Design and optimization of a semi‐industrial cavitation device for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry

The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste‐activated...

Full description

Saved in:
Bibliographic Details
Published in:Water environment research Vol. 92; no. 12; pp. 2060 - 2071
Main Authors: Vilarroig, Jose, Martínez, Raúl, Zuriaga‐Agustí, Elena, Torró, Salvador, Galián, Manuel, Chiva, Sergio
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste‐activated sludge has been mixed with pig slurry with the aim of treating two wastes rich in nutrients and organic matter. The HC has been studied not only at laboratory scale but also at industrial scale (up to 500 L), using a novel rotating device consisting of a rotor with multiple teeth that rotate inside a grooved stator. The effectiveness of the process has been calculated using the disintegration degree (DD) and analyzing the volatile fatty acids, while the energy efficiency has been determined with specific energy of the sludge solubilization (SESCOD) and the specific energy. Results show that both the SESCOD and the specific energy decrease when the cavitation process is scaled from laboratory scale to industrial scale. Specifically, SESCOD decreases from 2.71 × 102 to 0.16 × 102 kJ/g SCOD and specific energy decreases from 3.58 × 104 to 2.85 × 103 kJ/kg TS while DD values show reasonable values up to 17%. Practitioner points A new industrial hydrodynamic cavitation device has been developed to treat industrial wastewater without chemical additives A volume up to 500 L has been treated at industrial scale experiments. Sludge with 7% of total solids content was satisfactorily disintegrated. The process scale‐up lead to an energy efficiency enhancement. Cavitation device scheme proposed for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry.
AbstractList The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste‐activated sludge has been mixed with pig slurry with the aim of treating two wastes rich in nutrients and organic matter. The HC has been studied not only at laboratory scale but also at industrial scale (up to 500 L), using a novel rotating device consisting of a rotor with multiple teeth that rotate inside a grooved stator. The effectiveness of the process has been calculated using the disintegration degree (DD) and analyzing the volatile fatty acids, while the energy efficiency has been determined with specific energy of the sludge solubilization (SESCOD) and the specific energy. Results show that both the SESCOD and the specific energy decrease when the cavitation process is scaled from laboratory scale to industrial scale. Specifically, SESCOD decreases from 2.71 × 102 to 0.16 × 102 kJ/g SCOD and specific energy decreases from 3.58 × 104 to 2.85 × 103 kJ/kg TS while DD values show reasonable values up to 17%. Practitioner points A new industrial hydrodynamic cavitation device has been developed to treat industrial wastewater without chemical additives A volume up to 500 L has been treated at industrial scale experiments. Sludge with 7% of total solids content was satisfactorily disintegrated. The process scale‐up lead to an energy efficiency enhancement. Cavitation device scheme proposed for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry.
The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste‐activated sludge has been mixed with pig slurry with the aim of treating two wastes rich in nutrients and organic matter. The HC has been studied not only at laboratory scale but also at industrial scale (up to 500 L), using a novel rotating device consisting of a rotor with multiple teeth that rotate inside a grooved stator. The effectiveness of the process has been calculated using the disintegration degree (DD) and analyzing the volatile fatty acids, while the energy efficiency has been determined with specific energy of the sludge solubilization (SESCOD) and the specific energy. Results show that both the SESCOD and the specific energy decrease when the cavitation process is scaled from laboratory scale to industrial scale. Specifically, SESCOD decreases from 2.71 × 102 to 0.16 × 102 kJ/g SCOD and specific energy decreases from 3.58 × 104 to 2.85 × 103 kJ/kg TS while DD values show reasonable values up to 17%.Practitioner pointsA new industrial hydrodynamic cavitation device has been developed to treat industrial wastewater without chemical additivesA volume up to 500 L has been treated at industrial scale experiments.Sludge with 7% of total solids content was satisfactorily disintegrated.The process scale‐up lead to an energy efficiency enhancement.
The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well-known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste-activated sludge has been mixed with pig slurry with the aim of treating two wastes rich in nutrients and organic matter. The HC has been studied not only at laboratory scale but also at industrial scale (up to 500 L), using a novel rotating device consisting of a rotor with multiple teeth that rotate inside a grooved stator. The effectiveness of the process has been calculated using the disintegration degree (DD) and analyzing the volatile fatty acids, while the energy efficiency has been determined with specific energy of the sludge solubilization (SE ) and the specific energy. Results show that both the SE and the specific energy decrease when the cavitation process is scaled from laboratory scale to industrial scale. Specifically, SE decreases from 2.71 × 10 to 0.16 × 10  kJ/g SCOD and specific energy decreases from 3.58 × 10 to 2.85 × 10  kJ/kg TS while DD values show reasonable values up to 17%. PRACTITIONER POINTS: A new industrial hydrodynamic cavitation device has been developed to treat industrial wastewater without chemical additives A volume up to 500 L has been treated at industrial scale experiments. Sludge with 7% of total solids content was satisfactorily disintegrated. The process scale-up lead to an energy efficiency enhancement.
Author Martínez, Raúl
Zuriaga‐Agustí, Elena
Vilarroig, Jose
Torró, Salvador
Galián, Manuel
Chiva, Sergio
Author_xml – sequence: 1
  givenname: Jose
  surname: Vilarroig
  fullname: Vilarroig, Jose
  organization: Universitat Jaume I
– sequence: 2
  givenname: Raúl
  orcidid: 0000-0001-5955-3441
  surname: Martínez
  fullname: Martínez, Raúl
  organization: Universitat Jaume I
– sequence: 3
  givenname: Elena
  orcidid: 0000-0002-5383-1313
  surname: Zuriaga‐Agustí
  fullname: Zuriaga‐Agustí, Elena
  organization: Fomento Agrícola Castellonense S.A. (FACSA)
– sequence: 4
  givenname: Salvador
  surname: Torró
  fullname: Torró, Salvador
  organization: Universitat Jaume I
– sequence: 5
  givenname: Manuel
  surname: Galián
  fullname: Galián, Manuel
  organization: Fomento Agrícola Castellonense S.A. (FACSA)
– sequence: 6
  givenname: Sergio
  orcidid: 0000-0001-6345-2950
  surname: Chiva
  fullname: Chiva, Sergio
  email: schiva@uji.es
  organization: Universitat Jaume I
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32474981$$D View this record in MEDLINE/PubMed
BookMark eNp1kctKJDEUhoMo2l7AJ5DAbGZTmnt3LYe2dQYEQWZwWaSSkybSValJquxpVz6CO99vnmTS3SrMwkU4CXzny-H8h2i3DS0gdErJOSWEXSwhnlOu1A4aUSlFMZac7uY7UbQQnPADdJjSAyGUMSL20QFnYizKCR2h10tIft5i3Vocut43_kn3PrQ4OKxxgsb_fX7xrR1SH71eYKMffb8lLDx6A9iFmMkuQh9B9w20_aZ3rdQQQ-0Ntn4OadPzHwN_DKSE02Kwc9hM0Pn5-hnj6hjtOb1IcPJWj9Cvq9nP6ffi5vb6x_TbTWH4RKnClaVhE-mYkmNSO-IMsaUV2hIxNopoCkxprQydWM4srbkQtSScaGGtLp3kR-jL1tvF8HvIU1YPYYht_rJiQkmpWD6Z-rqlTAwpRXBVF32j46qipFonUOUEqnUCGT17Ew51A_YDfF95BootsPQLWH0qqu5ndxvhP8cUlUI
CitedBy_id crossref_primary_10_1016_j_jestch_2022_101323
crossref_primary_10_1016_j_heliyon_2023_e18345
crossref_primary_10_1016_j_rser_2023_113277
crossref_primary_10_1016_j_coche_2024_101037
crossref_primary_10_1016_j_ultsonch_2020_105431
crossref_primary_10_1016_j_ultsonch_2021_105771
crossref_primary_10_1016_j_eng_2022_04_027
crossref_primary_10_1016_j_jenvman_2022_115982
crossref_primary_10_1016_j_jenvman_2023_119074
crossref_primary_10_1016_j_ultsonch_2021_105669
crossref_primary_10_1016_j_ultsonch_2024_106943
crossref_primary_10_3390_pr11020514
crossref_primary_10_1016_j_scitotenv_2022_159802
crossref_primary_10_1016_j_scitotenv_2021_151414
Cites_doi 10.1016/S1369-703X(02)00102-X
10.1016/j.ultsonch.2013.03.006
10.1016/j.jhazmat.2008.03.073
10.1016/j.jenvman.2018.03.135
10.1016/j.jece.2015.05.001
10.1016/j.ultsonch.2018.05.015
10.1016/j.ultsonch.2015.11.009
10.1016/j.watres.2012.02.013
10.1016/j.ultsonch.2015.10.010
10.1016/j.seppur.2013.07.029
10.1016/j.ibiod.2016.04.001
10.1016/j.pecs.2008.06.002
10.1016/j.jher.2015.03.001
10.1016/j.ultsonch.2012.07.006
10.1016/j.cej.2019.02.205
10.1016/j.applthermaleng.2016.01.049
10.1016/S1369-703X(00)00128-5
10.1016/S1350-4177(03)00095-6
10.1016/j.ultsonch.2007.11.001
10.1016/j.cep.2008.03.012
10.1002/ceat.201500362
10.1016/j.ultsonch.2013.10.025
10.1016/j.biortech.2015.02.050
10.1016/j.cej.2016.03.022
10.1016/j.expthermflusci.2015.08.018
10.1016/j.jece.2019.102945
10.1016/j.seppur.2012.12.029
10.1016/j.cep.2006.02.005
10.1016/j.cej.2018.01.049
10.1016/S0958-6946(02)00038-9
10.1016/j.bej.2008.10.006
10.1007/s11356-015-5461-z
10.1016/0923-0467(94)06062-2
10.1016/S0960-8524(00)00023-7
10.1016/S1350-4177(01)00122-5
10.1016/j.biortech.2013.02.001
10.1016/j.ultsonch.2015.01.006
10.1017/jfm.2013.525
10.1080/01919512.2014.985817
10.1007/s10098-009-0202-y
10.2166/wst.2004.0523
10.1007/s10811-014-0483-3
10.1016/j.desal.2008.05.051
ContentType Journal Article
Copyright 2020 Water Environment Federation
2020 Water Environment Federation.
Copyright_xml – notice: 2020 Water Environment Federation
– notice: 2020 Water Environment Federation.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QH
7QO
7ST
7T7
7U7
7UA
8FD
C1K
F1W
FR3
H97
K9.
L.G
M7N
P64
SOI
DOI 10.1002/wer.1366
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aqualine
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Biotechnology Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1554-7531
EndPage 2071
ExternalDocumentID 10_1002_wer_1366
32474981
WER1366
Genre article
Journal Article
GrantInformation_xml – fundername: LIFE Programme of the European Union
  funderid: GA LIFE14/ENV/ES/000150
– fundername: LIFE Programme of the European Union
  grantid: GA LIFE14/ENV/ES/000150
GroupedDBID ---
-~X
.DC
0R~
123
1OB
1OC
29R
33P
3V.
4.4
53G
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
8WZ
A6W
AAHHS
AAHKG
AAIKC
AAMNW
AANLZ
ABBHK
ABJCF
ABJNI
ABPLY
ABTAH
ABTLG
ABUWG
ABXSQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACKIV
ACPOU
ACPRK
ACXQS
ADACV
ADBBV
ADKYN
ADNWM
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFFNX
AFFPM
AFKRA
AFRAH
AGUYK
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ANHSF
AQVQM
AS~
ATCPS
AZQEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BPHCQ
BVXVI
CBGCD
CCPQU
CS3
D1J
D1K
DCZOG
DDYGU
DOOOF
DU5
DWQXO
E.-
EBS
ECGQY
EJD
EQZMY
F5P
F8P
FYUFA
G8K
GNUQQ
GTFYD
HCIFZ
HGLYW
HMCUK
HTVGU
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K6-
L6V
L7B
LATKE
LEEKS
LYRES
M0K
M1P
M2P
M2Q
M7S
MEWTI
MV1
P-S
P0-
P2P
P2W
PATMY
PCBAR
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RJQFR
ROL
RWL
RXW
S0X
SA0
SAMSI
SUPJJ
TAE
U5U
UHB
UKHRP
WXSBR
XJN
XJT
Y6R
YHZ
YV5
ZY4
ZZTAW
~02
~KM
AECCQ
AHXOZ
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ABDPE
CITATION
7QH
7QO
7ST
7T7
7U7
7UA
8FD
C1K
F1W
FR3
H97
K9.
L.G
M7N
P64
SOI
ID FETCH-LOGICAL-c3866-f99c285f26570bf0fc0d9d4ad047c60a1e26aa6c18d32d1b344b5030a4dda9f53
IEDL.DBID 33P
ISSN 1061-4303
IngestDate Mon Nov 11 02:28:44 EST 2024
Fri Nov 22 00:05:45 EST 2024
Wed Oct 16 00:46:19 EDT 2024
Sat Aug 24 01:05:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords waste-activated sludge
anaerobic digestion
hydrodynamic cavitation
disintegration
pig slurry
Language English
License 2020 Water Environment Federation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3866-f99c285f26570bf0fc0d9d4ad047c60a1e26aa6c18d32d1b344b5030a4dda9f53
ORCID 0000-0001-5955-3441
0000-0001-6345-2950
0000-0002-5383-1313
PMID 32474981
PQID 2465562556
PQPubID 24129
PageCount 12
ParticipantIDs proquest_journals_2465562556
crossref_primary_10_1002_wer_1366
pubmed_primary_32474981
wiley_primary_10_1002_wer_1366_WER1366
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Water environment research
PublicationTitleAlternate Water Environ Res
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2009; 44
2019; 7
2015; 185
2015; 37
2015; 3
2012
2002; 9
2002; 12
2013; 20
2013; 106
2019; 368
2008; 15
2008; 34
2016; 30
2016; 105
2016; 70
2015; 9
2016; 39
2018; 48
2009; 48
2003a; 10
2014; 21
2003b; 14
2015; 23
2009; 11
2015; 26
2009; 35
2004; 50
2015; 27
2006; 45
2013; 736
2001; 7
2018; 338
2018; 217
2000; 74
2013; 118
2013; 134
1994; 55
2016; 110
2009; 161
2016; 29
2012; 46
2016; 295
2012; 20
2009; 248
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
Machnicka A. (e_1_2_6_26_1) 2009; 35
e_1_2_6_40_1
Širok B. (e_1_2_6_39_1) 2012; 20
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
APHA, AWWA, WEF (e_1_2_6_2_1) 2012
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_47_1
References_xml – volume: 10
  start-page: 255
  year: 2003a
  end-page: 264
  article-title: Hybrid cavitation methods for water disinfection: Simultaneous use of chemicals with cavitation
  publication-title: Ultrasonics Sonochemistry
– volume: 50
  start-page: 17
  year: 2004
  end-page: 23
  article-title: Use of microwave pretreatment for enhanced anaerobiosis of secondary slugde
  publication-title: Water Science and Technology
– volume: 39
  start-page: 1363
  year: 2016
  end-page: 1376
  article-title: Application of hydrodynamic cavitation to wastewater treatment
  publication-title: Chemical Engineering and Technology
– volume: 12
  start-page: 541
  year: 2002
  end-page: 553
  article-title: Methods for disruption of microbial cells for potential use in the dairy industry ‐ A review
  publication-title: International Dairy Journal
– volume: 185
  start-page: 171
  year: 2015
  end-page: 177
  article-title: Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: Focused on high‐solid state
  publication-title: Bioresource Technology
– volume: 15
  start-page: 903
  year: 2008
  end-page: 908
  article-title: A parametrical study of disinfection with hydrodynamic cavitation
  publication-title: Ultrasonics Sonochemistry
– volume: 23
  start-page: 2402
  year: 2015
  end-page: 2414
  article-title: Effect of chemo‐mechanical disintegration on sludge anaerobic digestion for enhanced biogas production
  publication-title: Environmental Science and Pollution Research
– volume: 74
  start-page: 3
  issue: 1
  year: 2000
  end-page: 16
  article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives
  publication-title: Bioresource Technology
– volume: 248
  start-page: 152
  year: 2009
  end-page: 159
  article-title: A simple technique for water disinfection with hydrodynamic cavitation: Effect on survival of
  publication-title: Desalination
– volume: 110
  start-page: 227
  year: 2016
  end-page: 234
  article-title: International Biodeterioration & Biodegradation Pilot‐scale study of enhanced anaerobic digestion of waste activated sludge by electrochemical and sodium hypochlorite combination pretreatment
  publication-title: International Biodeterioration and Biodegradation
– volume: 21
  start-page: 1213
  year: 2014
  end-page: 1221
  article-title: Shear‐induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater
  publication-title: Ultrasonics Sonochemistry
– volume: 368
  start-page: 754
  year: 2019
  end-page: 763
  article-title: Comparison of pretreatment methods for phosphorus release from waste activated sludge
  publication-title: Chemical Engineering Journal
– volume: 20
  start-page: 587
  year: 2013
  end-page: 594
  article-title: Sono‐thermal pre‐treatment of waste activated sludge before anaerobic digestion
  publication-title: Ultrasonics Sonochemistry
– volume: 106
  start-page: 15
  year: 2013
  end-page: 21
  article-title: Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry
  publication-title: Separation and Purification Technology
– volume: 55
  start-page: 67
  year: 1994
  end-page: 72
  article-title: Microbial cell disruption: Role of cavitation
  publication-title: The Chemical Engineering Journal and the Biochemical Engineering Journal
– volume: 217
  start-page: 797
  year: 2018
  end-page: 804
  article-title: Enhancement of volatile fatty acid production and biogas yield from food waste following sonication pretreatment
  publication-title: Journal of Environmental Management
– volume: 45
  start-page: 711
  year: 2006
  end-page: 718
  article-title: Effect of ultrasonic, thermal and ozone pre‐treatments on waste activated sludge solubilisation and anaerobic biodegradability
  publication-title: Chemical Engineering and Processing: Process Intensification
– volume: 48
  start-page: 71
  year: 2018
  end-page: 78
  article-title: Water disinfection by hydrodynamic cavitation in a rotor‐stator device
  publication-title: Ultrasonics Sonochemistry
– volume: 736
  start-page: 44
  year: 2013
  end-page: 66
  article-title: Thermodynamic effects during growth and collapse of a single cavitation bubble
  publication-title: Journal of Fluid Mechanics
– volume: 34
  start-page: 755
  year: 2008
  end-page: 781
  article-title: Principles and potential of the anaerobic digestion of waste‐activated sludge
  publication-title: Progress in Energy and Combustion Science
– volume: 338
  start-page: 599
  year: 2018
  end-page: 627
  article-title: Wastewater treatment by means of advanced oxidation processes based on cavitation – A review
  publication-title: Chemical Engineering Journal
– volume: 9
  start-page: 123
  year: 2002
  end-page: 131
  article-title: Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique
  publication-title: Ultrasonics Sonochemistry
– volume: 7
  start-page: 201
  year: 2001
  end-page: 212
  article-title: Water disinfection by acoustic and hydrodynamic cavitation
  publication-title: Biochemical Engineering Journal
– volume: 46
  start-page: 2469
  year: 2012
  end-page: 2477
  article-title: Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic‐Acoustic‐Cavitation (HAC)
  publication-title: Water Research
– volume: 9
  start-page: 259
  year: 2015
  end-page: 267
  article-title: Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus
  publication-title: Journal of Hydro‐environment Research
– volume: 20
  start-page: 1104
  year: 2012
  end-page: 1112
  article-title: Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment
  publication-title: Ultrasonics Sonochemistry
– start-page: 1360
  year: 2012
– volume: 7
  start-page: 102945
  year: 2019
  article-title: Ozonolysis pre‐treatment of waste activated sludge for solubilization and biodegradability enhancement
  publication-title: Journal of Environmental Chemical Engineering
– volume: 30
  start-page: 79
  year: 2016
  end-page: 86
  article-title: Intensification of biogas production using pretreatment based on hydrodynamic cavitation
  publication-title: Ultrasonics Sonochemistry
– volume: 11
  start-page: 437
  year: 2009
  end-page: 446
  article-title: Influence of sludge disintegration by high pressure homogenizer on microbial growth in sewage sludge: An approach for excess sludge reduction
  publication-title: Clean Technologies and Environmental Policy
– volume: 70
  start-page: 85
  year: 2016
  end-page: 95
  article-title: Experimental study of aerated cavitation in a horizontal venturi nozzle
  publication-title: Experimental Thermal and Fluid Science
– volume: 20
  start-page: 1450
  year: 2013
  end-page: 1455
  article-title: The effects of waste‐activated sludge pretreatment using hydrodynamic cavitation for methane production
  publication-title: Ultrasonics Sonochemistry
– volume: 105
  start-page: 1067
  year: 2016
  end-page: 1075
  article-title: Heat transfer during cavitation bubble collapse
  publication-title: Applied Thermal Engineering
– volume: 44
  start-page: 60
  year: 2009
  end-page: 72
  article-title: A review of applications of cavitation in biochemical engineering/biotechnology
  publication-title: Biochemical Engineering Journal
– volume: 27
  start-page: 1881
  year: 2015
  end-page: 1889
  article-title: Microalgal cell disruption by hydrodynamic cavitation for the production of biofuels
  publication-title: Journal of Applied Phycology
– volume: 29
  start-page: 577
  year: 2016
  end-page: 588
  article-title: Use of hydrodynamic cavitation in (waste)water treatment
  publication-title: Ultrasonics Sonochemistry
– volume: 35
  start-page: 129
  year: 2009
  end-page: 132
  article-title: The use of hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge
  publication-title: Water SA
– volume: 48
  start-page: 187
  year: 2009
  end-page: 194
  article-title: Physical and chemical characteristics of waste activated sludge treated ultrasonically
  publication-title: Chemical Engineering and Processing: Process Intensification
– volume: 134
  start-page: 290
  year: 2013
  end-page: 297
  article-title: Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants
  publication-title: Bioresource Technology
– volume: 26
  start-page: 408
  year: 2015
  end-page: 414
  article-title: A novel rotation generator of hydrodynamic cavitation for waste‐activated sludge disintegration
  publication-title: Ultrasonics Sonochemistry
– volume: 161
  start-page: 202
  year: 2009
  end-page: 207
  article-title: Degradation of alachlor in aqueous solution by using hydrodynamic cavitation
  publication-title: Journal of Hazardous Materials
– volume: 37
  start-page: 316
  year: 2015
  end-page: 322
  article-title: Ozonation as a pre‐treatment for anaerobic digestion of waste‐activated sludge: Effect of the ozone doses
  publication-title: Ozone Science and Engineering
– volume: 3
  start-page: 2637
  year: 2015
  end-page: 2646
  article-title: Optimization of sono‐electrochemical oxidation of ibuprofen in wastewater
  publication-title: Journal of Environmental Chemical Engineering
– volume: 295
  start-page: 39
  year: 2016
  end-page: 48
  article-title: Impact of thermal treatment on the rheological properties and composition of waste activated sludge: COD solubilisation as a footprint of rheological changes
  publication-title: Chemical Engineering Journal
– volume: 14
  start-page: 9
  year: 2003b
  end-page: 17
  article-title: Water disinfection by acoustic and hydrodynamic cavitation
  publication-title: Biochemical Engineering Journal
– volume: 118
  start-page: 415
  year: 2013
  end-page: 423
  article-title: Rotation generator of hydrodynamic cavitation for water treatment
  publication-title: Separation and Purification Technology
– ident: e_1_2_6_19_1
  doi: 10.1016/S1369-703X(02)00102-X
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ultsonch.2013.03.006
– volume: 20
  start-page: 1104
  year: 2012
  ident: e_1_2_6_39_1
  article-title: Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment
  publication-title: Ultrasonics Sonochemistry
  contributor:
    fullname: Širok B.
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jhazmat.2008.03.073
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jenvman.2018.03.135
– ident: e_1_2_6_43_1
  doi: 10.1016/j.jece.2015.05.001
– ident: e_1_2_6_8_1
  doi: 10.1016/j.ultsonch.2018.05.015
– ident: e_1_2_6_31_1
  doi: 10.1016/j.ultsonch.2015.11.009
– ident: e_1_2_6_7_1
  doi: 10.1016/j.watres.2012.02.013
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ultsonch.2015.10.010
– ident: e_1_2_6_33_1
  doi: 10.1016/j.seppur.2013.07.029
– ident: e_1_2_6_45_1
  doi: 10.1016/j.ibiod.2016.04.001
– start-page: 1360
  volume-title: Standard Methods for examination of water and wastewater
  year: 2012
  ident: e_1_2_6_2_1
  contributor:
    fullname: APHA, AWWA, WEF
– ident: e_1_2_6_3_1
  doi: 10.1016/j.pecs.2008.06.002
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jher.2015.03.001
– ident: e_1_2_6_36_1
  doi: 10.1016/j.ultsonch.2012.07.006
– ident: e_1_2_6_24_1
  doi: 10.1016/j.cej.2019.02.205
– ident: e_1_2_6_34_1
  doi: 10.1016/j.applthermaleng.2016.01.049
– ident: e_1_2_6_17_1
  doi: 10.1016/S1369-703X(00)00128-5
– ident: e_1_2_6_18_1
  doi: 10.1016/S1350-4177(03)00095-6
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ultsonch.2007.11.001
– ident: e_1_2_6_13_1
  doi: 10.1016/j.cep.2008.03.012
– ident: e_1_2_6_41_1
  doi: 10.1002/ceat.201500362
– ident: e_1_2_6_47_1
  doi: 10.1016/j.ultsonch.2013.10.025
– ident: e_1_2_6_46_1
  doi: 10.1016/j.biortech.2015.02.050
– ident: e_1_2_6_12_1
  doi: 10.1016/j.cej.2016.03.022
– ident: e_1_2_6_42_1
  doi: 10.1016/j.expthermflusci.2015.08.018
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jece.2019.102945
– ident: e_1_2_6_5_1
  doi: 10.1016/j.seppur.2012.12.029
– ident: e_1_2_6_6_1
  doi: 10.1016/j.cep.2006.02.005
– ident: e_1_2_6_14_1
  doi: 10.1016/j.cej.2018.01.049
– ident: e_1_2_6_15_1
  doi: 10.1016/S0958-6946(02)00038-9
– ident: e_1_2_6_16_1
  doi: 10.1016/j.bej.2008.10.006
– ident: e_1_2_6_20_1
  doi: 10.1007/s11356-015-5461-z
– ident: e_1_2_6_37_1
  doi: 10.1016/0923-0467(94)06062-2
– ident: e_1_2_6_27_1
  doi: 10.1016/S0960-8524(00)00023-7
– ident: e_1_2_6_40_1
  doi: 10.1016/S1350-4177(01)00122-5
– ident: e_1_2_6_21_1
  doi: 10.1016/j.biortech.2013.02.001
– ident: e_1_2_6_32_1
  doi: 10.1016/j.ultsonch.2015.01.006
– volume: 35
  start-page: 129
  year: 2009
  ident: e_1_2_6_26_1
  article-title: The use of hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge
  publication-title: Water SA
  contributor:
    fullname: Machnicka A.
– ident: e_1_2_6_10_1
  doi: 10.1017/jfm.2013.525
– ident: e_1_2_6_38_1
  doi: 10.1080/01919512.2014.985817
– ident: e_1_2_6_35_1
  doi: 10.1007/s10098-009-0202-y
– ident: e_1_2_6_30_1
  doi: 10.2166/wst.2004.0523
– ident: e_1_2_6_22_1
  doi: 10.1007/s10811-014-0483-3
– ident: e_1_2_6_28_1
  doi: 10.1016/j.desal.2008.05.051
SSID ssj0012204
Score 2.3947773
Snippet The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the...
The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well-known process. However, most of the...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2060
SubjectTerms Activated sludge
Additives
Anaerobic digestion
Anaerobic processes
Anaerobic treatment
Anaerobiosis
Animal wastes
Animals
Cavitation
Design optimization
Digestion
Disintegration
Energy
Energy efficiency
Fatty acids
hydrodynamic cavitation
Hydrodynamics
Industrial wastes
Industrial wastewater
Laboratories
Methane
Nutrients
Organic matter
Pig manure
pig slurry
Pretreatment
Sewage
Sludge
Sludge digestion
Sludge treatment
Slurries
Solubilization
Swine
Volatile fatty acids
Waste Disposal, Fluid
Waste Water
Wastewater treatment
waste‐activated sludge
Title Design and optimization of a semi‐industrial cavitation device for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwer.1366
https://www.ncbi.nlm.nih.gov/pubmed/32474981
https://www.proquest.com/docview/2465562556
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qzYPv1fVFBPFWTNM0bb2JVjyJ-EBvJWkSWdDu0ro-bv4Eb_4_f4mZtN11EUHwVAozQ8hkJpNk5huEdgmPmQqktTQeMo8FWnrSN9SjhidGRIkhrn3b6WV0dhsfpwCTc9DWwtT4EKMLN7AM56_BwIWs9segoc-6hBwtQNu2hwRXvRGcjx4QKHWdA-HAY0dAghZ3ltD9lnFyJ_oRXk5Gq267OZn_z0AX0FwTZOLDelUsoildLKHZb9CDS6iTjivcLGlj4tUy-jh2OR1YFAr3rT95aAo1cd9ggSv90Pt8e--NGn7gXDw1MN9YaXA72IbBlhISGdskdscLIoUG2KccK_esBTwTNPoFihZwdT9Ud9qNYNC7g9-yfF1B1yfp1dGp13Rv8PIg5twzSZLTODQUkmukISYnKlFMKMKinBPha8qF4Lkfq4AqXwaMydC6HMGUEokJgw6aKfqFXkPYLhoaCm4k0_ZAFylLq6NQamU0MVT6XbTTajIb1CAdWQ3HTDM7-xnMfhdttirOGjOtMgrocRxQ2LpotVb7SICNNCOWxFb4ntPur5Kzm_QCvut_JdyAywF3i2N3wE0081gO9RaartRw2y3iLzNC-JU
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6a7SHpoY802266bVUIuZnIsizb9FS6u2xpGkqTkNyMZEnLQuIN624ft_6E3Pr_8kuike1NlxII5GQMo0FoHhpJM98A7FCRch0pZ2ki5gGPjApUaFnArMisTDJLffu28WFycJoOhgiT876thanxIZYXbmgZ3l-jgeOF9N4NauhPM8ckLbEGD7lweoj1G9HX5RMCY753IB553Bxo1CLPUrbXjlzdi_4LMFfjVb_hjJ7ca6pP4XETZ5IPtWI8gwem3IRH_6APbkJ3eFPk5kgbK6-ew9-BT-sgstRk5lzKeVOrSWaWSFKZ8-nVn8vpsucHKeSPBumbaIOeh7hI2FFiLmObx-7HIktpEPmpINq_bOGYFRrzC-sWSHW20BPjZ3AxneDvfP57C45Hw6OP46Bp4BAUUSpEYLOsYGlsGebXKEttQXWmudSUJ4WgMjRMSCmKMNUR06GKOFex8zqSay0zG0dd6JSz0rwE4vSGxVJYxY070yXa0ZokVkZbQy1TYQ_etaLML2qcjrxGZGa5W_0cV78H_VbGeWOpVc4QQE4gEFsPXtRyXzJwwWbCs9Qx3_XivZVzfjL8ht_tuxK-hfXx0Zf9fP_TwedXsMHwEO9zZPrQ-T5fmNewVunFG6_R18_s_L8
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB-qBbEPtmqt19oaofi2mE2y2d2-ld4dlhaRVqlvS7JJ5EDvjlvPP29-hL75_fwkzWR3zx5FKPi0BGaGkMlMJpuZ3wB8pDIThmtvaTIRkeBWRzp2LGJO5k6luaOhfdv-z_TgJOv2ECbnU1sLU-NDzH64oWUEf40GPjZu7wE09MpOMEdLLsBz4aNwxM3n_HD2gsBYaB2INx4_Bcpb4FnK9lrO-aPon_hyPlwN503_5VNm-gpWmiiTfK63xSo8s8M1ePEX9uAabPQeStw8aWPj1TrcdUNSB1FDQ0beoZw3lZpk5IgilT0f3N_-Hsw6fpBSXTY438RY9DvEx8GeEjMZ2yz2wIsilUXcp5KY8K6FPHM09hqrFkh1NjWnNsxgPDjF4WRy8xqO-72jL_tR074hKnkmZeTyvGRZ4hhm12hHXUlNboQyVKSlpCq2TColyzgznJlYcyF04n2OEsao3CV8AxaHo6HdBOJ3DUuUdFpYf6NLjae1aaKtcZY6puMO7LSaLMY1SkdR4zGzwq9-gavfga1WxUVjp1XBED5OIgxbB97Uap8J8KFmKvLMC98N2n1UcvGr9wO_b_-XcBuWDrv94vvXg2_vYJnhDT4kyGzB4sVkat_DQmWmH8J-_gPRovtl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+optimization+of+a+semi%E2%80%90industrial+cavitation+device+for+a+pretreatment+of+an+anaerobic+digestion+treatment+of+excess+sludge+and+pig+slurry&rft.jtitle=Water+environment+research&rft.au=Vilarroig%2C+Jose&rft.au=Mart%C3%ADnez%2C+Ra%C3%BAl&rft.au=Zuriaga%E2%80%90Agust%C3%AD%2C+Elena&rft.au=Torr%C3%B3%2C+Salvador&rft.date=2020-12-01&rft.issn=1061-4303&rft.eissn=1554-7531&rft.volume=92&rft.issue=12&rft.spage=2060&rft.epage=2071&rft_id=info:doi/10.1002%2Fwer.1366&rft.externalDBID=10.1002%252Fwer.1366&rft.externalDocID=WER1366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4303&client=summon