Genetic background, and not ontogenetic effects, affects avian seasonal timing of reproduction

Avian seasonal timing is a life‐history trait with important fitness consequences and which is currently under directional selection due to climate change. To predict micro‐evolution in this trait, it is crucial to properly estimate its heritability. Heritabilities are often estimated from pedigreed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of evolutionary biology Vol. 26; no. 10; pp. 2147 - 2153
Main Authors: Gienapp, P., Noordwijk, A. J., Visser, M. E.
Format: Journal Article
Language:English
Published: Switzerland Blackwell Publishing Ltd 01-10-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Avian seasonal timing is a life‐history trait with important fitness consequences and which is currently under directional selection due to climate change. To predict micro‐evolution in this trait, it is crucial to properly estimate its heritability. Heritabilities are often estimated from pedigreed wild populations. As these are observational data, it leaves the possibility that the resemblance between related individuals is not due to shared genes but to ontogenetic effects; when the environment for the offspring provided by early laying pairs differs from that by late pairs and the laying dates of these offspring when they reproduce themselves is affected by this environment, this may lead to inflated heritability estimates. Using simulation studies, we first tested whether and how much such an early environmental effect can inflate heritability estimates from animal models, and we showed that pedigree structure determines by how much early environmental effects inflate heritability estimates. We then used data from a wild population of great tits (Parus major) to compare laying dates of females born early in the season in first broods and from sisters born much later, in second broods. These birds are raised under very different environmental conditions but have the same genetic background. The laying dates of first and second brood offspring do not differ when they reproduce themselves, clearly showing that ontogenetic effects are very small and hence, family resemblance in timing is due to genes. This finding is essential for the interpretation of the heritabilities reported from wild populations and for predicting micro‐evolution in response to climate change.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1010-061X
1420-9101
DOI:10.1111/jeb.12205