Waste Jute Fabric as a Biosorbent for Heavy Metal Ions from Aqueous Solution
The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The raw jute fabric was treated with sodium hydroxide or sodium chlorite to selectively remove hemicelluloses and lignin, respectively. All jute fabrics were ch...
Saved in:
Published in: | Fibers and polymers Vol. 21; no. 9; pp. 1992 - 2002 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Seoul
The Korean Fiber Society
01-09-2020
Springer Nature B.V 한국섬유공학회 |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni
2+
, Cu
2+
, and Zn
2+
was investigated. The raw jute fabric was treated with sodium hydroxide or sodium chlorite to selectively remove hemicelluloses and lignin, respectively. All jute fabrics were characterized by determination of their chemical composition as well as functional group content. The effects of solution pH, contact time, and initial metal ion concentration on the biosorption from monometallic and polymetallic solution by jute fabrics were investigated. The maximum biosorption capacity for all heavy metal ions was observed at pH 5.5. Concerning the contact time, the raw jute fabric shows more than 72 % of the total uptake capacity of Ni
2+
, Cu
2+
, and Zn
2+
within 1 h, while the jute fabrics with lower hemicelluloses and lignin content show between 72–85 % of the total uptake capacity within 3 h. Increased initial metal ion concentration from 10 to 20 mg
/l
in monometallic solution caused an increase in the total uptake capacity of jute fabrics with lower hemicelluloses and lignin content for 47–69 % (Ni
2+
), 42–63 % (Cu
2+
), and 22–37 % (Zn
2+
). The biosorption capacity of alkali treated jute fabrics was affected by the changes in the total amount of carboxyl and aldehyde groups that accompany the hemicelluloses removal. In the case of the oxidative treatment, the biosorption capacity was affected by the lignin content as well as the amount of introduced carboxyl groups. The best biosorption performance possesses jute fabric with 63.2 % lower lignin content as well as 81.1 % higher amount of carboxyl groups; biosorption capacity toward Ni
2+
, Cu
2+
, and Zn
2+
in monometallic solution is about 2.4; 2.2 and 3.5 times higher compared to the raw jute fabric, respectively. All jute fabrics exhibited the same affinity order (which is independent on the initial metal ion concentrations) toward heavy metal ions: Ni
2+
> Cu
2+
> Zn
2+
in the case of competitive biosorption. An increase in the initial metal ion concentration for two times in the polymetallic solution caused about a 35–59 % increase in the total uptake capacity of Ni
2+
, while the total uptake capacities of Cu
2+
and Zn
2+
increased for 19–38 % and 18–65 %, respectively. |
---|---|
AbstractList | The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni
2+
, Cu
2+
, and Zn
2+
was investigated. The raw jute fabric was treated with sodium hydroxide or sodium chlorite to selectively remove hemicelluloses and lignin, respectively. All jute fabrics were characterized by determination of their chemical composition as well as functional group content. The effects of solution pH, contact time, and initial metal ion concentration on the biosorption from monometallic and polymetallic solution by jute fabrics were investigated. The maximum biosorption capacity for all heavy metal ions was observed at pH 5.5. Concerning the contact time, the raw jute fabric shows more than 72 % of the total uptake capacity of Ni
2+
, Cu
2+
, and Zn
2+
within 1 h, while the jute fabrics with lower hemicelluloses and lignin content show between 72–85 % of the total uptake capacity within 3 h. Increased initial metal ion concentration from 10 to 20 mg
/l
in monometallic solution caused an increase in the total uptake capacity of jute fabrics with lower hemicelluloses and lignin content for 47–69 % (Ni
2+
), 42–63 % (Cu
2+
), and 22–37 % (Zn
2+
). The biosorption capacity of alkali treated jute fabrics was affected by the changes in the total amount of carboxyl and aldehyde groups that accompany the hemicelluloses removal. In the case of the oxidative treatment, the biosorption capacity was affected by the lignin content as well as the amount of introduced carboxyl groups. The best biosorption performance possesses jute fabric with 63.2 % lower lignin content as well as 81.1 % higher amount of carboxyl groups; biosorption capacity toward Ni
2+
, Cu
2+
, and Zn
2+
in monometallic solution is about 2.4; 2.2 and 3.5 times higher compared to the raw jute fabric, respectively. All jute fabrics exhibited the same affinity order (which is independent on the initial metal ion concentrations) toward heavy metal ions: Ni
2+
> Cu
2+
> Zn
2+
in the case of competitive biosorption. An increase in the initial metal ion concentration for two times in the polymetallic solution caused about a 35–59 % increase in the total uptake capacity of Ni
2+
, while the total uptake capacities of Cu
2+
and Zn
2+
increased for 19–38 % and 18–65 %, respectively. The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni2+, Cu2+, and Zn2+was investigated. The raw jute fabric was treated with sodium hydroxide or sodium chlorite to selectively removehemicelluloses and lignin, respectively. All jute fabrics were characterized by determination of their chemical composition aswell as functional group content. The effects of solution pH, contact time, and initial metal ion concentration on thebiosorption from monometallic and polymetallic solution by jute fabrics were investigated. The maximum biosorptioncapacity for all heavy metal ions was observed at pH 5.5. Concerning the contact time, the raw jute fabric shows more than72 % of the total uptake capacity of Ni2+, Cu2+, and Zn2+ within 1 h, while the jute fabrics with lower hemicelluloses andlignin content show between 72-85 % of the total uptake capacity within 3 h. Increased initial metal ion concentration from10 to 20 mg/l in monometallic solution caused an increase in the total uptake capacity of jute fabrics with lowerhemicelluloses and lignin content for 47-69 % (Ni2+), 42-63 % (Cu2+), and 22-37 % (Zn2+). The biosorption capacity of alkalitreated jute fabrics was affected by the changes in the total amount of carboxyl and aldehyde groups that accompany thehemicelluloses removal. In the case of the oxidative treatment, the biosorption capacity was affected by the lignin content aswell as the amount of introduced carboxyl groups. The best biosorption performance possesses jute fabric with 63.2 % lowerlignin content as well as 81.1 % higher amount of carboxyl groups; biosorption capacity toward Ni2+, Cu2+, and Zn2+ inmonometallic solution is about 2.4; 2.2 and 3.5 times higher compared to the raw jute fabric, respectively. All jute fabricsexhibited the same affinity order (which is independent on the initial metal ion concentrations) toward heavy metal ions: Ni2+> Cu2+ > Zn2+ in the case of competitive biosorption. An increase in the initial metal ion concentration for two times in thepolymetallic solution caused about a 35-59 % increase in the total uptake capacity of Ni2+, while the total uptake capacities ofCu2+ and Zn2+ increased for 19-38 % and 18-65 %, respectively. KCI Citation Count: 0 The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni2+, Cu2+, and Zn2+ was investigated. The raw jute fabric was treated with sodium hydroxide or sodium chlorite to selectively remove hemicelluloses and lignin, respectively. All jute fabrics were characterized by determination of their chemical composition as well as functional group content. The effects of solution pH, contact time, and initial metal ion concentration on the biosorption from monometallic and polymetallic solution by jute fabrics were investigated. The maximum biosorption capacity for all heavy metal ions was observed at pH 5.5. Concerning the contact time, the raw jute fabric shows more than 72 % of the total uptake capacity of Ni2+, Cu2+, and Zn2+ within 1 h, while the jute fabrics with lower hemicelluloses and lignin content show between 72–85 % of the total uptake capacity within 3 h. Increased initial metal ion concentration from 10 to 20 mg/l in monometallic solution caused an increase in the total uptake capacity of jute fabrics with lower hemicelluloses and lignin content for 47–69 % (Ni2+), 42–63 % (Cu2+), and 22–37 % (Zn2+). The biosorption capacity of alkali treated jute fabrics was affected by the changes in the total amount of carboxyl and aldehyde groups that accompany the hemicelluloses removal. In the case of the oxidative treatment, the biosorption capacity was affected by the lignin content as well as the amount of introduced carboxyl groups. The best biosorption performance possesses jute fabric with 63.2 % lower lignin content as well as 81.1 % higher amount of carboxyl groups; biosorption capacity toward Ni2+, Cu2+, and Zn2+ in monometallic solution is about 2.4; 2.2 and 3.5 times higher compared to the raw jute fabric, respectively. All jute fabrics exhibited the same affinity order (which is independent on the initial metal ion concentrations) toward heavy metal ions: Ni2+ > Cu2+ > Zn2+ in the case of competitive biosorption. An increase in the initial metal ion concentration for two times in the polymetallic solution caused about a 35–59 % increase in the total uptake capacity of Ni2+, while the total uptake capacities of Cu2+ and Zn2+ increased for 19–38 % and 18–65 %, respectively. |
Author | Pavun, L. Maletic, S. Kostic, M. Ivanovska, A. Dojcinovic, B. Asanovic, K. |
Author_xml | – sequence: 1 givenname: A. surname: Ivanovska fullname: Ivanovska, A. email: aivanovska@tmf.bg.ac.rs organization: Faculty of Technology and Metallurgy, University of Belgrade – sequence: 2 givenname: B. surname: Dojcinovic fullname: Dojcinovic, B. organization: Institute of Chemistry, Technology and Metallurgy, University of Belgrade – sequence: 3 givenname: S. surname: Maletic fullname: Maletic, S. organization: Faculty of Physics, University of Belgrade – sequence: 4 givenname: L. surname: Pavun fullname: Pavun, L. organization: Faculty of Pharmacy, University of Belgrade – sequence: 5 givenname: K. surname: Asanovic fullname: Asanovic, K. organization: Faculty of Technology and Metallurgy, University of Belgrade – sequence: 6 givenname: M. surname: Kostic fullname: Kostic, M. organization: Faculty of Technology and Metallurgy, University of Belgrade |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002634509$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kE9LAzEUxIMo2FY_gLeAJw-rL9lNkxxrsbZSEbTiMWTTpGz_bGqyK_Tbm7qCJy9v3uE3wzB9dFr72iJ0ReCWAPC7SCilJAMKmRzmMhMnqEcEZxkAo6fpp1Rmkkh-jvoxrgGGhPK8h-YfOjYWP7XpTHQZKoN1xBrfVz76UNq6wc4HPLX664CfbaO3eObriF3wOzz6bK1vI37z27apfH2BzpzeRnv5qwP0PnlYjKfZ_OVxNh7NM5ML3mSEaVpACVTkXAowUAAj1gAxzvAlk8tiKAtSOlpwyy2xjhFRCrG0PJfOGJ0P0E2XWwenNqZSXlc_uvJqE9TodTFTkgkmBU3sdcfug091Y6PWvg11qqdSfi4g54QlinSUCT7GYJ3ah2qnw0ERUMeBVTewSgOr48BKJA_tPDGx9cqGv-T_Td_QjX1H |
CitedBy_id | crossref_primary_10_17776_csj_1000417 crossref_primary_10_3390_polym15092178 crossref_primary_10_1155_2021_3552300 crossref_primary_10_1016_j_indcrop_2021_113913 crossref_primary_10_3390_su15032125 crossref_primary_10_1007_s13399_022_02502_4 crossref_primary_10_1155_2023_8532316 crossref_primary_10_3390_molecules26144199 crossref_primary_10_3390_molecules26154574 |
Cites_doi | 10.2298/JSC160707106L 10.1002/pen.24147 10.1002/jccs.201500298 10.1002/app.44422 10.1016/j.carbpol.2005.04.009 10.1016/j.biortech.2004.12.010 10.1016/j.ijbiomac.2018.02.035 10.1007/s10570-017-1575-4 10.1007/s10311-018-0786-8 10.1007/s10570-018-1656-z 10.1016/j.apcbee.2012.06.079 10.1016/j.cej.2011.06.016 10.1016/j.cej.2011.02.044 10.1007/s10570-019-02421-0 10.1002/vnl.21603 10.30638/eemj.2017.054 10.1002/app.45138 10.1016/j.ijbiomac.2017.01.057 10.1021/cm034720r 10.1016/j.molliq.2015.05.060 10.1016/j.microc.2010.09.014 10.1016/j.jhazmat.2008.07.139 10.1016/j.biortech.2014.10.092 10.1016/j.molliq.2019.04.115 10.1002/app.10460 10.1016/j.biortech.2006.11.050 10.15376/biores.8.4.4805-4826 10.1021/bm9006979 10.1016/j.psep.2017.05.012 10.1007/s10123-002-0062-3 10.1002/app.24255 10.1007/s12221-014-0687-9 10.1016/j.vibspec.2004.02.003 10.1016/j.jtice.2016.09.022 10.1002/app.1184 10.1016/j.biortech.2015.11.009 10.1016/j.carbpol.2009.02.028 10.1080/15440478.2017.1330721 10.1533/9781845690618.24 10.1016/j.biortech.2015.02.003 |
ContentType | Journal Article |
Copyright | The Korean Fiber Society 2020 The Korean Fiber Society 2020. |
Copyright_xml | – notice: The Korean Fiber Society 2020 – notice: The Korean Fiber Society 2020. |
DBID | AAYXX CITATION 7SR 8FD JG9 ACYCR |
DOI | 10.1007/s12221-020-9639-8 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1875-0052 |
EndPage | 2002 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9585982 10_1007_s12221_020_9639_8 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .UV .VR 06C 06D 0R~ 0VY 1N0 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 85H 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HZB HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KOV LLZTM M4Y MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9N PDBOC PF0 PT4 Q2X QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ZZE ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 SJYHP 7SR 8FD JG9 ACYCR |
ID | FETCH-LOGICAL-c387t-15a240b02837980c04051ec01cfc7d59d46941bf247e7e1ef518b88de739fcca3 |
IEDL.DBID | AEJHL |
ISSN | 1229-9197 |
IngestDate | Fri Nov 17 19:21:17 EST 2023 Wed Nov 06 07:15:13 EST 2024 Thu Nov 21 23:46:27 EST 2024 Sat Dec 16 12:02:41 EST 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Keywords | Lignin Heavy metal ions Waste jute Hemicelluloses Biosorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-15a240b02837980c04051ec01cfc7d59d46941bf247e7e1ef518b88de739fcca3 |
PQID | 2473803715 |
PQPubID | 326332 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9585982 proquest_journals_2473803715 crossref_primary_10_1007_s12221_020_9639_8 springer_journals_10_1007_s12221_020_9639_8 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Dordrecht |
PublicationTitle | Fibers and polymers |
PublicationTitleAbbrev | Fibers Polym |
PublicationYear | 2020 |
Publisher | The Korean Fiber Society Springer Nature B.V 한국섬유공학회 |
Publisher_xml | – name: The Korean Fiber Society – name: Springer Nature B.V – name: 한국섬유공학회 |
References | BornaM OPirsahebMNiriM VMashizieR KKakavandiBZareM RAsadiAJ. Taiwan. Inst. Chem. Eng.2016688010.1016/j.jtice.2016.09.0221:CAS:528:DC%2BC28XhsFyntLbF HasfalinaC MMaryamR ZLuqmanC ARashidMAPCBEE Procedia201232551:CAS:528:DC%2BC2cXisFSqsbg%3D10.1016/j.apcbee.2012.06.079 AhujaDKaushikAChauhaG SInt. J. Biol. Macromol.2017974031:CAS:528:DC%2BC2sXhsVegu7c%3D2810436910.1016/j.ijbiomac.2017.01.05728104369 NadaA AHassanM LJ. Appl. Polym. Sci.200610213991:CAS:528:DC%2BD28Xpt1arurs%3D10.1002/app.24255 AbbaraBAlemAMarcotteSPantetaAAhfirN DBizetaLDuriatticDProcess Saf. Environ. Prot.201710963910.1016/j.psep.2017.05.0121:CAS:528:DC%2BC2sXps1Ggu7g%3D LoiaconoSMorin-CriniNCosentinoCTorriGChanetGWintertonPCriniGJ. Appl. Polym. Sci.201713444422 BalintovaMHolubMStevulovaNCigasovaJTesarcikovaMChem. Eng. Transac.201439625 HeJKunitakeTNakaoAChem. Mater.20031544011:CAS:528:DC%2BD3sXot12nu7Y%3D10.1021/cm034720r ZhangHMingH RYangGLiYLiQShaoHPolym. Eng. Sci.20155525531:CAS:528:DC%2BC2MXhtFKrtLrM10.1002/pen.24147 GangulyP KChandaSIndian J. Fiber. Text. Res.199419381:CAS:528:DyaK2cXntVaqsrc%3D K. B. Krishnan, I. Doraiswamy, and K. P. Chellamani in “Bast and other Plant Fibers”, 1st ed. (R. R. Franck Ed.), pp.24–94, Woodhead Publishing Limited and CRC Press LCR, Cambridge, 2005. TofanLPaduraruCTeodosiuCTomaOCellul. Chem. Technol.2015492191:CAS:528:DC%2BC2MXhtFaqsb3F LazicB DJanjicS DRijavecTKosticM MJ. Serb. Chem. Soc.201782831:CAS:528:DC%2BC2sXhtVOlt7rP10.2298/JSC160707106L PengXSuSXiaMLouKYangFPengSCiaYCellulose20182519211:CAS:528:DC%2BC1cXht1Ort78%3D10.1007/s10570-018-1656-z PraskaloJKosticMPotthastAPopovaGPejicBSkundricPCarbohydr. Polym.2009777911:CAS:528:DC%2BD1MXmsVSgs7w%3D10.1016/j.carbpol.2009.02.028 dos SantosW N LCavalcanteD Dda SilvaE G Pdas VirgensC Fde Souza DiasFMicrochem. J.2011972691:CAS:528:DC%2BC3cXhsFCqsrvN10.1016/j.microc.2010.09.014 RayDSarkarB KJ. Appl. Polym. Sci.20018010131:CAS:528:DC%2BD3MXitVKmtbg%3D10.1002/app.1184 XuSGongXZouHLiuCChenCZengXJ. Chin. Chem. Soc. Taipei201562107210.1002/jccs.201500298 PérezJMuñoz-DoradoJde la RubiaTMartínezJInt. Microbiol.20025531218078110.1007/s10123-002-0062-31:CAS:528:DC%2BD38Xnt1Wht7k%3D12180781 KosticMPejicBSkundricPBioresour. Technol.200899941:CAS:528:DC%2BD2sXhtFers7fP1724013910.1016/j.biortech.2006.11.05017240139 PejicBVukcevicMPajic-LijakovicILausevicMKosticMChem. Eng. J.20111723541:CAS:528:DC%2BC3MXpvVOgtr4%3D10.1016/j.cej.2011.06.016 IvanovskaACerovicDMaleticSJankovic CastvanIAsanovicKKosticMCellulose20192651331:CAS:528:DC%2BC1MXosFSitLs%3D10.1007/s10570-019-02421-0 TranaV SNgoH HGuoWZhangJLiangSTon-ThatCZhangXBioresour. Technol.201518235310.1016/j.biortech.2015.02.0031:CAS:528:DC%2BC2MXisVOkuro%3D IfukuSTsujiMMorimotoMSaimotoHYanoHBiomacromolecules20091027141:CAS:528:DC%2BD1MXptlGnsr4%3D1965367510.1021/bm900697919653675 GarnerWTextile Laboratory Manual19671st ed.LondonHeywood Books52113 LoiaconoSCriniGChanetGRaschettiMPlacetVMorin-CriniNJ. Chem. Technol. Biotechnol.2018962596 DuZZhengTWangPHaoLWangYBioresour. Technol.2016214110.1016/j.biortech.2015.11.0091:CAS:528:DC%2BC2MXhvVaqtrzK KimNParkMParkDBioresour. Technol.20151756291:CAS:528:DC%2BC2cXhvVGgtrfJ2546700010.1016/j.biortech.2014.10.09225467000 RazakM RJusofN AHaronM JIbrahimNMohhamedFKamaruzamanSAl-LohedanH AInt. J. Biol. Macromol.20181127541:CAS:528:DC%2BC1cXislyjsL0%3D2942839010.1016/j.ijbiomac.2018.02.03529428390 AlbadariA BAl-MuhtasebbA HAl-laqtahaN AWalkeraG MAllenaS JAhmadM N MChem. Eng. J.20111692010.1016/j.cej.2011.02.0441:CAS:528:DC%2BC3MXltFemsbs%3D SchwanningerMRodriguesJ CPereiraHHinterstoisserBVib. Spectrosc.200436231:CAS:528:DC%2BD2cXovVCrsro%3D10.1016/j.vibspec.2004.02.003 M. Kostic, B. Pejic, and M. Vukcevic in “Chemistry of lignocellulosic: Current Trends”, 1st ed. (T. Stefanovic Ed.), pp.3–21, CRC Press, Boca Raton, 2018. LazićB DPejićB MKramarA DVukčevićM MMihajlovskiK RRusmirovićR DKostićM MCellulose20182569710.1007/s10570-017-1575-41:CAS:528:DC%2BC2sXhvVSrsrjK CriniGLichtfouseEWilsonL DMorin-CriniNEnviron. Chem. Lett.2019171951:CAS:528:DC%2BC1cXhsVegurrI10.1007/s10311-018-0786-8 BugnetJMorin-CriniNCosentinoCChanetGWintertonPCriniGEnviron. Eng. Manage. J.2017165351:CAS:528:DC%2BC1MXmsVejs7Y%3D10.30638/eemj.2017.054 HassanM SZohdyM HJ. Nat. Fibers2018155061:CAS:528:DC%2BC1cXktFWmsLo%3D10.1080/15440478.2017.1330721 HassanM SZohdyM HJ. Vinyl Add.. Tech.2018243391:CAS:528:DC%2BC2sXhsVOjtb%2FL10.1002/vnl.21603 SawS KPurwarRNandySGhoseJSarkhelGBioresources20138480510.15376/biores.8.4.4805-4826 BakriM K BJayamaniEHamdanS SRahmanMd RSoonK HJ. Eng. Appl. Sci.2016118759 MwaikamboL YAnsellM PJ. Appl. Polym. Sci.20028422221:CAS:528:DC%2BD38XislWms7o%3D10.1002/app.10460 HuangQHuDChenMBaoCJinXJ. Mol. Liq.20192852881:CAS:528:DC%2BC1MXosFSkt70%3D10.1016/j.molliq.2019.04.115 VukcevicMPejicBLausevicMPajic-LijakovicIKosticMFiber. Polym.2014156871:CAS:528:DC%2BC2cXpsVKqs7c%3D10.1007/s12221-014-0687-9 KyzasG ZTerzopoulouZNikolaidisVAlexopoulouEBikiarisD NJ. Mol. Liq.20152092091:CAS:528:DC%2BC2MXht1yhurnP10.1016/j.molliq.2015.05.060 PejicBVukcevicMKosticMSkundricPJ. Hazard. Mater.20091644610.1016/j.jhazmat.2008.07.1391:CAS:528:DC%2BD1MXislGmsb8%3D LoiaconoSCriniGMartelBChanetGCosentinoCRaschettiMPlacetVTorriGMorin-CriniNJ. Appl. Polym. Sci.20171344513810.1002/app.451381:CAS:528:DC%2BC2sXntFWmtbY%3D SaitoTIsogaiACarbohydr. Polym.2005611831:CAS:528:DC%2BD2MXmtlKgs7s%3D10.1016/j.carbpol.2005.04.009 KoblyakovALaboratory Practice in the Study of Textile Materials19891st ed.MoscowMir Publishers192200 ShuklaS RPaiR SBioresour. Technol.20059614301:CAS:528:DC%2BD2MXltFCkt7g%3D1593926910.1016/j.biortech.2004.12.01015939269 G Crini (9639_CR1) 2019; 17 V S Trana (9639_CR6) 2015; 182 M Balintova (9639_CR38) 2014; 39 A B Albadari (9639_CR3) 2011; 169 B Pejic (9639_CR37) 2011; 172 S R Shukla (9639_CR20) 2005; 96 B D Lazić (9639_CR41) 2018; 25 A Ivanovska (9639_CR26) 2019; 26 A Koblyakov (9639_CR29) 1989 B Pejic (9639_CR35) 2009; 164 S Loiacono (9639_CR17) 2017; 134 M S Hassan (9639_CR22) 2018; 24 M O Borna (9639_CR10) 2016; 68 M R Razak (9639_CR11) 2018; 112 D Ahuja (9639_CR47) 2017; 97 9639_CR25 P K Ganguly (9639_CR33) 1994; 19 W N L dos Santos (9639_CR8) 2011; 97 M S Hassan (9639_CR23) 2018; 15 B Abbara (9639_CR7) 2017; 109 S K Saw (9639_CR48) 2013; 8 X Peng (9639_CR12) 2018; 25 D Ray (9639_CR36) 2001; 80 B D Lazic (9639_CR32) 2017; 82 J Pérez (9639_CR27) 2002; 5 S Loiacono (9639_CR16) 2017; 134 T Saito (9639_CR40) 2005; 61 L Y Mwaikambo (9639_CR45) 2002; 84 Q Huang (9639_CR21) 2019; 285 J He (9639_CR39) 2003; 15 L Tofan (9639_CR15) 2015; 49 S Ifuku (9639_CR42) 2009; 10 J Bugnet (9639_CR18) 2017; 16 S Xu (9639_CR13) 2015; 62 M Schwanninger (9639_CR43) 2004; 36 A A Nada (9639_CR34) 2006; 102 S Loiacono (9639_CR4) 2018; 96 Z Du (9639_CR24) 2016; 21 G Z Kyzas (9639_CR19) 2015; 209 9639_CR14 M K B Bakri (9639_CR44) 2016; 11 N Kim (9639_CR5) 2015; 175 C M Hasfalina (9639_CR9) 2012; 3 J Praskalo (9639_CR31) 2009; 77 H Zhang (9639_CR46) 2015; 55 M Kostic (9639_CR28) 2008; 99 M Vukcevic (9639_CR2) 2014; 15 W Garner (9639_CR30) 1967 |
References_xml | – volume: 82 start-page: 83 year: 2017 ident: 9639_CR32 publication-title: J. Serb. Chem. Soc. doi: 10.2298/JSC160707106L contributor: fullname: B D Lazic – volume: 39 start-page: 625 year: 2014 ident: 9639_CR38 publication-title: Chem. Eng. Transac. contributor: fullname: M Balintova – volume: 55 start-page: 2553 year: 2015 ident: 9639_CR46 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.24147 contributor: fullname: H Zhang – volume: 62 start-page: 1072 year: 2015 ident: 9639_CR13 publication-title: J. Chin. Chem. Soc. Taipei doi: 10.1002/jccs.201500298 contributor: fullname: S Xu – volume: 134 start-page: 44422 year: 2017 ident: 9639_CR17 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.44422 contributor: fullname: S Loiacono – volume: 61 start-page: 183 year: 2005 ident: 9639_CR40 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2005.04.009 contributor: fullname: T Saito – volume: 96 start-page: 1430 year: 2005 ident: 9639_CR20 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2004.12.010 contributor: fullname: S R Shukla – volume: 112 start-page: 754 year: 2018 ident: 9639_CR11 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.02.035 contributor: fullname: M R Razak – volume: 25 start-page: 697 year: 2018 ident: 9639_CR41 publication-title: Cellulose doi: 10.1007/s10570-017-1575-4 contributor: fullname: B D Lazić – volume: 17 start-page: 195 year: 2019 ident: 9639_CR1 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-018-0786-8 contributor: fullname: G Crini – volume: 25 start-page: 1921 year: 2018 ident: 9639_CR12 publication-title: Cellulose doi: 10.1007/s10570-018-1656-z contributor: fullname: X Peng – volume: 3 start-page: 255 year: 2012 ident: 9639_CR9 publication-title: APCBEE Procedia doi: 10.1016/j.apcbee.2012.06.079 contributor: fullname: C M Hasfalina – volume: 172 start-page: 354 year: 2011 ident: 9639_CR37 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.06.016 contributor: fullname: B Pejic – volume: 169 start-page: 20 year: 2011 ident: 9639_CR3 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.044 contributor: fullname: A B Albadari – volume: 26 start-page: 5133 year: 2019 ident: 9639_CR26 publication-title: Cellulose doi: 10.1007/s10570-019-02421-0 contributor: fullname: A Ivanovska – volume: 24 start-page: 339 year: 2018 ident: 9639_CR22 publication-title: J. Vinyl Add.. Tech. doi: 10.1002/vnl.21603 contributor: fullname: M S Hassan – volume: 16 start-page: 535 year: 2017 ident: 9639_CR18 publication-title: Environ. Eng. Manage. J. doi: 10.30638/eemj.2017.054 contributor: fullname: J Bugnet – volume: 134 start-page: 45138 year: 2017 ident: 9639_CR16 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.45138 contributor: fullname: S Loiacono – volume: 97 start-page: 403 year: 2017 ident: 9639_CR47 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.01.057 contributor: fullname: D Ahuja – volume: 15 start-page: 4401 year: 2003 ident: 9639_CR39 publication-title: Chem. Mater. doi: 10.1021/cm034720r contributor: fullname: J He – ident: 9639_CR14 – volume: 209 start-page: 209 year: 2015 ident: 9639_CR19 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2015.05.060 contributor: fullname: G Z Kyzas – start-page: 192 volume-title: Laboratory Practice in the Study of Textile Materials year: 1989 ident: 9639_CR29 contributor: fullname: A Koblyakov – volume: 96 start-page: 2596 year: 2018 ident: 9639_CR4 publication-title: J. Chem. Technol. Biotechnol. contributor: fullname: S Loiacono – volume: 97 start-page: 269 year: 2011 ident: 9639_CR8 publication-title: Microchem. J. doi: 10.1016/j.microc.2010.09.014 contributor: fullname: W N L dos Santos – volume: 164 start-page: 46 year: 2009 ident: 9639_CR35 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.07.139 contributor: fullname: B Pejic – volume: 175 start-page: 629 year: 2015 ident: 9639_CR5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.092 contributor: fullname: N Kim – volume: 285 start-page: 288 year: 2019 ident: 9639_CR21 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.04.115 contributor: fullname: Q Huang – volume: 84 start-page: 2222 year: 2002 ident: 9639_CR45 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.10460 contributor: fullname: L Y Mwaikambo – volume: 99 start-page: 94 year: 2008 ident: 9639_CR28 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.11.050 contributor: fullname: M Kostic – volume: 8 start-page: 4805 year: 2013 ident: 9639_CR48 publication-title: Bioresources doi: 10.15376/biores.8.4.4805-4826 contributor: fullname: S K Saw – volume: 10 start-page: 2714 year: 2009 ident: 9639_CR42 publication-title: Biomacromolecules doi: 10.1021/bm9006979 contributor: fullname: S Ifuku – volume: 109 start-page: 639 year: 2017 ident: 9639_CR7 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2017.05.012 contributor: fullname: B Abbara – volume: 5 start-page: 53 year: 2002 ident: 9639_CR27 publication-title: Int. Microbiol. doi: 10.1007/s10123-002-0062-3 contributor: fullname: J Pérez – volume: 102 start-page: 1399 year: 2006 ident: 9639_CR34 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.24255 contributor: fullname: A A Nada – volume: 15 start-page: 687 year: 2014 ident: 9639_CR2 publication-title: Fiber. Polym. doi: 10.1007/s12221-014-0687-9 contributor: fullname: M Vukcevic – volume: 36 start-page: 23 year: 2004 ident: 9639_CR43 publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2004.02.003 contributor: fullname: M Schwanninger – volume: 68 start-page: 80 year: 2016 ident: 9639_CR10 publication-title: J. Taiwan. Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.09.022 contributor: fullname: M O Borna – volume: 80 start-page: 1013 year: 2001 ident: 9639_CR36 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1184 contributor: fullname: D Ray – volume: 21 start-page: 41 year: 2016 ident: 9639_CR24 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.009 contributor: fullname: Z Du – start-page: 52 volume-title: Textile Laboratory Manual year: 1967 ident: 9639_CR30 contributor: fullname: W Garner – volume: 77 start-page: 791 year: 2009 ident: 9639_CR31 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.02.028 contributor: fullname: J Praskalo – volume: 15 start-page: 506 year: 2018 ident: 9639_CR23 publication-title: J. Nat. Fibers doi: 10.1080/15440478.2017.1330721 contributor: fullname: M S Hassan – ident: 9639_CR25 doi: 10.1533/9781845690618.24 – volume: 19 start-page: 38 year: 1994 ident: 9639_CR33 publication-title: Indian J. Fiber. Text. Res. contributor: fullname: P K Ganguly – volume: 49 start-page: 219 year: 2015 ident: 9639_CR15 publication-title: Cellul. Chem. Technol. contributor: fullname: L Tofan – volume: 182 start-page: 353 year: 2015 ident: 9639_CR6 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.02.003 contributor: fullname: V S Trana – volume: 11 start-page: 8759 year: 2016 ident: 9639_CR44 publication-title: J. Eng. Appl. Sci. contributor: fullname: M K B Bakri |
SSID | ssj0061273 |
Score | 2.3108056 |
Snippet | The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni
2+
, Cu
2+
, and Zn
2+
was investigated. The raw jute fabric... The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni2+, Cu2+, and Zn2+ was investigated. The raw jute fabric was... The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni2+, Cu2+, and Zn2+was investigated. The raw jute fabric was... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1992 |
SubjectTerms | Aldehydes Aqueous solutions Chemical composition Chemistry Chemistry and Materials Science Copper Fabrics Functional groups Heavy metals Ion concentration Ions Jute Lignin Metal ions Nickel Polymer Sciences Regular Articles Sodium hydroxide 섬유공학 |
Title | Waste Jute Fabric as a Biosorbent for Heavy Metal Ions from Aqueous Solution |
URI | https://link.springer.com/article/10.1007/s12221-020-9639-8 https://www.proquest.com/docview/2473803715 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002634509 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Fibers and Polymers, 2020, 21(9), , pp.1992-2002 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1RGICBb0ShIAsxgYKaD2N7LNDSImABBJtlOzaqKiWooUj8e85pQwHBAEs8xIqTe2e_Z198BjigJyKkWtPAIZsFiXM20CwNAyR3FcUqUbEtly5u2c0jP2_7NDnRx9JFNjiuIpLlQD3d64ZMhjNfnO2gz4iA12AOqYeib8-12pfdq2r8Rcou48pYX2BXFqyKZf70kC9sVMuG7ovQ_BYbLSmns_yfl12BpYnAJK2xR6zCjM3WYP6sOtdtDRY_pSBch6sHhTiTyxFeOkrjqEhUQRQ57edFPtRISQRlLela9fpGri1KddJDRyV-Wwpp4Rfko4JUa2sbcN9p3511g8kJC4GJOXsJQqqQ0bXXGEzwpsEeTUNrmqFxhqVUpInf56pdlDDLbGgdDbnmPLUsFg6xjzdhNsszuwXE0qYxUegM6pOEMaOtdWmiHKKgsQFdh8PK0vJ5nEhDTlMme3NJNJf05pK8DvuIhRyYvvTpr335lMvBUKLI70mBUxzBozo0KqjkpOMVEt805j4NIa3DUYXN9PavLW7_qfYOLEQe3PJfswbMvgxHdhdqRTram3ijL3t3F513AfLYJw |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhEJ5YPagH38b6JMaTZpPuA4FjfdRWqxdr9EaABdOYdE3XmvjvHdaSqtGDXnYPSxaYb-AbGGYAOKDHIqZa08ghm0WZczbSLI8jJHeVpCpTqa22Lm7ZzQM_O_dpctIQC1Oddg8uyWqmngS7IZXh0heXO6g0IuI1mMnEcYaqPNPs9C5aYQJGzq4cy1he4FgWLDgzf_rJFzqqDYbui6X5zTlacU5r8V-tXYKFsYlJmh86sQxTdrACs6fhZrcVmP-UhHAVuvcKkSaXI3y0lMZ5kaiSKHLSL8piqJGUCBq2pG3V6xu5tmiskw6qKvGBKaSJXShGJQm7a2tw1zrvnbaj8R0LkUk5e4liqpDTtbcymOANg2OaxtY0YuMMy6nIMx_pql2SMctsbB2NueY8tywVDtFP12F6UAzsBhBLG8YksTNooWSMGW2tyzPlEAaNFeg6HAZRy-ePVBpykjTZi0uiuKQXl-R12Ecw5JPpS58A278fC_k0lGjmd6TARY7gSR22A1ZyPPRKiS1NuU9ESOtwFLCZfP61xs0_ld6D2Xbvuiu7nZurLZhLPNDVybNtmH4ZjuwO1Mp8tDtWzXc_htqJ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSyMxEB-sgqcPfp1iPb0L4tPJYvcjJnk6etrSahXhTvQtJNlERNiVbiv43zvZNlSP80F82X3YsNmdmWR-k8n8AnBAj0VMtaaRQ28WZc7ZSLM8jtC5qyRVmUptvXTxh13e8tOOp8n5FWph6t3uISU5qWnwLE3F6Ogxd0ezwjd0axgGY-iDBiQi3oCFDAMZNPSFduesNwiTMfrvOsmM7QWOa8FCYvN_L3njmhrF0L1Bnf8kSmv_01399JevwcoUepL2xFbWYc4WG_DlJJz4tgHLr8gJv8LgRqEFkLMxXrpK43xJVEUU-X1fVuVQY5cEAS_pWfX0TC4sgnjSRxMmvmCFtPF3ynFFwqrbJlx3O39PetH07IXIpJyNopgq9PXaow8meMvgWKexNa3YOMNyKvLMV8Bql2TMMhtbR2OuOc8tS4VDq0i3YL4oC7sNxNKWMUnsDCKXjDGjrXV5phyqRGMHugk_g9jl44RiQ87IlL24JIpLenFJ3oR9VIx8MPfSE2P7-10pH4YS4X9fCgx-BE-asBv0JqdDspL4pSn3BIW0CYdBT7PH7_a486HWP2Dx6rQrB_3L82-wlHg91xvSdmF-NBzbPWhU-fj71EpfAPQ140w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste+Jute+Fabric+as+a+Biosorbent+for+Heavy+Metal+Ions+from+Aqueous+Solution&rft.jtitle=Fibers+and+polymers&rft.au=Ivanovska%2C+A.&rft.au=Dojcinovic%2C+B.&rft.au=Maletic%2C+S.&rft.au=Pavun%2C+L.&rft.date=2020-09-01&rft.pub=The+Korean+Fiber+Society&rft.issn=1229-9197&rft.eissn=1875-0052&rft.volume=21&rft.issue=9&rft.spage=1992&rft.epage=2002&rft_id=info:doi/10.1007%2Fs12221-020-9639-8&rft.externalDocID=10_1007_s12221_020_9639_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9197&client=summon |