Design and optimization of a semi‐industrial cavitation device for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry
The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste‐activated...
Saved in:
Published in: | Water environment research Vol. 92; no. 12; pp. 2060 - 2071 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-12-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste‐activated sludge has been mixed with pig slurry with the aim of treating two wastes rich in nutrients and organic matter. The HC has been studied not only at laboratory scale but also at industrial scale (up to 500 L), using a novel rotating device consisting of a rotor with multiple teeth that rotate inside a grooved stator. The effectiveness of the process has been calculated using the disintegration degree (DD) and analyzing the volatile fatty acids, while the energy efficiency has been determined with specific energy of the sludge solubilization (SESCOD) and the specific energy. Results show that both the SESCOD and the specific energy decrease when the cavitation process is scaled from laboratory scale to industrial scale. Specifically, SESCOD decreases from 2.71 × 102 to 0.16 × 102 kJ/g SCOD and specific energy decreases from 3.58 × 104 to 2.85 × 103 kJ/kg TS while DD values show reasonable values up to 17%.
Practitioner points
A new industrial hydrodynamic cavitation device has been developed to treat industrial wastewater without chemical additives
A volume up to 500 L has been treated at industrial scale experiments.
Sludge with 7% of total solids content was satisfactorily disintegrated.
The process scale‐up lead to an energy efficiency enhancement.
Cavitation device scheme proposed for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry. |
---|---|
AbstractList | The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste‐activated sludge has been mixed with pig slurry with the aim of treating two wastes rich in nutrients and organic matter. The HC has been studied not only at laboratory scale but also at industrial scale (up to 500 L), using a novel rotating device consisting of a rotor with multiple teeth that rotate inside a grooved stator. The effectiveness of the process has been calculated using the disintegration degree (DD) and analyzing the volatile fatty acids, while the energy efficiency has been determined with specific energy of the sludge solubilization (SESCOD) and the specific energy. Results show that both the SESCOD and the specific energy decrease when the cavitation process is scaled from laboratory scale to industrial scale. Specifically, SESCOD decreases from 2.71 × 102 to 0.16 × 102 kJ/g SCOD and specific energy decreases from 3.58 × 104 to 2.85 × 103 kJ/kg TS while DD values show reasonable values up to 17%.
Practitioner points
A new industrial hydrodynamic cavitation device has been developed to treat industrial wastewater without chemical additives
A volume up to 500 L has been treated at industrial scale experiments.
Sludge with 7% of total solids content was satisfactorily disintegrated.
The process scale‐up lead to an energy efficiency enhancement.
Cavitation device scheme proposed for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry. The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste‐activated sludge has been mixed with pig slurry with the aim of treating two wastes rich in nutrients and organic matter. The HC has been studied not only at laboratory scale but also at industrial scale (up to 500 L), using a novel rotating device consisting of a rotor with multiple teeth that rotate inside a grooved stator. The effectiveness of the process has been calculated using the disintegration degree (DD) and analyzing the volatile fatty acids, while the energy efficiency has been determined with specific energy of the sludge solubilization (SESCOD) and the specific energy. Results show that both the SESCOD and the specific energy decrease when the cavitation process is scaled from laboratory scale to industrial scale. Specifically, SESCOD decreases from 2.71 × 102 to 0.16 × 102 kJ/g SCOD and specific energy decreases from 3.58 × 104 to 2.85 × 103 kJ/kg TS while DD values show reasonable values up to 17%.Practitioner pointsA new industrial hydrodynamic cavitation device has been developed to treat industrial wastewater without chemical additivesA volume up to 500 L has been treated at industrial scale experiments.Sludge with 7% of total solids content was satisfactorily disintegrated.The process scale‐up lead to an energy efficiency enhancement. The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well-known process. However, most of the experiments have been done at laboratory scale and using a low concentration of total solids in the sludge treated. In this study, the waste-activated sludge has been mixed with pig slurry with the aim of treating two wastes rich in nutrients and organic matter. The HC has been studied not only at laboratory scale but also at industrial scale (up to 500 L), using a novel rotating device consisting of a rotor with multiple teeth that rotate inside a grooved stator. The effectiveness of the process has been calculated using the disintegration degree (DD) and analyzing the volatile fatty acids, while the energy efficiency has been determined with specific energy of the sludge solubilization (SE ) and the specific energy. Results show that both the SE and the specific energy decrease when the cavitation process is scaled from laboratory scale to industrial scale. Specifically, SE decreases from 2.71 × 10 to 0.16 × 10 kJ/g SCOD and specific energy decreases from 3.58 × 10 to 2.85 × 10 kJ/kg TS while DD values show reasonable values up to 17%. PRACTITIONER POINTS: A new industrial hydrodynamic cavitation device has been developed to treat industrial wastewater without chemical additives A volume up to 500 L has been treated at industrial scale experiments. Sludge with 7% of total solids content was satisfactorily disintegrated. The process scale-up lead to an energy efficiency enhancement. |
Author | Martínez, Raúl Zuriaga‐Agustí, Elena Vilarroig, Jose Torró, Salvador Galián, Manuel Chiva, Sergio |
Author_xml | – sequence: 1 givenname: Jose surname: Vilarroig fullname: Vilarroig, Jose organization: Universitat Jaume I – sequence: 2 givenname: Raúl orcidid: 0000-0001-5955-3441 surname: Martínez fullname: Martínez, Raúl organization: Universitat Jaume I – sequence: 3 givenname: Elena orcidid: 0000-0002-5383-1313 surname: Zuriaga‐Agustí fullname: Zuriaga‐Agustí, Elena organization: Fomento Agrícola Castellonense S.A. (FACSA) – sequence: 4 givenname: Salvador surname: Torró fullname: Torró, Salvador organization: Universitat Jaume I – sequence: 5 givenname: Manuel surname: Galián fullname: Galián, Manuel organization: Fomento Agrícola Castellonense S.A. (FACSA) – sequence: 6 givenname: Sergio orcidid: 0000-0001-6345-2950 surname: Chiva fullname: Chiva, Sergio email: schiva@uji.es organization: Universitat Jaume I |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32474981$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctKJDEUhoMo2l7AJ5DAbGZTmnt3LYe2dQYEQWZwWaSSkybSValJquxpVz6CO99vnmTS3SrMwkU4CXzny-H8h2i3DS0gdErJOSWEXSwhnlOu1A4aUSlFMZac7uY7UbQQnPADdJjSAyGUMSL20QFnYizKCR2h10tIft5i3Vocut43_kn3PrQ4OKxxgsb_fX7xrR1SH71eYKMffb8lLDx6A9iFmMkuQh9B9w20_aZ3rdQQQ-0Ntn4OadPzHwN_DKSE02Kwc9hM0Pn5-hnj6hjtOb1IcPJWj9Cvq9nP6ffi5vb6x_TbTWH4RKnClaVhE-mYkmNSO-IMsaUV2hIxNopoCkxprQydWM4srbkQtSScaGGtLp3kR-jL1tvF8HvIU1YPYYht_rJiQkmpWD6Z-rqlTAwpRXBVF32j46qipFonUOUEqnUCGT17Ew51A_YDfF95BootsPQLWH0qqu5ndxvhP8cUlUI |
CitedBy_id | crossref_primary_10_1016_j_jestch_2022_101323 crossref_primary_10_1016_j_heliyon_2023_e18345 crossref_primary_10_1016_j_rser_2023_113277 crossref_primary_10_1016_j_coche_2024_101037 crossref_primary_10_1016_j_ultsonch_2020_105431 crossref_primary_10_1016_j_ultsonch_2021_105771 crossref_primary_10_1016_j_eng_2022_04_027 crossref_primary_10_1016_j_jenvman_2022_115982 crossref_primary_10_1016_j_jenvman_2023_119074 crossref_primary_10_1016_j_ultsonch_2021_105669 crossref_primary_10_1016_j_ultsonch_2024_106943 crossref_primary_10_3390_pr11020514 crossref_primary_10_1016_j_scitotenv_2022_159802 crossref_primary_10_1016_j_scitotenv_2021_151414 |
Cites_doi | 10.1016/S1369-703X(02)00102-X 10.1016/j.ultsonch.2013.03.006 10.1016/j.jhazmat.2008.03.073 10.1016/j.jenvman.2018.03.135 10.1016/j.jece.2015.05.001 10.1016/j.ultsonch.2018.05.015 10.1016/j.ultsonch.2015.11.009 10.1016/j.watres.2012.02.013 10.1016/j.ultsonch.2015.10.010 10.1016/j.seppur.2013.07.029 10.1016/j.ibiod.2016.04.001 10.1016/j.pecs.2008.06.002 10.1016/j.jher.2015.03.001 10.1016/j.ultsonch.2012.07.006 10.1016/j.cej.2019.02.205 10.1016/j.applthermaleng.2016.01.049 10.1016/S1369-703X(00)00128-5 10.1016/S1350-4177(03)00095-6 10.1016/j.ultsonch.2007.11.001 10.1016/j.cep.2008.03.012 10.1002/ceat.201500362 10.1016/j.ultsonch.2013.10.025 10.1016/j.biortech.2015.02.050 10.1016/j.cej.2016.03.022 10.1016/j.expthermflusci.2015.08.018 10.1016/j.jece.2019.102945 10.1016/j.seppur.2012.12.029 10.1016/j.cep.2006.02.005 10.1016/j.cej.2018.01.049 10.1016/S0958-6946(02)00038-9 10.1016/j.bej.2008.10.006 10.1007/s11356-015-5461-z 10.1016/0923-0467(94)06062-2 10.1016/S0960-8524(00)00023-7 10.1016/S1350-4177(01)00122-5 10.1016/j.biortech.2013.02.001 10.1016/j.ultsonch.2015.01.006 10.1017/jfm.2013.525 10.1080/01919512.2014.985817 10.1007/s10098-009-0202-y 10.2166/wst.2004.0523 10.1007/s10811-014-0483-3 10.1016/j.desal.2008.05.051 |
ContentType | Journal Article |
Copyright | 2020 Water Environment Federation 2020 Water Environment Federation. |
Copyright_xml | – notice: 2020 Water Environment Federation – notice: 2020 Water Environment Federation. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QH 7QO 7ST 7T7 7U7 7UA 8FD C1K F1W FR3 H97 K9. L.G M7N P64 SOI |
DOI | 10.1002/wer.1366 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aqualine Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Biotechnology Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1554-7531 |
EndPage | 2071 |
ExternalDocumentID | 10_1002_wer_1366 32474981 WER1366 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: LIFE Programme of the European Union funderid: GA LIFE14/ENV/ES/000150 – fundername: LIFE Programme of the European Union grantid: GA LIFE14/ENV/ES/000150 |
GroupedDBID | --- -~X .DC 0R~ 123 1OB 1OC 29R 33P 3V. 4.4 53G 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8FW 8R4 8R5 8WZ A6W AAHHS AAHKG AAIKC AAMNW AANLZ ABBHK ABJCF ABJNI ABPLY ABTAH ABTLG ABUWG ABXSQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACKIV ACPOU ACPRK ACXQS ADACV ADBBV ADKYN ADNWM ADULT ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUPB AEUYR AFAZZ AFFNX AFFPM AFKRA AFRAH AGUYK AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ANHSF AQVQM AS~ ATCPS AZQEC BENPR BES BGLVJ BHPHI BKSAR BPHCQ BVXVI CBGCD CCPQU CS3 D1J D1K DCZOG DDYGU DOOOF DU5 DWQXO E.- EBS ECGQY EJD EQZMY F5P F8P FYUFA G8K GNUQQ GTFYD HCIFZ HGLYW HMCUK HTVGU H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K6- L6V L7B LATKE LEEKS LYRES M0K M1P M2P M2Q M7S MEWTI MV1 P-S P0- P2P P2W PATMY PCBAR PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RJQFR ROL RWL RXW S0X SA0 SAMSI SUPJJ TAE U5U UHB UKHRP WXSBR XJN XJT Y6R YHZ YV5 ZY4 ZZTAW ~02 ~KM AECCQ AHXOZ CGR CUY CVF ECM EIF NPM AAMNL AAYXX ABDPE CITATION 7QH 7QO 7ST 7T7 7U7 7UA 8FD C1K F1W FR3 H97 K9. L.G M7N P64 SOI |
ID | FETCH-LOGICAL-c3866-f99c285f26570bf0fc0d9d4ad047c60a1e26aa6c18d32d1b344b5030a4dda9f53 |
IEDL.DBID | 33P |
ISSN | 1061-4303 |
IngestDate | Mon Nov 11 02:28:44 EST 2024 Fri Nov 22 00:05:45 EST 2024 Wed Oct 16 00:46:19 EDT 2024 Sat Aug 24 01:05:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | waste-activated sludge anaerobic digestion hydrodynamic cavitation disintegration pig slurry |
Language | English |
License | 2020 Water Environment Federation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3866-f99c285f26570bf0fc0d9d4ad047c60a1e26aa6c18d32d1b344b5030a4dda9f53 |
ORCID | 0000-0001-5955-3441 0000-0001-6345-2950 0000-0002-5383-1313 |
PMID | 32474981 |
PQID | 2465562556 |
PQPubID | 24129 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2465562556 crossref_primary_10_1002_wer_1366 pubmed_primary_32474981 wiley_primary_10_1002_wer_1366_WER1366 |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Water environment research |
PublicationTitleAlternate | Water Environ Res |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2009; 44 2019; 7 2015; 185 2015; 37 2015; 3 2012 2002; 9 2002; 12 2013; 20 2013; 106 2019; 368 2008; 15 2008; 34 2016; 30 2016; 105 2016; 70 2015; 9 2016; 39 2018; 48 2009; 48 2003a; 10 2014; 21 2003b; 14 2015; 23 2009; 11 2015; 26 2009; 35 2004; 50 2015; 27 2006; 45 2013; 736 2001; 7 2018; 338 2018; 217 2000; 74 2013; 118 2013; 134 1994; 55 2016; 110 2009; 161 2016; 29 2012; 46 2016; 295 2012; 20 2009; 248 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 Machnicka A. (e_1_2_6_26_1) 2009; 35 e_1_2_6_40_1 Širok B. (e_1_2_6_39_1) 2012; 20 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 APHA, AWWA, WEF (e_1_2_6_2_1) 2012 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_47_1 |
References_xml | – volume: 10 start-page: 255 year: 2003a end-page: 264 article-title: Hybrid cavitation methods for water disinfection: Simultaneous use of chemicals with cavitation publication-title: Ultrasonics Sonochemistry – volume: 50 start-page: 17 year: 2004 end-page: 23 article-title: Use of microwave pretreatment for enhanced anaerobiosis of secondary slugde publication-title: Water Science and Technology – volume: 39 start-page: 1363 year: 2016 end-page: 1376 article-title: Application of hydrodynamic cavitation to wastewater treatment publication-title: Chemical Engineering and Technology – volume: 12 start-page: 541 year: 2002 end-page: 553 article-title: Methods for disruption of microbial cells for potential use in the dairy industry ‐ A review publication-title: International Dairy Journal – volume: 185 start-page: 171 year: 2015 end-page: 177 article-title: Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: Focused on high‐solid state publication-title: Bioresource Technology – volume: 15 start-page: 903 year: 2008 end-page: 908 article-title: A parametrical study of disinfection with hydrodynamic cavitation publication-title: Ultrasonics Sonochemistry – volume: 23 start-page: 2402 year: 2015 end-page: 2414 article-title: Effect of chemo‐mechanical disintegration on sludge anaerobic digestion for enhanced biogas production publication-title: Environmental Science and Pollution Research – volume: 74 start-page: 3 issue: 1 year: 2000 end-page: 16 article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives publication-title: Bioresource Technology – volume: 248 start-page: 152 year: 2009 end-page: 159 article-title: A simple technique for water disinfection with hydrodynamic cavitation: Effect on survival of publication-title: Desalination – volume: 110 start-page: 227 year: 2016 end-page: 234 article-title: International Biodeterioration & Biodegradation Pilot‐scale study of enhanced anaerobic digestion of waste activated sludge by electrochemical and sodium hypochlorite combination pretreatment publication-title: International Biodeterioration and Biodegradation – volume: 21 start-page: 1213 year: 2014 end-page: 1221 article-title: Shear‐induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater publication-title: Ultrasonics Sonochemistry – volume: 368 start-page: 754 year: 2019 end-page: 763 article-title: Comparison of pretreatment methods for phosphorus release from waste activated sludge publication-title: Chemical Engineering Journal – volume: 20 start-page: 587 year: 2013 end-page: 594 article-title: Sono‐thermal pre‐treatment of waste activated sludge before anaerobic digestion publication-title: Ultrasonics Sonochemistry – volume: 106 start-page: 15 year: 2013 end-page: 21 article-title: Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry publication-title: Separation and Purification Technology – volume: 55 start-page: 67 year: 1994 end-page: 72 article-title: Microbial cell disruption: Role of cavitation publication-title: The Chemical Engineering Journal and the Biochemical Engineering Journal – volume: 217 start-page: 797 year: 2018 end-page: 804 article-title: Enhancement of volatile fatty acid production and biogas yield from food waste following sonication pretreatment publication-title: Journal of Environmental Management – volume: 45 start-page: 711 year: 2006 end-page: 718 article-title: Effect of ultrasonic, thermal and ozone pre‐treatments on waste activated sludge solubilisation and anaerobic biodegradability publication-title: Chemical Engineering and Processing: Process Intensification – volume: 48 start-page: 71 year: 2018 end-page: 78 article-title: Water disinfection by hydrodynamic cavitation in a rotor‐stator device publication-title: Ultrasonics Sonochemistry – volume: 736 start-page: 44 year: 2013 end-page: 66 article-title: Thermodynamic effects during growth and collapse of a single cavitation bubble publication-title: Journal of Fluid Mechanics – volume: 34 start-page: 755 year: 2008 end-page: 781 article-title: Principles and potential of the anaerobic digestion of waste‐activated sludge publication-title: Progress in Energy and Combustion Science – volume: 338 start-page: 599 year: 2018 end-page: 627 article-title: Wastewater treatment by means of advanced oxidation processes based on cavitation – A review publication-title: Chemical Engineering Journal – volume: 9 start-page: 123 year: 2002 end-page: 131 article-title: Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique publication-title: Ultrasonics Sonochemistry – volume: 7 start-page: 201 year: 2001 end-page: 212 article-title: Water disinfection by acoustic and hydrodynamic cavitation publication-title: Biochemical Engineering Journal – volume: 46 start-page: 2469 year: 2012 end-page: 2477 article-title: Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic‐Acoustic‐Cavitation (HAC) publication-title: Water Research – volume: 9 start-page: 259 year: 2015 end-page: 267 article-title: Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus publication-title: Journal of Hydro‐environment Research – volume: 20 start-page: 1104 year: 2012 end-page: 1112 article-title: Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment publication-title: Ultrasonics Sonochemistry – start-page: 1360 year: 2012 – volume: 7 start-page: 102945 year: 2019 article-title: Ozonolysis pre‐treatment of waste activated sludge for solubilization and biodegradability enhancement publication-title: Journal of Environmental Chemical Engineering – volume: 30 start-page: 79 year: 2016 end-page: 86 article-title: Intensification of biogas production using pretreatment based on hydrodynamic cavitation publication-title: Ultrasonics Sonochemistry – volume: 11 start-page: 437 year: 2009 end-page: 446 article-title: Influence of sludge disintegration by high pressure homogenizer on microbial growth in sewage sludge: An approach for excess sludge reduction publication-title: Clean Technologies and Environmental Policy – volume: 70 start-page: 85 year: 2016 end-page: 95 article-title: Experimental study of aerated cavitation in a horizontal venturi nozzle publication-title: Experimental Thermal and Fluid Science – volume: 20 start-page: 1450 year: 2013 end-page: 1455 article-title: The effects of waste‐activated sludge pretreatment using hydrodynamic cavitation for methane production publication-title: Ultrasonics Sonochemistry – volume: 105 start-page: 1067 year: 2016 end-page: 1075 article-title: Heat transfer during cavitation bubble collapse publication-title: Applied Thermal Engineering – volume: 44 start-page: 60 year: 2009 end-page: 72 article-title: A review of applications of cavitation in biochemical engineering/biotechnology publication-title: Biochemical Engineering Journal – volume: 27 start-page: 1881 year: 2015 end-page: 1889 article-title: Microalgal cell disruption by hydrodynamic cavitation for the production of biofuels publication-title: Journal of Applied Phycology – volume: 29 start-page: 577 year: 2016 end-page: 588 article-title: Use of hydrodynamic cavitation in (waste)water treatment publication-title: Ultrasonics Sonochemistry – volume: 35 start-page: 129 year: 2009 end-page: 132 article-title: The use of hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge publication-title: Water SA – volume: 48 start-page: 187 year: 2009 end-page: 194 article-title: Physical and chemical characteristics of waste activated sludge treated ultrasonically publication-title: Chemical Engineering and Processing: Process Intensification – volume: 134 start-page: 290 year: 2013 end-page: 297 article-title: Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants publication-title: Bioresource Technology – volume: 26 start-page: 408 year: 2015 end-page: 414 article-title: A novel rotation generator of hydrodynamic cavitation for waste‐activated sludge disintegration publication-title: Ultrasonics Sonochemistry – volume: 161 start-page: 202 year: 2009 end-page: 207 article-title: Degradation of alachlor in aqueous solution by using hydrodynamic cavitation publication-title: Journal of Hazardous Materials – volume: 37 start-page: 316 year: 2015 end-page: 322 article-title: Ozonation as a pre‐treatment for anaerobic digestion of waste‐activated sludge: Effect of the ozone doses publication-title: Ozone Science and Engineering – volume: 3 start-page: 2637 year: 2015 end-page: 2646 article-title: Optimization of sono‐electrochemical oxidation of ibuprofen in wastewater publication-title: Journal of Environmental Chemical Engineering – volume: 295 start-page: 39 year: 2016 end-page: 48 article-title: Impact of thermal treatment on the rheological properties and composition of waste activated sludge: COD solubilisation as a footprint of rheological changes publication-title: Chemical Engineering Journal – volume: 14 start-page: 9 year: 2003b end-page: 17 article-title: Water disinfection by acoustic and hydrodynamic cavitation publication-title: Biochemical Engineering Journal – volume: 118 start-page: 415 year: 2013 end-page: 423 article-title: Rotation generator of hydrodynamic cavitation for water treatment publication-title: Separation and Purification Technology – ident: e_1_2_6_19_1 doi: 10.1016/S1369-703X(02)00102-X – ident: e_1_2_6_23_1 doi: 10.1016/j.ultsonch.2013.03.006 – volume: 20 start-page: 1104 year: 2012 ident: e_1_2_6_39_1 article-title: Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment publication-title: Ultrasonics Sonochemistry contributor: fullname: Širok B. – ident: e_1_2_6_44_1 doi: 10.1016/j.jhazmat.2008.03.073 – ident: e_1_2_6_25_1 doi: 10.1016/j.jenvman.2018.03.135 – ident: e_1_2_6_43_1 doi: 10.1016/j.jece.2015.05.001 – ident: e_1_2_6_8_1 doi: 10.1016/j.ultsonch.2018.05.015 – ident: e_1_2_6_31_1 doi: 10.1016/j.ultsonch.2015.11.009 – ident: e_1_2_6_7_1 doi: 10.1016/j.watres.2012.02.013 – ident: e_1_2_6_11_1 doi: 10.1016/j.ultsonch.2015.10.010 – ident: e_1_2_6_33_1 doi: 10.1016/j.seppur.2013.07.029 – ident: e_1_2_6_45_1 doi: 10.1016/j.ibiod.2016.04.001 – start-page: 1360 volume-title: Standard Methods for examination of water and wastewater year: 2012 ident: e_1_2_6_2_1 contributor: fullname: APHA, AWWA, WEF – ident: e_1_2_6_3_1 doi: 10.1016/j.pecs.2008.06.002 – ident: e_1_2_6_9_1 doi: 10.1016/j.jher.2015.03.001 – ident: e_1_2_6_36_1 doi: 10.1016/j.ultsonch.2012.07.006 – ident: e_1_2_6_24_1 doi: 10.1016/j.cej.2019.02.205 – ident: e_1_2_6_34_1 doi: 10.1016/j.applthermaleng.2016.01.049 – ident: e_1_2_6_17_1 doi: 10.1016/S1369-703X(00)00128-5 – ident: e_1_2_6_18_1 doi: 10.1016/S1350-4177(03)00095-6 – ident: e_1_2_6_4_1 doi: 10.1016/j.ultsonch.2007.11.001 – ident: e_1_2_6_13_1 doi: 10.1016/j.cep.2008.03.012 – ident: e_1_2_6_41_1 doi: 10.1002/ceat.201500362 – ident: e_1_2_6_47_1 doi: 10.1016/j.ultsonch.2013.10.025 – ident: e_1_2_6_46_1 doi: 10.1016/j.biortech.2015.02.050 – ident: e_1_2_6_12_1 doi: 10.1016/j.cej.2016.03.022 – ident: e_1_2_6_42_1 doi: 10.1016/j.expthermflusci.2015.08.018 – ident: e_1_2_6_29_1 doi: 10.1016/j.jece.2019.102945 – ident: e_1_2_6_5_1 doi: 10.1016/j.seppur.2012.12.029 – ident: e_1_2_6_6_1 doi: 10.1016/j.cep.2006.02.005 – ident: e_1_2_6_14_1 doi: 10.1016/j.cej.2018.01.049 – ident: e_1_2_6_15_1 doi: 10.1016/S0958-6946(02)00038-9 – ident: e_1_2_6_16_1 doi: 10.1016/j.bej.2008.10.006 – ident: e_1_2_6_20_1 doi: 10.1007/s11356-015-5461-z – ident: e_1_2_6_37_1 doi: 10.1016/0923-0467(94)06062-2 – ident: e_1_2_6_27_1 doi: 10.1016/S0960-8524(00)00023-7 – ident: e_1_2_6_40_1 doi: 10.1016/S1350-4177(01)00122-5 – ident: e_1_2_6_21_1 doi: 10.1016/j.biortech.2013.02.001 – ident: e_1_2_6_32_1 doi: 10.1016/j.ultsonch.2015.01.006 – volume: 35 start-page: 129 year: 2009 ident: e_1_2_6_26_1 article-title: The use of hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge publication-title: Water SA contributor: fullname: Machnicka A. – ident: e_1_2_6_10_1 doi: 10.1017/jfm.2013.525 – ident: e_1_2_6_38_1 doi: 10.1080/01919512.2014.985817 – ident: e_1_2_6_35_1 doi: 10.1007/s10098-009-0202-y – ident: e_1_2_6_30_1 doi: 10.2166/wst.2004.0523 – ident: e_1_2_6_22_1 doi: 10.1007/s10811-014-0483-3 – ident: e_1_2_6_28_1 doi: 10.1016/j.desal.2008.05.051 |
SSID | ssj0012204 |
Score | 2.3947773 |
Snippet | The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well‐known process. However, most of the... The use of hydrodynamic cavitation (HC) as a wastewater treatment and anaerobic digestion pretreatment is a well-known process. However, most of the... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2060 |
SubjectTerms | Activated sludge Additives Anaerobic digestion Anaerobic processes Anaerobic treatment Anaerobiosis Animal wastes Animals Cavitation Design optimization Digestion Disintegration Energy Energy efficiency Fatty acids hydrodynamic cavitation Hydrodynamics Industrial wastes Industrial wastewater Laboratories Methane Nutrients Organic matter Pig manure pig slurry Pretreatment Sewage Sludge Sludge digestion Sludge treatment Slurries Solubilization Swine Volatile fatty acids Waste Disposal, Fluid Waste Water Wastewater treatment waste‐activated sludge |
Title | Design and optimization of a semi‐industrial cavitation device for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwer.1366 https://www.ncbi.nlm.nih.gov/pubmed/32474981 https://www.proquest.com/docview/2465562556 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qzYPv1fVFBPFWTNM0bb2JVjyJ-EBvJWkSWdDu0ro-bv4Eb_4_f4mZtN11EUHwVAozQ8hkJpNk5huEdgmPmQqktTQeMo8FWnrSN9SjhidGRIkhrn3b6WV0dhsfpwCTc9DWwtT4EKMLN7AM56_BwIWs9segoc-6hBwtQNu2hwRXvRGcjx4QKHWdA-HAY0dAghZ3ltD9lnFyJ_oRXk5Gq267OZn_z0AX0FwTZOLDelUsoildLKHZb9CDS6iTjivcLGlj4tUy-jh2OR1YFAr3rT95aAo1cd9ggSv90Pt8e--NGn7gXDw1MN9YaXA72IbBlhISGdskdscLIoUG2KccK_esBTwTNPoFihZwdT9Ud9qNYNC7g9-yfF1B1yfp1dGp13Rv8PIg5twzSZLTODQUkmukISYnKlFMKMKinBPha8qF4Lkfq4AqXwaMydC6HMGUEokJgw6aKfqFXkPYLhoaCm4k0_ZAFylLq6NQamU0MVT6XbTTajIb1CAdWQ3HTDM7-xnMfhdttirOGjOtMgrocRxQ2LpotVb7SICNNCOWxFb4ntPur5Kzm_QCvut_JdyAywF3i2N3wE0081gO9RaartRw2y3iLzNC-JU |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6a7SHpoY802266bVUIuZnIsizb9FS6u2xpGkqTkNyMZEnLQuIN624ft_6E3Pr_8kuike1NlxII5GQMo0FoHhpJM98A7FCRch0pZ2ki5gGPjApUaFnArMisTDJLffu28WFycJoOhgiT876thanxIZYXbmgZ3l-jgeOF9N4NauhPM8ckLbEGD7lweoj1G9HX5RMCY753IB553Bxo1CLPUrbXjlzdi_4LMFfjVb_hjJ7ca6pP4XETZ5IPtWI8gwem3IRH_6APbkJ3eFPk5kgbK6-ew9-BT-sgstRk5lzKeVOrSWaWSFKZ8-nVn8vpsucHKeSPBumbaIOeh7hI2FFiLmObx-7HIktpEPmpINq_bOGYFRrzC-sWSHW20BPjZ3AxneDvfP57C45Hw6OP46Bp4BAUUSpEYLOsYGlsGebXKEttQXWmudSUJ4WgMjRMSCmKMNUR06GKOFex8zqSay0zG0dd6JSz0rwE4vSGxVJYxY070yXa0ZokVkZbQy1TYQ_etaLML2qcjrxGZGa5W_0cV78H_VbGeWOpVc4QQE4gEFsPXtRyXzJwwWbCs9Qx3_XivZVzfjL8ht_tuxK-hfXx0Zf9fP_TwedXsMHwEO9zZPrQ-T5fmNewVunFG6_R18_s_L8 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB-qBbEPtmqt19oaofi2mE2y2d2-ld4dlhaRVqlvS7JJ5EDvjlvPP29-hL75_fwkzWR3zx5FKPi0BGaGkMlMJpuZ3wB8pDIThmtvaTIRkeBWRzp2LGJO5k6luaOhfdv-z_TgJOv2ECbnU1sLU-NDzH64oWUEf40GPjZu7wE09MpOMEdLLsBz4aNwxM3n_HD2gsBYaB2INx4_Bcpb4FnK9lrO-aPon_hyPlwN503_5VNm-gpWmiiTfK63xSo8s8M1ePEX9uAabPQeStw8aWPj1TrcdUNSB1FDQ0beoZw3lZpk5IgilT0f3N_-Hsw6fpBSXTY438RY9DvEx8GeEjMZ2yz2wIsilUXcp5KY8K6FPHM09hqrFkh1NjWnNsxgPDjF4WRy8xqO-72jL_tR074hKnkmZeTyvGRZ4hhm12hHXUlNboQyVKSlpCq2TColyzgznJlYcyF04n2OEsao3CV8AxaHo6HdBOJ3DUuUdFpYf6NLjae1aaKtcZY6puMO7LSaLMY1SkdR4zGzwq9-gavfga1WxUVjp1XBED5OIgxbB97Uap8J8KFmKvLMC98N2n1UcvGr9wO_b_-XcBuWDrv94vvXg2_vYJnhDT4kyGzB4sVkat_DQmWmH8J-_gPRovtl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+optimization+of+a+semi%E2%80%90industrial+cavitation+device+for+a+pretreatment+of+an+anaerobic+digestion+treatment+of+excess+sludge+and+pig+slurry&rft.jtitle=Water+environment+research&rft.au=Vilarroig%2C+Jose&rft.au=Mart%C3%ADnez%2C+Ra%C3%BAl&rft.au=Zuriaga%E2%80%90Agust%C3%AD%2C+Elena&rft.au=Torr%C3%B3%2C+Salvador&rft.date=2020-12-01&rft.issn=1061-4303&rft.eissn=1554-7531&rft.volume=92&rft.issue=12&rft.spage=2060&rft.epage=2071&rft_id=info:doi/10.1002%2Fwer.1366&rft.externalDBID=10.1002%252Fwer.1366&rft.externalDocID=WER1366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4303&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4303&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4303&client=summon |