Dynamics of particulate organic matter composition in coastal systems: Forcing of spatio-temporal variability at multi-systems scale
•Three littoral systems, eight embayments and one estuary were studied•POC composition was related to ‘Continent-Ocean’ and trophic-status gradients•Forcings were sedimentary processes, hydrodynamics, water column depth, nutrient availability•At local scale POC composition appears to be station-spec...
Saved in:
Published in: | Progress in oceanography Vol. 162; pp. 271 - 289 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-03-2018
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Three littoral systems, eight embayments and one estuary were studied•POC composition was related to ‘Continent-Ocean’ and trophic-status gradients•Forcings were sedimentary processes, hydrodynamics, water column depth, nutrient availability•At local scale POC composition appears to be station-specific but still related to the above-mentioned forcings•A typology of systems was drawn based on POM composition
In costal systems, particulate organic matter (POM) results from a multiplicity of sources having their respective dynamics in terms of production, decomposition, transport and burial. The POM pool experiences thus considerable spatial and temporal variability. In order to better understand this variability, the present study employs statistical multivariate analyses to investigate links between POM composition and environmental forcings for a panel of twelve coastal systems distributed along the three maritime regions of France and monitored weekly to monthly for 1 to 8 years.
At multi-system scale, two main gradients of POC composition have been identified: a ‘Continent-Ocean’ gradient associated with hydrodynamics, sedimentary dynamics and depth of the water column, and a gradient of trophic status related to nutrient availability. At local scale, seasonality of POC composition appears to be station-specific but still related to part of the above-mentioned forcings. A typology of systems was established by coupling spatial and temporal variability of POC composition. Four groups were highlighted: (1) the estuarine stations where POC composition is dominated by terrestrial POM and driven by hydrodynamics and sedimentary processes, (2) the oligotrophic systems, characterized by the contribution of diazotrophs due to low nutrient availability, and the marine meso/eutroph systems whose POC composition is (3) either deeply dominated by phytoplankton or (4) dominated by phytoplankton but where the contribution of continental and benthic POC is not negligible and is driven by hydrodynamics, sedimentary processes and the height of the water column.
Finally, the present study provides several insights into the different forcings to POM composition and dynamics in temperate coastal systems at local and multi-system scales. This work also presents a methodological approach that establishes statistical links between forcings and POM composition, helping to gain more objectively insight of forcings. |
---|---|
ISSN: | 0079-6611 1873-4472 |
DOI: | 10.1016/j.pocean.2018.02.026 |