article-title: Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles publication-title: Global Change Biology – volume: 178 start-page: 719 year: 2008 end-page: 739 article-title: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? publication-title: New Phytologist – volume: 31 start-page: 1359 year: 2017 end-page: 1370 article-title: Increasing drought effects on five European pines modulate Δ13C‐growth coupling along a Mediterranean altitudinal gradient publication-title: Functional Ecology – volume: 182 start-page: 565 year: 2009 end-page: 588 article-title: Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis publication-title: New Phytologist – volume: 19 start-page: 662 year: 2013 end-page: 676 article-title: Warming and drought reduce temperature sensitivity of nitrogen transformations publication-title: Global Change Biology – start-page: 37 year: 2011 end-page: 44 – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast–slow’ plant economics spectrum: A traits manifesto publication-title: Journal of Ecology – volume: 76 start-page: 1991 year: 1998 end-page: 2001 article-title: Phenology and growth of shoots, needles, and buds of Douglas‐fir seedlings with elevated CO and (or) temperature publication-title: Canadian Journal of Botany – volume: 96 start-page: 1246 year: 1991 end-page: 1254 article-title: Limitations of photosynthesis in L. (Loblolly Pine) at low soil temperatures 1 publication-title: Plant Physiology – volume: 5 start-page: 623 year: 2011 end-page: 640 article-title: Monitoring Forest‐tundra ecotones at multiple scales publication-title: Geography Compass – volume: 60 start-page: 602 year: 2010 end-page: 613 article-title: Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects publication-title: Bioscience – volume: 8 start-page: 1655 year: 2018 end-page: 1672 article-title: Interannual variations in needle and sapwood traits of branches under an experimental drought publication-title: Ecology and Evolution – volume: 123 start-page: 32 year: 2000 end-page: 40 article-title: Altitude trends in conifer leaf morphology and stable carbon isotope composition publication-title: Oecologia – volume: 16 start-page: 399 year: 2010 end-page: 415 article-title: Growth, carbon‐isotope discrimination, and drought‐associated mortality across a elevational transect publication-title: Global Change Biology – start-page: 579 year: 2016 end-page: 612 – year: 2010 – volume: 226 start-page: 1325 year: 2020 end-page: 1340 article-title: Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient publication-title: New Phytologist – volume: 368 start-page: 891 year: 2020 end-page: 901 article-title: Climate‐driven risks to the climate mitigation potential of forests publication-title: Science – volume: 11 year: 2020 article-title: Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species publication-title: Ecosphere – volume: 28 start-page: 2031 year: 2008 end-page: 2064 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: International Journal of Climatology – volume: 3 start-page: 772 year: 2018 article-title: Ggeffects: Tidy data frames of marginal effects from regression models publication-title: Journal of Open Source Software – start-page: 187 year: 1993 end-page: 199 – article-title: Growth, drought response, and climate‐associated genomic structure in whitebark pine in the Sierra Nevada of California publication-title: Ecology and Evolution – volume: 60 start-page: 119 year: 2014 end-page: 132 article-title: Vulnerability of Norway spruce to climate change in mountain forests of the European Alps publication-title: Climate Research – volume: 6 start-page: 196 year: 2000 end-page: 210 article-title: Controls over carbon storage and turnover in high‐latitude soils publication-title: Global Change Biology – volume: 99 start-page: 827 year: 2012 end-page: 837 article-title: Variation in intra‐annual wood formation, and foliage and shoot development of three major Canadian boreal tree species publication-title: American Journal of Botany – volume: 17 start-page: 1031 year: 2003 article-title: Global patterns of the isotopic composition of soil and plant nitrogen publication-title: Global Biogeochemical Cycles – volume: 168 start-page: 275 year: 2005 end-page: 292 article-title: The control of stomata by water balance publication-title: New Phytologist – volume: 362 start-page: 1379 year: 2018 end-page: 1383 article-title: Cascading regime shifts within and across scales publication-title: Science – volume: 5 start-page: 184 year: 2012 end-page: 199 article-title: Organization of complexity in water limited ecohydrology publication-title: Ecohydrology – volume: 569 start-page: 404 year: 2019 end-page: 408 article-title: Climatic controls of decomposition drive the global biogeography of forest‐tree symbioses publication-title: Nature – volume: 26 start-page: 185 year: 1999 end-page: 199 article-title: The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability publication-title: Functional Plant Biology – volume: 9 start-page: 91 year: 2018 article-title: Drought impact on phenology and Green biomass production of Alpine Mountain Forest—Case study of South Tyrol 2001–2012 inspected with MODIS time series publication-title: Forests – volume: 111 start-page: 13721 year: 2014 end-page: 13726 article-title: Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 start-page: 1 year: 2015 end-page: 55 article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene publication-title: Ecosphere – volume: 31 start-page: 2212 year: 2017 end-page: 2223 article-title: Cold adaptation drives variability in needle structure and anatomy in L. along a 1,900 km temperate–boreal transect publication-title: Functional Ecology – volume: 18 start-page: 137 year: 2009 end-page: 149 article-title: A global study of relationships between leaf traits, climate and soil measures of nutrient fertility publication-title: Global Ecology and Biogeography – volume: 16 start-page: 153 year: 2001 end-page: 162 article-title: δ15N as an integrator of the nitrogen cycle publication-title: Trends in Ecology & Evolution – volume: 34 start-page: 796 year: 2014 end-page: 818 article-title: Stable isotopes in tree rings: Towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood publication-title: Tree Physiology – volume: 42 start-page: 6771 year: 2015 end-page: 6779 article-title: Revisiting the recent California drought as an extreme value publication-title: Geophysical Research Letters – volume: 70 start-page: 185 year: 2013 end-page: 193 article-title: Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany publication-title: Annals of Forest Science – year: 2021 – volume: 183 start-page: 980 year: 2009 end-page: 992 article-title: Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability publication-title: New Phytologist – volume: 32 year: 2005 article-title: Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps publication-title: Geophysical Research Letters – volume: 12 start-page: 5102 year: 2021 article-title: Nonlinear shifts in infectious rust disease due to climate change publication-title: Nature Communications – start-page: 456 year: 2007 end-page: 501 – volume: 67 start-page: 283 year: 1992 end-page: 335 article-title: The dilemma of plants: To grow or defend publication-title: The Quarterly Review of Biology – volume: 29 start-page: 18 year: 2007 end-page: 24 article-title: Initiation of stem infection in western white pine by blister rust [ ] publication-title: Canadian Journal of Plant Pathology – volume: 9 year: 2014 article-title: Changing climate response in near‐treeline bristlecone pine with elevation and aspect publication-title: Environmental Research Letters – volume: 50 start-page: 905 year: 2020 end-page: 916 article-title: Water relations and drought response of publication-title: Canadian Journal of Forest Research – volume: 111 start-page: 13703 year: 2014 end-page: 13708 article-title: Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 21 start-page: 4210 year: 2015 end-page: 4220 article-title: Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees publication-title: Global Change Biology – volume: 5 start-page: 23 year: 2018 article-title: Detecting treeline dynamics in response to climate warming using forest stand maps and Landsat data in a temperate forest publication-title: Forest Ecosystems – volume: 107 start-page: 2383 year: 2019 end-page: 2401 article-title: Which trees die during drought? The key role of insect host‐tree selection publication-title: Journal of Ecology – volume: 494 year: 2021 article-title: Resin ducts and bark thickness influence pine resistance to bark beetles after prescribed fire publication-title: Forest Ecology and Management – volume: 5 year: 2019 article-title: Twentieth century redistribution in climatic drivers of global tree growth publication-title: Science Advances – volume: 11 start-page: 1031 year: 2020 article-title: Probability of spring frosts, not growing degree‐days, drives onset of spruce bud burst in plantations at the boreal‐temperate Forest ecotone publication-title: Frontiers in Plant Science – volume: 13 start-page: 1761 year: 2022 article-title: Global field observations of tree die‐off reveal hotter‐drought fingerprint for Earth's forests publication-title: Nature Communications – volume: 86 start-page: 2263 year: 2005 end-page: 2277 article-title: Global models for predicting Woody Plant richness from climate: Development and evaluation publication-title: Ecology – volume: 359 start-page: 174 year: 2016 end-page: 189 article-title: Isotopic heterogeneity in whitebark pine ( Engelm.) nuts across geographic, edaphic and climatic gradients in the northern Rockies (USA) publication-title: Forest Ecology and Management – volume: 4 start-page: 17 year: 2014 end-page: 22 article-title: Global warming and changes in drought publication-title: Nature Climate Change – volume: 208 start-page: 674 year: 2015 end-page: 683 article-title: Tree mortality from drought, insects, and their interactions in a changing climate publication-title: New Phytologist – volume: 80 start-page: 546 year: 1989 end-page: 552 article-title: Influence of cold soil and snowcover on photosynthesis and leaf conductance in two Rocky Mountain conifers publication-title: Oecologia – volume: 65 start-page: 313 year: 2019 end-page: 320 article-title: Variations in the length of Scots pine ( L.) needles under the influence of climatic factors and solar activity in different conditions of northern taiga publication-title: Journal of Forest Science – volume: 28 start-page: 6002 year: 2022 end-page: 6020 article-title: New tree‐level temperature response curves document sensitivity of tree growth to high temperatures across a US‐wide climatic gradient publication-title: Global Change Biology – volume: 28 start-page: 1313 year: 2014 end-page: 1320 article-title: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours publication-title: Functional Ecology – volume: 25 start-page: 3193 year: 2019 end-page: 3200 article-title: How ecologists define drought, and why we should do better publication-title: Global Change Biology – volume: 220 start-page: 3362 year: 2009 end-page: 3371 article-title: Leaf litter decomposition—Estimates of global variability based on Yasso07 model publication-title: Ecological Modelling – volume: 40 start-page: 503 year: 1989 end-page: 537 article-title: Carbon isotope discrimination and photosynthesis publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 28 start-page: 2956 year: 2022 end-page: 2978 article-title: Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought publication-title: Global Change Biology – volume: 2 start-page: 143 year: 1986 end-page: 154 article-title: Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce ( Parry ex Engelm.) seedlings publication-title: Tree Physiology – volume: 30 start-page: 346 year: 2010 end-page: 360 article-title: Effect of irrigation on needle morphology, shoot and stem growth in a drought‐exposed forest publication-title: Tree Physiology – volume: 368 start-page: 261 year: 2020 end-page: 266 article-title: Hanging by a thread? Forests and drought publication-title: Science – year: 2012 – volume: 24 start-page: 4625 year: 2020 end-page: 4639 article-title: Global distribution of hydrologic controls on forest growth publication-title: Hydrology and Earth System Sciences – volume: 9 start-page: 131 year: 2018 article-title: Pinus albicaulis Engelm. (Whitebark pine) in mixed‐species stands throughout its US range: Broad‐scale indicators of extent and recent decline publication-title: Forests – year: 1988 – volume: 42 start-page: 749 year: 2012 end-page: 765 article-title: Forest mortality in high‐elevation whitebark pine ( ) forests of eastern California, USA: Influence of environmental context, bark beetles, climatic water deficit, and warming publication-title: Canadian Journal of Forest Research – year: 2020 – year: 2023 – volume: 4 start-page: 1502 year: 2020 end-page: 1509 article-title: Thresholds for ecological responses to global change do not emerge from empirical data publication-title: Nature Ecology & Evolution – volume: 25 start-page: 855 year: 1998 end-page: 870 article-title: Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales publication-title: Journal of Biogeography – volume: 27 start-page: 753 year: 1995 end-page: 760 article-title: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage publication-title: Soil Biology and Biochemistry – ident: e_1_2_10_32_1 doi: 10.1038/s41467-021-25182-6 – ident: e_1_2_10_30_1 – ident: e_1_2_10_8_1 doi: 10.1186/s40663-018-0141-3 – ident: e_1_2_10_65_1 doi: 10.1111/j.1469-8137.2008.02436.x – ident: e_1_2_10_3_1 doi: 10.1890/ES15-00203.1 – ident: e_1_2_10_38_1 doi: 10.1111/gcb.16313 – start-page: 37 volume-title: The future of high‐elevation, five‐needle white pines in Western North America: proceedings of the High Five Symposium (RMRS‐P‐63) year: 2011 ident: e_1_2_10_23_1 contributor: fullname: Cripps C. L. – ident: e_1_2_10_53_1 doi: 10.1002/eco.217 – ident: e_1_2_10_80_1 doi: 10.1016/S0169-5347(00)02098-X – ident: e_1_2_10_104_1 – ident: e_1_2_10_26_1 doi: 10.1007/BF00380080 – ident: e_1_2_10_27_1 doi: 10.1104/pp.96.4.1246 – ident: e_1_2_10_85_1 doi: 10.1111/1365-2435.12857 – ident: e_1_2_10_24_1 doi: 10.1002/joc.1688 – ident: e_1_2_10_54_1 doi: 10.1029/2005GL023252 – ident: e_1_2_10_93_1 doi: 10.1038/nclimate2067 – ident: e_1_2_10_40_1 doi: 10.3390/f9030131 – ident: e_1_2_10_88_1 doi: 10.1038/s41586-019-1128-0 – ident: e_1_2_10_57_1 doi: 10.1007/s10021-005-0082-x – ident: e_1_2_10_21_1 doi: 10.1007/s40641-018-0093-2 – ident: e_1_2_10_89_1 doi: 10.1046/j.1365-2699.1998.00233.x – ident: e_1_2_10_83_1 doi: 10.1088/1748-9326/9/11/114007 – ident: e_1_2_10_66_1 doi: 10.1111/j.1365-2486.2009.01994.x – ident: e_1_2_10_12_1 doi: 10.1525/bio.2010.60.8.6 – ident: e_1_2_10_101_1 article-title: Growth, drought response, and climate‐associated genomic structure in whitebark pine in the Sierra Nevada of California publication-title: Ecology and Evolution contributor: fullname: Mantgem P. – ident: e_1_2_10_33_1 doi: 10.1146/annurev.pp.40.060189.002443 – ident: e_1_2_10_74_1 doi: 10.1111/j.1466-8238.2008.00441.x – ident: e_1_2_10_9_1 doi: 10.1111/gcb.12063 – ident: e_1_2_10_84_1 doi: 10.1111/gcb.13541 – ident: e_1_2_10_39_1 doi: 10.1093/treephys/tpu040 – ident: e_1_2_10_45_1 doi: 10.3354/cr01226 – ident: e_1_2_10_20_1 doi: 10.1111/nph.16456 – start-page: 579 volume-title: TWENTY‐EIGHT. Subalpine forests year: 2016 ident: e_1_2_10_69_1 contributor: fullname: Millar C. I. – ident: e_1_2_10_81_1 doi: 10.1126/science.aat7850 – ident: e_1_2_10_90_1 – ident: e_1_2_10_50_1 doi: 10.1007/s004420050986 – ident: e_1_2_10_47_1 doi: 10.1038/s41559-020-1256-9 – ident: e_1_2_10_51_1 doi: 10.1080/07060660709507433 – ident: e_1_2_10_4_1 doi: 10.1016/j.foreco.2009.09.001 – ident: e_1_2_10_56_1 doi: 10.1111/1365-2435.12289 – ident: e_1_2_10_61_1 doi: 10.21105/joss.00772 – ident: e_1_2_10_77_1 doi: 10.1073/pnas.1216053111 – ident: e_1_2_10_13_1 doi: 10.1126/science.aay5958 – ident: e_1_2_10_6_1 doi: 10.1111/nph.13477 – ident: e_1_2_10_15_1 doi: 10.1126/science.aat7631 – ident: e_1_2_10_16_1 doi: 10.1139/cjfr-2019-0423 – ident: e_1_2_10_82_1 doi: 10.5194/hess-24-4625-2020 – ident: e_1_2_10_11_1 – ident: e_1_2_10_95_1 doi: 10.17221/47/2019-JFS – ident: e_1_2_10_42_1 doi: 10.1002/ece3.3743 – ident: e_1_2_10_92_1 doi: 10.1111/gcb.16136 – ident: e_1_2_10_43_1 doi: 10.1038/s41467-022-29289-2 – ident: e_1_2_10_78_1 doi: 10.1073/pnas.1216054110 – ident: e_1_2_10_31_1 doi: 10.1002/ecs2.3263 – volume-title: Fundamentals of tree‐ring research year: 2010 ident: e_1_2_10_87_1 contributor: fullname: Speer J. H. – ident: e_1_2_10_46_1 doi: 10.1086/417659 – ident: e_1_2_10_97_1 – ident: e_1_2_10_79_1 doi: 10.1002/2015GL064593 – ident: e_1_2_10_25_1 doi: 10.1111/j.1749-8198.2011.00447.x – ident: e_1_2_10_99_1 doi: 10.1016/j.foreco.2021.119322 – ident: e_1_2_10_73_1 doi: 10.1139/b98-169 – ident: e_1_2_10_2_1 doi: 10.1111/gcb.13030 – ident: e_1_2_10_96_1 – ident: e_1_2_10_55_1 doi: 10.1016/0038-0717(94)00242-S – ident: e_1_2_10_71_1 doi: 10.1111/nph.13422 – ident: e_1_2_10_35_1 doi: 10.1525/california/9780520249554.003.0017 – ident: e_1_2_10_22_1 doi: 10.1111/j.1469-8137.2009.02917.x – ident: e_1_2_10_76_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_10_59_1 doi: 10.3390/f9020091 – ident: e_1_2_10_62_1 doi: 10.1016/j.foreco.2015.09.047 – ident: e_1_2_10_41_1 doi: 10.1111/nph.16485 – ident: e_1_2_10_86_1 doi: 10.1111/gcb.14747 – ident: e_1_2_10_14_1 doi: 10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2 – ident: e_1_2_10_105_1 doi: 10.1016/j.foreco.2022.120107 – ident: e_1_2_10_94_1 doi: 10.1016/j.ecolmodel.2009.05.016 – ident: e_1_2_10_102_1 doi: 10.1111/j.1466-8238.2006.00268.x – ident: e_1_2_10_29_1 doi: 10.1093/treephys/tpp123 – ident: e_1_2_10_49_1 doi: 10.1046/j.1365-2486.2000.06021.x – volume-title: Tree rings and climate year: 2012 ident: e_1_2_10_37_1 contributor: fullname: Fritts H. – ident: e_1_2_10_10_1 doi: 10.1126/sciadv.aat4313 – ident: e_1_2_10_106_1 doi: 10.3732/ajb.1100235 – ident: e_1_2_10_5_1 doi: 10.1029/2002GB001903 – ident: e_1_2_10_68_1 doi: 10.1080/15230430.2020.1794098 – ident: e_1_2_10_60_1 doi: 10.1007/s00704-013-1025-7 – ident: e_1_2_10_103_1 doi: 10.1111/gcb.13554 – ident: e_1_2_10_36_1 doi: 10.3133/tm6H1 – ident: e_1_2_10_75_1 doi: 10.1111/j.1469-8137.2009.02830.x – ident: e_1_2_10_63_1 doi: 10.3389/fpls.2020.01031 – ident: e_1_2_10_70_1 doi: 10.1139/x2012-031 – ident: e_1_2_10_18_1 doi: 10.1016/j.dendro.2009.12.001 – ident: e_1_2_10_100_1 doi: 10.1007/s13595-012-0241-0 – ident: e_1_2_10_7_1 doi: 10.1126/science.aaz7005 – ident: e_1_2_10_52_1 doi: 10.1111/1365-2435.12946 – ident: e_1_2_10_67_1 doi: 10.1038/s43017-022-00272-1 – ident: e_1_2_10_19_1 doi: 10.1126/science.abm4875 – ident: e_1_2_10_28_1 doi: 10.1093/treephys/2.1-2-3.143 – ident: e_1_2_10_98_1 – ident: e_1_2_10_91_1 doi: 10.1111/1365-2745.13176 – ident: e_1_2_10_64_1 doi: 10.1016/B978-0-08-091801-3.50020-9 – ident: e_1_2_10_17_1 doi: 10.1111/j.1469-8137.2005.01543.x – ident: e_1_2_10_72_1 doi: 10.1093/jxb/erq438 – ident: e_1_2_10_44_1 doi: 10.1071/PP98146 – ident: e_1_2_10_58_1 doi: 10.1111/j.1365-2486.2010.02351.x – ident: e_1_2_10_34_1 doi: 10.1890/04-1910 – ident: e_1_2_10_48_1 doi: 10.1046/j.1469-8137.2003.00657.x |
SSID | ssj0003206 |
Score | 2.491919 |
Snippet | Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4368 |
SubjectTerms | Carbon Carbon cycle Carbon sequestration Climate change Cores dendrochronology Divergence Drought Droughts ecohydrological classes Energy Extreme drought foliar nitrogen forest productivity Growth patterns Isotope ratios Isotopes Nonlinear response Nutrient cycles photosynthesis Pine Pine needles Pine trees Pinus - physiology Pinus albicaulis Ratios Stable isotopes stable nitrogen isotopes Sustainability Temperature threshold responses Thresholds Trees Water whitebark pine |
Title | The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16740 https://www.ncbi.nlm.nih.gov/pubmed/37089078 https://www.proquest.com/docview/2832824002 https://search.proquest.com/docview/2805519511 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VSpW48LNQCBRkEEIcCHI2SROLEyzb9gJCAiRuke1MykqrZBVn1XLjwhPwhn2SzjjZQFVVQuotTmw50nzj-WzPD8CLqiIbnFdxmOhMh0lsVKjKxISVocVwaqWRyOcdR1-yT9_zD3NOk_N2EwvT54cYD9xYM_x6zQqujftHyY-tecMu9Lxfp12CD9-IP4-rcDz1dTWjOE1oqYniIasQe_GMIy_aoksE8yJf9Qbn4Pa1fvUO3Bp4pnjXA-MubGE9gZ2-8uTPCezO_wa4UbdBw90Ego_EopvWdxMvxWy5IErrW_fgN2FKoA8WPPv154RYaiuWHCDlpSs6goXj2yyBp6ulXtROlOz1wcFbovTlgDrR9j656MSCRrSI4rhtTrofr0VNdnSJgiu7cFPXpSDmaujVwjVds0Lhweruw7eD-dfZUTiUcQgtZ5oJCQu51pUmopljlVop0UqL0qhMWptPtUryUulIJRI1IaY0JjWZNT7XmiaKuAvbdVPjQxDKJphlGEdkYZKs1IbYo9H7tBPGlCyICuD5RqDFqs_WUWx2OSSEwgshgL2NqItBYV3BFZty9qedBvBs_EyqxvcnusZmzX1kysl4oiiABz1ExlniTOaK6FYArzwSrp6-OJy99w-P_r_rY7jJZe57x8M92O7aNT6BG65cP_WoPwfC-weJ |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB-0Ivrin9PWaNVVRHxoyuaSNFnwRc-rJ7ZFsIJvYXczqQdHciQ5qm---An8hv0kndnkokUEwbdssssG5jc7v92dPwDPioJscFqEfqQT7UehUb7KI-MXhhbDsZVGIp93zD4mR5_TN1NOk_NyHQvT5YcYDtxYM9x6zQrOB9K_afmJNbvsQ08b9ivRHgGRAzjCD8M6HI5dZc0gjCNabIKwzyvEfjzD0IvW6A-KeZGxOpOzf_P_fvYW3OippnjVYeM2XMJyBFe74pPfRrA5_RXjRt16JW9G4B0Ska5q1008F5PFnFita92BHwQrgS5e8Oz7z1MiqrVYcIyUE7BoCRkNX2gJ_Lpc6HnZiJwdPzh-S-SuIlAr6s4tFxsxpxE1ojipq9P2y44oyZQuUHBxF27qMhdEXg29mjdVWy1ROLw2d-HT_vR4MvP7Sg6-5WQzPsEh1brQxDVTLGIrJVppURqVSGvTsVZRmisdqEiiJtDkxsQmscalW9PEEjdho6xKvAdC2QiTBMOAjEyU5NoQgTR6jzbDGJMRUR48XUs0W3YJO7L1RoeEkDkheLC9lnXW62yTcdGmlF1qxx48GT6TtvEVii6xWnEfGXM-niDwYKvDyDBLmMhUEePy4IWDwt-nz95OXruH-__e9TFcmx0fHmQH747eP4DrXPW-80Pcho22XuFDuNzkq0dOBc4BUGULsQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pa9RAFH9oRfHS6mptbNVRRDw0MtlMTIIn3e5aUUtBBW9hZvJSF5ZkSbJUb734CfoN_SS-N8lGiwiCt0zyhgm8f7-ZeX8AHhcF-eCkCH2lY-2r0KR-mivjF4aM4dhKI5HPOw4_xEefk4Mpl8l5sc6F6epDDAdurBnOXrOCL_PiNyU_seYZh9DTfv2KIhjOhfPD8Hgww-HYNdYMwkiRrQnCvqwQh_EMUy86oz8Q5kXA6jzObOu__vUGbPZAU7zsJOMmXMJyBFe71pPfRrA9_ZXhRmS9ijcj8N4TjK5qRyaeiMliTpjWjW7BdxIqgS5b8MfZ-SnB1FosOEPKsVe0JBcNX2cJ_Lpc6HnZiJzDPjh7S-SuH1Ar6i4oFxsxpxk1ojipq9P2y74oyZEuUHBrFx7qMhcEXQ29mjdVWy1ROGltbsOn2fTj5NDv-zj4lkvN-CQMidaFJqSZYBFZKdFKi9KksbQ2GetUJXmqg1RJ1CQyuTGRia1xxdY0YcRt2CirEndApFZhHGMYkItRca4NwUejn9NWGCNyIakHj9YMzZZduY5svc0hJmSOCR7srVmd9RrbZNyyKeGA2rEHD4fPpGt8gaJLrFZMIyOuxhMEHtzpRGRYJYxlkhLe8uCpk4S_L5-9nrxyD3f_nfQBXDs-mGXv3hy93YXr3PK-C0Lcg422XuE9uNzkq_tOAX4CEXIKVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+energy%E2%80%93water+limitation+threshold+explains+divergent+drought+responses+in+tree+growth%2C+needle+length%2C+and+stable+isotope+ratios&rft.jtitle=Global+change+biology&rft.au=Dudney%2C+Joan&rft.au=Latimer%2C+Andrew+M.&rft.au=Mantgem%2C+Phillip&rft.au=Zald%2C+Harold&rft.date=2023-08-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=29&rft.issue=15&rft.spage=4368&rft.epage=4382&rft_id=info:doi/10.1111%2Fgcb.16740&rft.externalDBID=10.1111%252Fgcb.16740&rft.externalDocID=GCB16740 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |