Dependence and Independence
We introduce an atomic formula $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{z}}$ intuitively saying that the variables $\overrightarrow{\mathrm{y}}$ are independent from the variables $\overrightarrow{\mathrm{z}}$ if the variables $\overrightarrow{\mathrm...
Saved in:
Published in: | Studia logica Vol. 101; no. 2; pp. 399 - 410 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer
01-04-2013
Springer Netherlands |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce an atomic formula $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{z}}$ intuitively saying that the variables $\overrightarrow{\mathrm{y}}$ are independent from the variables $\overrightarrow{\mathrm{z}}$ if the variables $\overrightarrow{\mathrm{x}}$ are kept constant. We contrast this with dependence logic 𝓓 based on the atomic formula $=(\overrightarrow{\mathrm{x}},\overrightarrow{\mathrm{y}})$ , actually equivalent to $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{y}}$ , saying that the variables $\overrightarrow{\mathrm{y}}$ are totally determined by the variables $\overrightarrow{\mathrm{x}}$ . We show that $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{z}}$ gives rise to a natural logic capable of formalizing basic intuitions about independence and dependence. We show that $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{z}}$ can be used to give partially ordered quantifiers and IF-logic an alternative interpretation without some of the shortcomings related to so called signaling that interpretations using $=(\overrightarrow{\mathrm{x}},\overrightarrow{\mathrm{y}})$ have. |
---|---|
ISSN: | 0039-3215 1572-8730 |
DOI: | 10.1007/s11225-013-9479-2 |