Dependence and Independence

We introduce an atomic formula $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{z}}$ intuitively saying that the variables $\overrightarrow{\mathrm{y}}$ are independent from the variables $\overrightarrow{\mathrm{z}}$ if the variables $\overrightarrow{\mathrm...

Full description

Saved in:
Bibliographic Details
Published in:Studia logica Vol. 101; no. 2; pp. 399 - 410
Main Authors: Grädel, Erich, Väänänen, Jouko
Format: Journal Article
Language:English
Published: Dordrecht Springer 01-04-2013
Springer Netherlands
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce an atomic formula $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{z}}$ intuitively saying that the variables $\overrightarrow{\mathrm{y}}$ are independent from the variables $\overrightarrow{\mathrm{z}}$ if the variables $\overrightarrow{\mathrm{x}}$ are kept constant. We contrast this with dependence logic 𝓓 based on the atomic formula $=(\overrightarrow{\mathrm{x}},\overrightarrow{\mathrm{y}})$ , actually equivalent to $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{y}}$ , saying that the variables $\overrightarrow{\mathrm{y}}$ are totally determined by the variables $\overrightarrow{\mathrm{x}}$ . We show that $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{z}}$ gives rise to a natural logic capable of formalizing basic intuitions about independence and dependence. We show that $\overrightarrow{\mathrm{y}}{\perp }_{\overrightarrow{\mathrm{x}}}\overrightarrow{\mathrm{z}}$ can be used to give partially ordered quantifiers and IF-logic an alternative interpretation without some of the shortcomings related to so called signaling that interpretations using $=(\overrightarrow{\mathrm{x}},\overrightarrow{\mathrm{y}})$ have.
ISSN:0039-3215
1572-8730
DOI:10.1007/s11225-013-9479-2