Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach

Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet s...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive computation Vol. 7; no. 2; pp. 254 - 262
Main Authors: Pandarachalil, Rafeeque, Sendhilkumar, Selvaraju, Mahalakshmi, G. S.
Format: Journal Article
Language:English
Published: Boston Springer US 01-04-2015
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons—SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good F -score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores.
AbstractList Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons—SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good F-score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores.
Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons—SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good F -score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores.
Author Mahalakshmi, G. S.
Pandarachalil, Rafeeque
Sendhilkumar, Selvaraju
Author_xml – sequence: 1
  givenname: Rafeeque
  surname: Pandarachalil
  fullname: Pandarachalil, Rafeeque
  email: rafeeqpc@gcek.ac.in
  organization: Department of Computer Science and Engineering, Govt. College of Engineering Kannur
– sequence: 2
  givenname: Selvaraju
  surname: Sendhilkumar
  fullname: Sendhilkumar, Selvaraju
  organization: Department of Information Science & Technology, Anna University
– sequence: 3
  givenname: G. S.
  surname: Mahalakshmi
  fullname: Mahalakshmi, G. S.
  organization: Department of Computer Science & Engineering, Anna University
BookMark eNp1kE9PwzAMxSM0JLbBB-BWiXPASZOm4TaNf5Mmcdg4R1nrjE5bW5IOtH16MhXBiYttye_3bL0RGdRNjYRcM7hlAOouMC6lpsAE1SkDejwjQ5ZnGdU6E4PfWWYXZBTCBiCTWvIhmS2_qq5Dnyyw7qpdLMmktttDqELiGp_MrV8jXRR2i8mD7ex9XCdvddi36D-rgGUyaVvf2OL9kpw7uw149dPHZPn0uJy-0Pnr82w6mdMizbOOOs2sljnnlmvFyhL4iinF1UpC4VIp8pVWIuXolMhdCalwiFZwLEFb5XQ6Jje9bbz6scfQmU2z9_HlYLjmEAEtIKpYryp8E4JHZ1pf7aw_GAbmFJjpAzMxMHMKzBwjw3smRG29Rv_n_D_0DVJfb1c
CitedBy_id crossref_primary_10_1007_s12559_017_9513_1
crossref_primary_10_1007_s12559_016_9386_8
crossref_primary_10_1007_s12559_015_9346_8
crossref_primary_10_1016_j_eswa_2018_06_022
crossref_primary_10_1080_17539153_2018_1447226
crossref_primary_10_1016_j_jjimei_2021_100019
crossref_primary_10_1080_01605682_2018_1557021
crossref_primary_10_1007_s11042_024_18786_9
crossref_primary_10_1051_matecconf_201818910010
crossref_primary_10_36548_jucct_2020_3_004
crossref_primary_10_1007_s12559_017_9496_y
crossref_primary_10_1007_s10115_016_0993_1
crossref_primary_10_1007_s12559_015_9380_6
crossref_primary_10_1108_EL_08_2019_0184
crossref_primary_10_1007_s12559_019_09706_3
crossref_primary_10_2478_dim_2020_0032
crossref_primary_10_1007_s12559_016_9439_z
crossref_primary_10_46634_riics_165
crossref_primary_10_1016_j_eswa_2021_114604
crossref_primary_10_1016_j_jjimei_2022_100095
crossref_primary_10_1007_s11042_020_09512_2
crossref_primary_10_1016_j_ipm_2017_02_004
crossref_primary_10_1016_j_ipm_2018_11_010
crossref_primary_10_1186_s40537_017_0063_x
crossref_primary_10_17821_srels_2022_v59i4_170345
crossref_primary_10_1145_3592792
crossref_primary_10_1016_j_ipm_2016_07_001
crossref_primary_10_1109_ACCESS_2021_3067844
crossref_primary_10_3390_electronics10212717
crossref_primary_10_1016_j_knosys_2017_11_035
crossref_primary_10_1080_01605682_2018_1545519
crossref_primary_10_1108_JCM_12_2019_3538
crossref_primary_10_1088_1742_6596_1229_1_012018
crossref_primary_10_1007_s10462_020_09845_2
crossref_primary_10_1007_s12530_016_9168_2
crossref_primary_10_1016_j_engappai_2020_104048
crossref_primary_10_1108_K_01_2018_0029
crossref_primary_10_1007_s12559_017_9477_1
crossref_primary_10_1080_03155986_2017_1340797
crossref_primary_10_1371_journal_pone_0191163
crossref_primary_10_2196_30765
crossref_primary_10_1109_ACCESS_2020_2983859
crossref_primary_10_1016_j_im_2019_103181
crossref_primary_10_1007_s10462_021_10030_2
crossref_primary_10_7717_peerj_cs_1295
crossref_primary_10_1007_s12559_018_9583_8
crossref_primary_10_1093_migration_mnab001
crossref_primary_10_1007_s12559_022_10025_3
crossref_primary_10_4018_IJISP_201907010107
crossref_primary_10_1016_j_eswa_2020_114322
crossref_primary_10_1109_TBDATA_2018_2824812
crossref_primary_10_3390_app132011129
crossref_primary_10_12693_APhysPolA_132_753
crossref_primary_10_1007_s12065_021_00598_7
crossref_primary_10_1007_s13278_022_01016_1
crossref_primary_10_1007_s12559_021_09923_9
crossref_primary_10_1175_WCAS_D_21_0163_1
crossref_primary_10_1016_j_heliyon_2024_e32572
crossref_primary_10_1007_s10462_017_9599_6
Cites_doi 10.1016/j.eswa.2013.05.057
10.1016/j.eswa.2012.02.120
10.1016/j.eswa.2013.01.019
10.1007/978-94-007-5070-8
10.1016/j.csl.2013.04.001
10.1016/j.eswa.2013.01.001
10.1109/MCI.2014.2307227
10.1109/MIS.2013.4
10.1007/s12559-012-9183-y
10.1609/aaai.v28i1.8928
10.1007/978-3-642-29047-3_3
10.1145/2433396.2433465
10.1145/2020408.2020614
10.1145/2187836.2187882
10.1109/MIS.2013.30
10.1145/2245276.2245364
10.1201/b16014-19
10.1007/978-3-642-36543-0_8
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Springer Science+Business Media New York 2014.
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: Springer Science+Business Media New York 2014.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PQEST
PQQKQ
PQUKI
DOI 10.1007/s12559-014-9310-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection

DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1866-9964
EndPage 262
ExternalDocumentID 10_1007_s12559_014_9310_z
GroupedDBID -56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
BA0
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
ZOVNA
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFKRA
AGQEE
AGRTI
AIGIU
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
H13
HCIFZ
K7-
SJYHP
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c386t-f91a95822a2971dd02b17727b50cf3548b97432ef748fd034feea42ed09a7f93
IEDL.DBID AEJHL
ISSN 1866-9956
IngestDate Wed Nov 20 06:37:34 EST 2024
Thu Nov 21 22:50:00 EST 2024
Sat Dec 16 12:03:31 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Sentiment analysis
Twitter
Parallel python
SentiWordNet
SenticNet
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-f91a95822a2971dd02b17727b50cf3548b97432ef748fd034feea42ed09a7f93
PQID 2920034940
PQPubID 6623279
PageCount 9
ParticipantIDs proquest_journals_2920034940
crossref_primary_10_1007_s12559_014_9310_z
springer_journals_10_1007_s12559_014_9310_z
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cambria, Hussain (CR22) 2012
Kontopoulos, Berberidis, Dergiades, Bassiliades (CR13) 2013; 40
CR18
CR17
CR16
CR15
CR14
Montejo-Ráez, Martínez-Cámara, Martín-Valdivia, Ureña López (CR11) 2014; 28
CR10
Cambria, Mazzocco, Hussain (CR7) 2013; 4
Mostafa (CR1) 2013; 40
Wang, Cambria, Liu, Hussain (CR6) 2013; 5
Cambria, White (CR19) 2014; 9
CR2
Poria, Gelbukh, Hussain, Das, Bandyopadhyay (CR26) 2013; 28
CR4
CR3
Chamlerwat, Bhattarakosol, Rungkasiri, Haruechaiyasak (CR24) 2012; 28
CR5
CR8
CR9
CR25
CR21
Ghiassi, Skinner, Zimbra (CR12) 2013; 40
CR20
Cambria, Hussain (CR23) 2012; 39
E Cambria (9310_CR23) 2012; 39
W Chamlerwat (9310_CR24) 2012; 28
E Cambria (9310_CR19) 2014; 9
9310_CR9
9310_CR8
9310_CR5
MM Mostafa (9310_CR1) 2013; 40
M Ghiassi (9310_CR12) 2013; 40
9310_CR25
9310_CR21
QF Wang (9310_CR6) 2013; 5
9310_CR20
E Kontopoulos (9310_CR13) 2013; 40
E Cambria (9310_CR22) 2012
A Montejo-Ráez (9310_CR11) 2014; 28
S Poria (9310_CR26) 2013; 28
9310_CR3
9310_CR4
9310_CR18
9310_CR2
9310_CR15
9310_CR14
E Cambria (9310_CR7) 2013; 4
9310_CR17
9310_CR16
9310_CR10
References_xml – ident: CR18
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR10
– volume: 40
  start-page: 6266
  issue: 16
  year: 2013
  end-page: 6282
  ident: CR12
  article-title: Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.05.057
  contributor:
    fullname: Zimbra
– volume: 39
  start-page: 10533
  issue: 12
  year: 2012
  end-page: 10543
  ident: CR23
  article-title: Sentic PROMs: application of sentic computing to the development of a novel unified framework for measuring health-care quality
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.02.120
  contributor:
    fullname: Hussain
– ident: CR8
– ident: CR25
– volume: 4
  start-page: 41
  year: 2013
  end-page: 53
  ident: CR7
  article-title: Application of multi-dimensional scaling and artificial neural networks for biologically inspired opinion mining
  publication-title: Biol Inspir Cogn Archit
  contributor:
    fullname: Hussain
– volume: 28
  start-page: 15
  issue: 2
  year: 2012
  end-page: 21
  ident: CR24
  article-title: Discovering consumer insight from twitter via sentiment analysis
  publication-title: J Univ Comput Sci
  contributor:
    fullname: Haruechaiyasak
– ident: CR21
– ident: CR3
– ident: CR15
– ident: CR17
– volume: 40
  start-page: 4241
  issue: 10
  year: 2013
  end-page: 4251
  ident: CR1
  article-title: More than words: social networks text mining for consumer brand sentiments
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.019
  contributor:
    fullname: Mostafa
– year: 2012
  ident: CR22
  publication-title: Sentic computing: techniques, tools and applications, Springer briefs in cognitive computation
  doi: 10.1007/978-94-007-5070-8
  contributor:
    fullname: Hussain
– ident: CR9
– volume: 28
  start-page: 93
  issue: 1
  year: 2014
  end-page: 107
  ident: CR11
  article-title: Ranked WordNet graph for sentiment polarity classification in Twitter
  publication-title: Comput Speech Lang
  doi: 10.1016/j.csl.2013.04.001
  contributor:
    fullname: Ureña López
– volume: 40
  start-page: 4065
  issue: 10
  year: 2013
  end-page: 4074
  ident: CR13
  article-title: Ontology-based sentiment analysis of twitter posts
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.001
  contributor:
    fullname: Bassiliades
– ident: CR5
– volume: 9
  start-page: 1
  issue: 2
  year: 2014
  end-page: 28
  ident: CR19
  article-title: Jumping NLP curves: a review of natural language processing research
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2014.2307227
  contributor:
    fullname: White
– volume: 28
  start-page: 31
  issue: 2
  year: 2013
  end-page: 38
  ident: CR26
  article-title: Enhanced SenticNet with affective labels for concept-based opinion mining
  publication-title: IEEE Intell Syst J
  doi: 10.1109/MIS.2013.4
  contributor:
    fullname: Bandyopadhyay
– volume: 5
  start-page: 234
  issue: 2
  year: 2013
  end-page: 42
  ident: CR6
  article-title: Common sense knowledge for handwritten Chinese text recognition
  publication-title: Cogn Comput
  doi: 10.1007/s12559-012-9183-y
  contributor:
    fullname: Hussain
– ident: CR20
– ident: 9310_CR21
  doi: 10.1609/aaai.v28i1.8928
– ident: 9310_CR9
– volume: 28
  start-page: 31
  issue: 2
  year: 2013
  ident: 9310_CR26
  publication-title: IEEE Intell Syst J
  doi: 10.1109/MIS.2013.4
  contributor:
    fullname: S Poria
– volume: 40
  start-page: 4241
  issue: 10
  year: 2013
  ident: 9310_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.019
  contributor:
    fullname: MM Mostafa
– ident: 9310_CR14
– volume: 28
  start-page: 15
  issue: 2
  year: 2012
  ident: 9310_CR24
  publication-title: J Univ Comput Sci
  contributor:
    fullname: W Chamlerwat
– ident: 9310_CR4
  doi: 10.1007/978-3-642-29047-3_3
– volume: 40
  start-page: 4065
  issue: 10
  year: 2013
  ident: 9310_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.01.001
  contributor:
    fullname: E Kontopoulos
– ident: 9310_CR16
  doi: 10.1145/2433396.2433465
– ident: 9310_CR15
  doi: 10.1145/2020408.2020614
– ident: 9310_CR25
– volume: 4
  start-page: 41
  year: 2013
  ident: 9310_CR7
  publication-title: Biol Inspir Cogn Archit
  contributor:
    fullname: E Cambria
– ident: 9310_CR8
– volume: 9
  start-page: 1
  issue: 2
  year: 2014
  ident: 9310_CR19
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2014.2307227
  contributor:
    fullname: E Cambria
– ident: 9310_CR17
– volume-title: Sentic computing: techniques, tools and applications, Springer briefs in cognitive computation
  year: 2012
  ident: 9310_CR22
  doi: 10.1007/978-94-007-5070-8
  contributor:
    fullname: E Cambria
– ident: 9310_CR2
  doi: 10.1145/2187836.2187882
– ident: 9310_CR10
– ident: 9310_CR20
  doi: 10.1109/MIS.2013.30
– ident: 9310_CR18
  doi: 10.1145/2245276.2245364
– volume: 40
  start-page: 6266
  issue: 16
  year: 2013
  ident: 9310_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.05.057
  contributor:
    fullname: M Ghiassi
– volume: 39
  start-page: 10533
  issue: 12
  year: 2012
  ident: 9310_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.02.120
  contributor:
    fullname: E Cambria
– ident: 9310_CR5
  doi: 10.1201/b16014-19
– volume: 5
  start-page: 234
  issue: 2
  year: 2013
  ident: 9310_CR6
  publication-title: Cogn Comput
  doi: 10.1007/s12559-012-9183-y
  contributor:
    fullname: QF Wang
– volume: 28
  start-page: 93
  issue: 1
  year: 2014
  ident: 9310_CR11
  publication-title: Comput Speech Lang
  doi: 10.1016/j.csl.2013.04.001
  contributor:
    fullname: A Montejo-Ráez
– ident: 9310_CR3
  doi: 10.1007/978-3-642-36543-0_8
SSID ssj0065952
Score 2.4010873
Snippet Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 254
SubjectTerms Abbreviations
Accuracy
Algorithms
Artificial Intelligence
Biomedical and Life Sciences
Biomedicine
Computation by Abstract Devices
Computational Biology/Bioinformatics
Data mining
Dictionaries
Frequency distribution
Machine learning
Natural language
Neurosciences
Product reviews
Semantics
Sentiment analysis
Slang
Social networks
Title Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach
URI https://link.springer.com/article/10.1007/s12559-014-9310-z
https://www.proquest.com/docview/2920034940
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5se-nFt1itkoMnJbKbfWTjrdiWKsVLK3hbkk0CIqzFtoj99U62u10UPeg5S1gmk5lvMjPfAFxwLkNhooz6Mo5oqGKfCsYV5SazxgqWcVuMTpjwh6ekP3A0OWzzdJG_XFcZycJQ171uDvxi5BtSgZCErhrQQtcToW63eoP70biyv44gr8hxJnFMXd9mlcv8aZOv3qiGmN-yooWzGe785zd3YbuElqS31oU92DL5PrQ3Fu7jAO6m78-ue4dMXI2QexckFSkJQfBKxq4snE7w2Azpy4W8wWXymM-XM2dR5kaTXklBfgjT4WB6O6LlLAWaBUm8oFb4UkSIBiQT3NfaY453Ck8l8jIbYNiiMLAImLE8TKz2gtAaI0NmtCcktyI4gmb-mptjIF6ifOkofHSkEIsppWKuM0QuQrHQJroDl5VI09maMSOtuZGddFKUTuqkk6460K2EnpaXZ566AVoFbY7XgatKyvXyr5ud_OnrU2gj-InWVThdaC7eluYMGnO9PC816hNRMcVK
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BO9CFb0ShgAcmkKV8OHHMVtGWVpQuDRJbZMe2xBIq0grRX4-dxlQgGGB2ZEXPl_O73N07gEtKOWEqyrHP4wgTEfuYBVRgqnKtNAtyqqvRCVM6eUp6fSuTE7pemKra3aUkK0-9bnaz7NeEvgQzw0nwchOahMXEmHKzO0rvBs4BW4W8KsmZxDG2jZsumfnTJl-vozXH_JYWrW6bwc6_3nMXtmtyibora9iDDVXsQ-vTx70fwCh9e7b9O2hqq4Tsn0HkZEmQoa9obAvD8dQcnEI9Puc3Zhk9FuViZn1KqSTq1iLkh5AO-untENfTFHAeJvEca-ZzFhk-wANGfSm9wCpPmXOJvFyHJnARJrQIA6UpSbT0QqKV4iRQ0mOcahYeQaN4KdQxIC8RPrciPjISho0JIWIqc8NdmAiITmQbrhym2WylmZGt1ZEtOplBJ7PoZMs2dBzqWf35lJkdoVUJ53htuHYor5d_3ezkT09fwNYwfRhn49Hk_hRahgpFq5qcDjTmrwt1BpulXJzX5vUBQEbJOg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5sC9KLb7FaNQdPSui-s_Eixba0WorQCt6WZJOAl7W4W8T-epN9uCh6EM8JYZmZnXyTmfkG4IIQ5lHpx9hmgY89HtiYOoRjImMlFXViovLRCXMyewoHQ0OTc1P1wuTV7lVKsuhpMCxNSdZbCtWrG98MEtZhsIepxid43YCWpwMZbeit_vBuPK2csWHLyxOeYRBg08RZJTZ_OuTr1VTjzW8p0vzmGW3_-5t3YKsEnahfWMkubMhkD9qfvu99HyaLt2fT14PmpnrIvBiiiq4EaViLpqZgHM-1QiUasIxd62X0mKSrpfE1qRSoX5KTH8BiNFzcjnE5ZQHHbhhkWFGbUV_jBOZQYgthOYaRSuvLt2Ll6oCG65DDdaQiXqiE5XpKSuY5UliUEUXdQ2gmL4k8AmSF3GaG3Ef4XKM0znlARKwxDeWOp0LRgctKvtGy4NKIatZkI51ISycy0onWHehWGojK3yqNzGitnFDH6sBVJfF6-dfDjv-0-xw2HwajaDqZ3Z9AWyMkvyjV6UIze13JU2ikYnVWWtoH-ofR_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twitter+Sentiment+Analysis+for+Large-Scale+Data%3A+An+Unsupervised+Approach&rft.jtitle=Cognitive+computation&rft.au=Pandarachalil%2C+Rafeeque&rft.au=Sendhilkumar%2C+Selvaraju&rft.au=Mahalakshmi%2C+G.+S.&rft.date=2015-04-01&rft.pub=Springer+US&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=7&rft.issue=2&rft.spage=254&rft.epage=262&rft_id=info:doi/10.1007%2Fs12559-014-9310-z&rft.externalDocID=10_1007_s12559_014_9310_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon