Saccharomyces cerevisiae does not undergo a quorum sensing-dependent switch of budding pattern

Saccharomyces cerevisiae can alter its morphology to a filamentous form associated with unipolar budding in response to environmental stressors. Induction of filamentous growth is suggested under nitrogen deficiency in response to alcoholic signalling molecules through quorum sensing. To investigate...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; p. 8738
Main Authors: Winters, Michela, Aru, Violetta, Howell, Kate, Arneborg, Nils
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 24-05-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Saccharomyces cerevisiae can alter its morphology to a filamentous form associated with unipolar budding in response to environmental stressors. Induction of filamentous growth is suggested under nitrogen deficiency in response to alcoholic signalling molecules through quorum sensing. To investigate this further, we analysed the budding pattern of S. cerevisiae cells over time under low nitrogen conditions while concurrently measuring cell density and extracellular metabolite concentration. We found that the proportion of cells displaying unipolar budding increased between local cell densities of 4.8 × 10 6 and 5.3 × 10 7  cells/ml. This increase in unipolar budding was not reproduced with cells growing at the critical cell density and in conditioned media. Growth under high nitrogen conditions also resulted in increased unipolar budding between local cell densities of 5.2 × 10 6 and 8.2 × 10 7  cells/ml, but with differences in metabolite concentration compared to low nitrogen conditions. Neither cell density, metabolite concentration, nor nitrogen deficiency were therefore sufficient to increase unipolar budding. Therefore, by using the budding pattern as an early indicator of filamentous growth, our results suggest that quorum sensing may not control the switch of budding behaviour in S. cerevisiae . Only a high concentration of the putative signalling molecule, 2-phenylethanol, resulted in an increase in unipolar budding. However, this concentration was not physiologically relevant, suggesting toxicity rather than a known quorum sensing mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-12308-z