Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach
Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet s...
Saved in:
Published in: | Cognitive computation Vol. 7; no. 2; pp. 254 - 262 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Boston
Springer US
01-04-2015
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons—SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good
F
-score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores. |
---|---|
AbstractList | Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons—SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good F-score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores. Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons—SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good F -score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores. |
Author | Mahalakshmi, G. S. Pandarachalil, Rafeeque Sendhilkumar, Selvaraju |
Author_xml | – sequence: 1 givenname: Rafeeque surname: Pandarachalil fullname: Pandarachalil, Rafeeque email: rafeeqpc@gcek.ac.in organization: Department of Computer Science and Engineering, Govt. College of Engineering Kannur – sequence: 2 givenname: Selvaraju surname: Sendhilkumar fullname: Sendhilkumar, Selvaraju organization: Department of Information Science & Technology, Anna University – sequence: 3 givenname: G. S. surname: Mahalakshmi fullname: Mahalakshmi, G. S. organization: Department of Computer Science & Engineering, Anna University |
BookMark | eNp1kE9PwzAMxSM0JLbBB-BWiXPASZOm4TaNf5Mmcdg4R1nrjE5bW5IOtH16MhXBiYttye_3bL0RGdRNjYRcM7hlAOouMC6lpsAE1SkDejwjQ5ZnGdU6E4PfWWYXZBTCBiCTWvIhmS2_qq5Dnyyw7qpdLMmktttDqELiGp_MrV8jXRR2i8mD7ex9XCdvddi36D-rgGUyaVvf2OL9kpw7uw149dPHZPn0uJy-0Pnr82w6mdMizbOOOs2sljnnlmvFyhL4iinF1UpC4VIp8pVWIuXolMhdCalwiFZwLEFb5XQ6Jje9bbz6scfQmU2z9_HlYLjmEAEtIKpYryp8E4JHZ1pf7aw_GAbmFJjpAzMxMHMKzBwjw3smRG29Rv_n_D_0DVJfb1c |
CitedBy_id | crossref_primary_10_1007_s12559_017_9513_1 crossref_primary_10_1007_s12559_016_9386_8 crossref_primary_10_1007_s12559_015_9346_8 crossref_primary_10_1016_j_eswa_2018_06_022 crossref_primary_10_1080_17539153_2018_1447226 crossref_primary_10_1016_j_jjimei_2021_100019 crossref_primary_10_1080_01605682_2018_1557021 crossref_primary_10_1007_s11042_024_18786_9 crossref_primary_10_1051_matecconf_201818910010 crossref_primary_10_36548_jucct_2020_3_004 crossref_primary_10_1007_s12559_017_9496_y crossref_primary_10_1007_s10115_016_0993_1 crossref_primary_10_1007_s12559_015_9380_6 crossref_primary_10_1108_EL_08_2019_0184 crossref_primary_10_1007_s12559_019_09706_3 crossref_primary_10_2478_dim_2020_0032 crossref_primary_10_1007_s12559_016_9439_z crossref_primary_10_46634_riics_165 crossref_primary_10_1016_j_eswa_2021_114604 crossref_primary_10_1016_j_jjimei_2022_100095 crossref_primary_10_1007_s11042_020_09512_2 crossref_primary_10_1016_j_ipm_2017_02_004 crossref_primary_10_1016_j_ipm_2018_11_010 crossref_primary_10_1186_s40537_017_0063_x crossref_primary_10_17821_srels_2022_v59i4_170345 crossref_primary_10_1145_3592792 crossref_primary_10_1016_j_ipm_2016_07_001 crossref_primary_10_1109_ACCESS_2021_3067844 crossref_primary_10_3390_electronics10212717 crossref_primary_10_1016_j_knosys_2017_11_035 crossref_primary_10_1080_01605682_2018_1545519 crossref_primary_10_1108_JCM_12_2019_3538 crossref_primary_10_1088_1742_6596_1229_1_012018 crossref_primary_10_1007_s10462_020_09845_2 crossref_primary_10_1007_s12530_016_9168_2 crossref_primary_10_1016_j_engappai_2020_104048 crossref_primary_10_1108_K_01_2018_0029 crossref_primary_10_1007_s12559_017_9477_1 crossref_primary_10_1080_03155986_2017_1340797 crossref_primary_10_1371_journal_pone_0191163 crossref_primary_10_2196_30765 crossref_primary_10_1109_ACCESS_2020_2983859 crossref_primary_10_1016_j_im_2019_103181 crossref_primary_10_1007_s10462_021_10030_2 crossref_primary_10_7717_peerj_cs_1295 crossref_primary_10_1007_s12559_018_9583_8 crossref_primary_10_1093_migration_mnab001 crossref_primary_10_1007_s12559_022_10025_3 crossref_primary_10_4018_IJISP_201907010107 crossref_primary_10_1016_j_eswa_2020_114322 crossref_primary_10_1109_TBDATA_2018_2824812 crossref_primary_10_3390_app132011129 crossref_primary_10_12693_APhysPolA_132_753 crossref_primary_10_1007_s12065_021_00598_7 crossref_primary_10_1007_s13278_022_01016_1 crossref_primary_10_1007_s12559_021_09923_9 crossref_primary_10_1175_WCAS_D_21_0163_1 crossref_primary_10_1016_j_heliyon_2024_e32572 crossref_primary_10_1007_s10462_017_9599_6 |
Cites_doi | 10.1016/j.eswa.2013.05.057 10.1016/j.eswa.2012.02.120 10.1016/j.eswa.2013.01.019 10.1007/978-94-007-5070-8 10.1016/j.csl.2013.04.001 10.1016/j.eswa.2013.01.001 10.1109/MCI.2014.2307227 10.1109/MIS.2013.4 10.1007/s12559-012-9183-y 10.1609/aaai.v28i1.8928 10.1007/978-3-642-29047-3_3 10.1145/2433396.2433465 10.1145/2020408.2020614 10.1145/2187836.2187882 10.1109/MIS.2013.30 10.1145/2245276.2245364 10.1201/b16014-19 10.1007/978-3-642-36543-0_8 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2014 Springer Science+Business Media New York 2014. |
Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: Springer Science+Business Media New York 2014. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PQEST PQQKQ PQUKI |
DOI | 10.1007/s12559-014-9310-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1866-9964 |
EndPage | 262 |
ExternalDocumentID | 10_1007_s12559_014_9310_z |
GroupedDBID | -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 67Z 6NX 875 8TC 96X AAAVM AAFGU AAHNG AAIAL AAJKR AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKAS ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD BA0 BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV KPH LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z83 Z88 ZMTXR ZOVNA ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFKRA AGQEE AGRTI AIGIU ARAPS BENPR BGLVJ CCPQU CITATION H13 HCIFZ K7- SJYHP 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c386t-f91a95822a2971dd02b17727b50cf3548b97432ef748fd034feea42ed09a7f93 |
IEDL.DBID | AEJHL |
ISSN | 1866-9956 |
IngestDate | Wed Nov 20 06:37:34 EST 2024 Thu Nov 21 22:50:00 EST 2024 Sat Dec 16 12:03:31 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Sentiment analysis Parallel python SentiWordNet SenticNet |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-f91a95822a2971dd02b17727b50cf3548b97432ef748fd034feea42ed09a7f93 |
PQID | 2920034940 |
PQPubID | 6623279 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2920034940 crossref_primary_10_1007_s12559_014_9310_z springer_journals_10_1007_s12559_014_9310_z |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationTitle | Cognitive computation |
PublicationTitleAbbrev | Cogn Comput |
PublicationYear | 2015 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Cambria, Hussain (CR22) 2012 Kontopoulos, Berberidis, Dergiades, Bassiliades (CR13) 2013; 40 CR18 CR17 CR16 CR15 CR14 Montejo-Ráez, Martínez-Cámara, Martín-Valdivia, Ureña López (CR11) 2014; 28 CR10 Cambria, Mazzocco, Hussain (CR7) 2013; 4 Mostafa (CR1) 2013; 40 Wang, Cambria, Liu, Hussain (CR6) 2013; 5 Cambria, White (CR19) 2014; 9 CR2 Poria, Gelbukh, Hussain, Das, Bandyopadhyay (CR26) 2013; 28 CR4 CR3 Chamlerwat, Bhattarakosol, Rungkasiri, Haruechaiyasak (CR24) 2012; 28 CR5 CR8 CR9 CR25 CR21 Ghiassi, Skinner, Zimbra (CR12) 2013; 40 CR20 Cambria, Hussain (CR23) 2012; 39 E Cambria (9310_CR23) 2012; 39 W Chamlerwat (9310_CR24) 2012; 28 E Cambria (9310_CR19) 2014; 9 9310_CR9 9310_CR8 9310_CR5 MM Mostafa (9310_CR1) 2013; 40 M Ghiassi (9310_CR12) 2013; 40 9310_CR25 9310_CR21 QF Wang (9310_CR6) 2013; 5 9310_CR20 E Kontopoulos (9310_CR13) 2013; 40 E Cambria (9310_CR22) 2012 A Montejo-Ráez (9310_CR11) 2014; 28 S Poria (9310_CR26) 2013; 28 9310_CR3 9310_CR4 9310_CR18 9310_CR2 9310_CR15 9310_CR14 E Cambria (9310_CR7) 2013; 4 9310_CR17 9310_CR16 9310_CR10 |
References_xml | – ident: CR18 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR10 – volume: 40 start-page: 6266 issue: 16 year: 2013 end-page: 6282 ident: CR12 article-title: Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.05.057 contributor: fullname: Zimbra – volume: 39 start-page: 10533 issue: 12 year: 2012 end-page: 10543 ident: CR23 article-title: Sentic PROMs: application of sentic computing to the development of a novel unified framework for measuring health-care quality publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.02.120 contributor: fullname: Hussain – ident: CR8 – ident: CR25 – volume: 4 start-page: 41 year: 2013 end-page: 53 ident: CR7 article-title: Application of multi-dimensional scaling and artificial neural networks for biologically inspired opinion mining publication-title: Biol Inspir Cogn Archit contributor: fullname: Hussain – volume: 28 start-page: 15 issue: 2 year: 2012 end-page: 21 ident: CR24 article-title: Discovering consumer insight from twitter via sentiment analysis publication-title: J Univ Comput Sci contributor: fullname: Haruechaiyasak – ident: CR21 – ident: CR3 – ident: CR15 – ident: CR17 – volume: 40 start-page: 4241 issue: 10 year: 2013 end-page: 4251 ident: CR1 article-title: More than words: social networks text mining for consumer brand sentiments publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.019 contributor: fullname: Mostafa – year: 2012 ident: CR22 publication-title: Sentic computing: techniques, tools and applications, Springer briefs in cognitive computation doi: 10.1007/978-94-007-5070-8 contributor: fullname: Hussain – ident: CR9 – volume: 28 start-page: 93 issue: 1 year: 2014 end-page: 107 ident: CR11 article-title: Ranked WordNet graph for sentiment polarity classification in Twitter publication-title: Comput Speech Lang doi: 10.1016/j.csl.2013.04.001 contributor: fullname: Ureña López – volume: 40 start-page: 4065 issue: 10 year: 2013 end-page: 4074 ident: CR13 article-title: Ontology-based sentiment analysis of twitter posts publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.001 contributor: fullname: Bassiliades – ident: CR5 – volume: 9 start-page: 1 issue: 2 year: 2014 end-page: 28 ident: CR19 article-title: Jumping NLP curves: a review of natural language processing research publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2014.2307227 contributor: fullname: White – volume: 28 start-page: 31 issue: 2 year: 2013 end-page: 38 ident: CR26 article-title: Enhanced SenticNet with affective labels for concept-based opinion mining publication-title: IEEE Intell Syst J doi: 10.1109/MIS.2013.4 contributor: fullname: Bandyopadhyay – volume: 5 start-page: 234 issue: 2 year: 2013 end-page: 42 ident: CR6 article-title: Common sense knowledge for handwritten Chinese text recognition publication-title: Cogn Comput doi: 10.1007/s12559-012-9183-y contributor: fullname: Hussain – ident: CR20 – ident: 9310_CR21 doi: 10.1609/aaai.v28i1.8928 – ident: 9310_CR9 – volume: 28 start-page: 31 issue: 2 year: 2013 ident: 9310_CR26 publication-title: IEEE Intell Syst J doi: 10.1109/MIS.2013.4 contributor: fullname: S Poria – volume: 40 start-page: 4241 issue: 10 year: 2013 ident: 9310_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.019 contributor: fullname: MM Mostafa – ident: 9310_CR14 – volume: 28 start-page: 15 issue: 2 year: 2012 ident: 9310_CR24 publication-title: J Univ Comput Sci contributor: fullname: W Chamlerwat – ident: 9310_CR4 doi: 10.1007/978-3-642-29047-3_3 – volume: 40 start-page: 4065 issue: 10 year: 2013 ident: 9310_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.01.001 contributor: fullname: E Kontopoulos – ident: 9310_CR16 doi: 10.1145/2433396.2433465 – ident: 9310_CR15 doi: 10.1145/2020408.2020614 – ident: 9310_CR25 – volume: 4 start-page: 41 year: 2013 ident: 9310_CR7 publication-title: Biol Inspir Cogn Archit contributor: fullname: E Cambria – ident: 9310_CR8 – volume: 9 start-page: 1 issue: 2 year: 2014 ident: 9310_CR19 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2014.2307227 contributor: fullname: E Cambria – ident: 9310_CR17 – volume-title: Sentic computing: techniques, tools and applications, Springer briefs in cognitive computation year: 2012 ident: 9310_CR22 doi: 10.1007/978-94-007-5070-8 contributor: fullname: E Cambria – ident: 9310_CR2 doi: 10.1145/2187836.2187882 – ident: 9310_CR10 – ident: 9310_CR20 doi: 10.1109/MIS.2013.30 – ident: 9310_CR18 doi: 10.1145/2245276.2245364 – volume: 40 start-page: 6266 issue: 16 year: 2013 ident: 9310_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.05.057 contributor: fullname: M Ghiassi – volume: 39 start-page: 10533 issue: 12 year: 2012 ident: 9310_CR23 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.02.120 contributor: fullname: E Cambria – ident: 9310_CR5 doi: 10.1201/b16014-19 – volume: 5 start-page: 234 issue: 2 year: 2013 ident: 9310_CR6 publication-title: Cogn Comput doi: 10.1007/s12559-012-9183-y contributor: fullname: QF Wang – volume: 28 start-page: 93 issue: 1 year: 2014 ident: 9310_CR11 publication-title: Comput Speech Lang doi: 10.1016/j.csl.2013.04.001 contributor: fullname: A Montejo-Ráez – ident: 9310_CR3 doi: 10.1007/978-3-642-36543-0_8 |
SSID | ssj0065952 |
Score | 2.4010873 |
Snippet | Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 254 |
SubjectTerms | Abbreviations Accuracy Algorithms Artificial Intelligence Biomedical and Life Sciences Biomedicine Computation by Abstract Devices Computational Biology/Bioinformatics Data mining Dictionaries Frequency distribution Machine learning Natural language Neurosciences Product reviews Semantics Sentiment analysis Slang Social networks |
Title | Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach |
URI | https://link.springer.com/article/10.1007/s12559-014-9310-z https://www.proquest.com/docview/2920034940 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5se-nFt1itkoMnJbKbfWTjrdiWKsVLK3hbkk0CIqzFtoj99U62u10UPeg5S1gmk5lvMjPfAFxwLkNhooz6Mo5oqGKfCsYV5SazxgqWcVuMTpjwh6ekP3A0OWzzdJG_XFcZycJQ171uDvxi5BtSgZCErhrQQtcToW63eoP70biyv44gr8hxJnFMXd9mlcv8aZOv3qiGmN-yooWzGe785zd3YbuElqS31oU92DL5PrQ3Fu7jAO6m78-ue4dMXI2QexckFSkJQfBKxq4snE7w2Azpy4W8wWXymM-XM2dR5kaTXklBfgjT4WB6O6LlLAWaBUm8oFb4UkSIBiQT3NfaY453Ck8l8jIbYNiiMLAImLE8TKz2gtAaI0NmtCcktyI4gmb-mptjIF6ifOkofHSkEIsppWKuM0QuQrHQJroDl5VI09maMSOtuZGddFKUTuqkk6460K2EnpaXZ566AVoFbY7XgatKyvXyr5ud_OnrU2gj-InWVThdaC7eluYMGnO9PC816hNRMcVK |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BO9CFb0ShgAcmkKV8OHHMVtGWVpQuDRJbZMe2xBIq0grRX4-dxlQgGGB2ZEXPl_O73N07gEtKOWEqyrHP4wgTEfuYBVRgqnKtNAtyqqvRCVM6eUp6fSuTE7pemKra3aUkK0-9bnaz7NeEvgQzw0nwchOahMXEmHKzO0rvBs4BW4W8KsmZxDG2jZsumfnTJl-vozXH_JYWrW6bwc6_3nMXtmtyibora9iDDVXsQ-vTx70fwCh9e7b9O2hqq4Tsn0HkZEmQoa9obAvD8dQcnEI9Puc3Zhk9FuViZn1KqSTq1iLkh5AO-untENfTFHAeJvEca-ZzFhk-wANGfSm9wCpPmXOJvFyHJnARJrQIA6UpSbT0QqKV4iRQ0mOcahYeQaN4KdQxIC8RPrciPjISho0JIWIqc8NdmAiITmQbrhym2WylmZGt1ZEtOplBJ7PoZMs2dBzqWf35lJkdoVUJ53htuHYor5d_3ezkT09fwNYwfRhn49Hk_hRahgpFq5qcDjTmrwt1BpulXJzX5vUBQEbJOg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5sC9KLb7FaNQdPSui-s_Eixba0WorQCt6WZJOAl7W4W8T-epN9uCh6EM8JYZmZnXyTmfkG4IIQ5lHpx9hmgY89HtiYOoRjImMlFXViovLRCXMyewoHQ0OTc1P1wuTV7lVKsuhpMCxNSdZbCtWrG98MEtZhsIepxid43YCWpwMZbeit_vBuPK2csWHLyxOeYRBg08RZJTZ_OuTr1VTjzW8p0vzmGW3_-5t3YKsEnahfWMkubMhkD9qfvu99HyaLt2fT14PmpnrIvBiiiq4EaViLpqZgHM-1QiUasIxd62X0mKSrpfE1qRSoX5KTH8BiNFzcjnE5ZQHHbhhkWFGbUV_jBOZQYgthOYaRSuvLt2Ll6oCG65DDdaQiXqiE5XpKSuY5UliUEUXdQ2gmL4k8AmSF3GaG3Ef4XKM0znlARKwxDeWOp0LRgctKvtGy4NKIatZkI51ISycy0onWHehWGojK3yqNzGitnFDH6sBVJfF6-dfDjv-0-xw2HwajaDqZ3Z9AWyMkvyjV6UIze13JU2ikYnVWWtoH-ofR_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twitter+Sentiment+Analysis+for+Large-Scale+Data%3A+An+Unsupervised+Approach&rft.jtitle=Cognitive+computation&rft.au=Pandarachalil%2C+Rafeeque&rft.au=Sendhilkumar%2C+Selvaraju&rft.au=Mahalakshmi%2C+G.+S.&rft.date=2015-04-01&rft.pub=Springer+US&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=7&rft.issue=2&rft.spage=254&rft.epage=262&rft_id=info:doi/10.1007%2Fs12559-014-9310-z&rft.externalDocID=10_1007_s12559_014_9310_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon |