Large-Scale Detection and Categorization of Oil Spills from SAR Images with Deep Learning

We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully designed neural network model for image segmentation trained on an extensive dataset, we obtain state-of-the-art performance in oil spill detection,...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 12; no. 14; p. 2260
Main Authors: Bianchi, Filippo Maria, Espeseth, Martine M., Borch, Njål
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-07-2020
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully designed neural network model for image segmentation trained on an extensive dataset, we obtain state-of-the-art performance in oil spill detection, achieving results that are comparable to results produced by human operators. We also introduce a classification task, which is novel in the context of oil spill detection in SAR. Specifically, after being detected, each oil spill is also classified according to different categories of its shape and texture characteristics. The classification results provide valuable insights for improving the design of services for oil spill monitoring by world-leading providers. Finally, we present our operational pipeline and a visualization tool for large-scale data, which allows detection and analysis of the historical occurrence of oil spills worldwide.
AbstractList We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully designed neural network model for image segmentation trained on an extensive dataset, we obtain state-of-the-art performance in oil spill detection, achieving results that are comparable to results produced by human operators. We also introduce a classification task, which is novel in the context of oil spill detection in SAR. Specifically, after being detected, each oil spill is also classified according to different categories of its shape and texture characteristics. The classification results provide valuable insights for improving the design of services for oil spill monitoring by world-leading providers. Finally, we present our operational pipeline and a visualization tool for large-scale data, which allows detection and analysis of the historical occurrence of oil spills worldwide.
Author Borch, Njål
Bianchi, Filippo Maria
Espeseth, Martine M.
Author_xml – sequence: 1
  givenname: Filippo Maria
  orcidid: 0000-0002-7145-3846
  surname: Bianchi
  fullname: Bianchi, Filippo Maria
– sequence: 2
  givenname: Martine M.
  orcidid: 0000-0002-0281-2382
  surname: Espeseth
  fullname: Espeseth, Martine M.
– sequence: 3
  givenname: Njål
  surname: Borch
  fullname: Borch, Njål
BookMark eNpNkU1rGzEQhkVJoGmSS_9ABb0VttHnrnQM7pfBEIiTQ05irB1tZdaSK20o6a_PNk7TzGWGl3ce5uMdOUo5ISHvOfsspWUXpXLBlRAte0NOBOtEo4QVR6_qt-S81i2bQ0pumTohdysoAzZrDyPSLzihn2JOFFJPFzDhkEv8A09SDvQqjnS9j-NYaSh5R9eX13S5gwEr_R2nn3M_7ukKoaSYhjNyHGCseP6cT8ntt683ix_N6ur7cnG5arw0emo8k9rYIEMbDBcKvUGJ2IfOhtBvvAgb3ikt0HaGKWO1ssGCAK2Vgg0yIU_J8sDtM2zdvsQdlAeXIbonIZfBQZmiH9EFoy23MngvvbK-34SgWouqRdnBLM2sDweWL7FOMbmUCzg-n6tz3FhmZsfHg2Nf8q97rJPb5vuS5gWdUEJ1TCvdzq5P_zi51oLhZS7O3N9fuf-_ko-w6YVS
CitedBy_id crossref_primary_10_1109_JSTARS_2021_3123163
crossref_primary_10_1109_JSTARS_2022_3213768
crossref_primary_10_2478_rgg_2022_0005
crossref_primary_10_1016_j_marpolbul_2021_112313
crossref_primary_10_1016_j_scitotenv_2023_169500
crossref_primary_10_3390_rs15143662
crossref_primary_10_1007_s10661_023_12040_9
crossref_primary_10_1109_TGRS_2021_3115492
crossref_primary_10_3390_rs12203338
crossref_primary_10_3390_s21072351
crossref_primary_10_1016_j_jag_2022_102695
crossref_primary_10_3390_rs15123018
crossref_primary_10_1109_TGRS_2021_3126175
crossref_primary_10_3390_jmse11071406
crossref_primary_10_1109_JSTARS_2021_3138781
crossref_primary_10_1109_JSTARS_2022_3162387
crossref_primary_10_15622_ia_21_5_4
crossref_primary_10_3390_rs13183606
crossref_primary_10_3390_app11125569
crossref_primary_10_1016_j_ocecoaman_2022_106381
crossref_primary_10_1109_TGRS_2023_3241681
crossref_primary_10_3390_rs15041101
crossref_primary_10_1016_j_jhazmat_2021_126425
crossref_primary_10_1080_10106049_2022_2082545
crossref_primary_10_3390_rs14153565
crossref_primary_10_1016_j_engappai_2022_104890
crossref_primary_10_1016_j_jag_2024_103914
crossref_primary_10_1109_TGRS_2024_3373488
crossref_primary_10_1016_j_jhydrol_2024_130819
crossref_primary_10_3390_rs14163900
crossref_primary_10_1109_TGRS_2022_3146027
crossref_primary_10_1007_s12517_023_11709_2
crossref_primary_10_1016_j_jag_2021_102463
crossref_primary_10_1109_JSTARS_2020_3036914
crossref_primary_10_1109_JSTARS_2023_3264007
crossref_primary_10_3233_JIFS_235657
crossref_primary_10_1016_j_rse_2023_113872
crossref_primary_10_3390_e24101453
crossref_primary_10_1109_TGRS_2022_3204886
crossref_primary_10_3390_jmse11081552
crossref_primary_10_1016_j_rse_2024_114205
crossref_primary_10_1109_TGRS_2022_3180891
crossref_primary_10_1007_s40868_021_00109_4
crossref_primary_10_52547_jsdp_18_1_102
Cites_doi 10.1016/j.rse.2017.09.002
10.1109/CVPR.2017.195
10.3390/rs11232882
10.1109/TGRS.2012.2185804
10.1109/CVPR.2018.00464
10.1109/JSTARS.2013.2244061
10.1007/978-3-319-50835-1_22
10.1109/MGRS.2017.2762307
10.1201/9780203009765
10.1007/s11633-017-1053-3
10.3390/rs11151762
10.1109/CVPR.2018.00745
10.1109/JSTARS.2013.2251864
10.1109/ICCV.2017.324
10.1109/CVPRW.2018.00047
10.1109/36.774704
10.1109/TGRS.2013.2287916
10.1029/JC094iC05p06251
10.1007/978-3-319-24574-4_28
10.1109/36.868885
10.1109/TGRS.2018.2847724
10.1029/97JC01915
10.1007/978-3-030-01234-2_49
10.1016/j.asoc.2019.105716
10.1109/JSTARS.2018.2833382
10.1016/j.isprsjprs.2007.05.003
10.1016/j.rse.2004.11.015
10.1007/978-3-030-05710-7
10.1109/TGRS.1986.289622
10.1109/JOE.2005.857526
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
3HK
DOA
DOI 10.3390/rs12142260
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Databases
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
NORA - Norwegian Open Research Archives
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_f859193fcc3c49cdbff469e46e37a3c4
10037_18908
10_3390_rs12142260
GeographicLocations Barents Sea
North Sea
GeographicLocations_xml – name: North Sea
– name: Barents Sea
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
3HK
AAPBV
ABPTK
C1A
DKF
IPNFZ
ID FETCH-LOGICAL-c385t-c03589f3f6f8124ec8e3eedf79ffdbc2fb17452e9780489549f9a2a5544abe023
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:12:19 EDT 2024
Sat Apr 29 05:43:27 EDT 2023
Sat Nov 09 13:40:28 EST 2024
Thu Sep 26 21:38:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-c03589f3f6f8124ec8e3eedf79ffdbc2fb17452e9780489549f9a2a5544abe023
Notes Remote Sensing
ORCID 0000-0002-0281-2382
0000-0002-7145-3846
OpenAccessLink https://doaj.org/article/f859193fcc3c49cdbff469e46e37a3c4
PQID 2424705456
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_f859193fcc3c49cdbff469e46e37a3c4
cristin_nora_10037_18908
proquest_journals_2424705456
crossref_primary_10_3390_rs12142260
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Mercier (ref_43) 2005; 30
MacDonald (ref_15) 2013; 6
ref_10
Brekke (ref_2) 2005; 95
ref_51
ref_19
ref_17
Minchew (ref_39) 2012; 50
Cantorna (ref_18) 2019; 84
Li (ref_26) 2018; 11
Singh (ref_42) 1986; GE-24
ref_25
Salberg (ref_8) 2018; 56
ref_24
ref_22
Singha (ref_9) 2013; 6
ref_20
Gade (ref_13) 1998; 103
ref_29
ref_28
ref_27
Alpers (ref_41) 1989; 94
Alpers (ref_12) 2017; 201
Zhu (ref_16) 2017; 5
Zhao (ref_23) 2017; 14
ref_36
Ding (ref_32) 2016; 13
ref_35
ref_34
ref_33
ref_30
ref_38
ref_37
Topouzelis (ref_11) 2007; 62
Bengio (ref_21) 2012; 1
Solberg (ref_1) 1999; 37
ref_47
ref_46
ref_45
ref_44
ref_40
ref_3
Srivastava (ref_31) 2014; 15
Skrunes (ref_7) 2014; 52
Petrocchi (ref_14) 2000; 38
ref_49
ref_48
ref_5
ref_4
ref_6
References_xml – ident: ref_49
– volume: 201
  start-page: 133
  year: 2017
  ident: ref_12
  article-title: Oil spill detection by imaging radars: Challenges and pitfalls
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.002
  contributor:
    fullname: Alpers
– ident: ref_35
  doi: 10.1109/CVPR.2017.195
– ident: ref_51
– ident: ref_5
  doi: 10.3390/rs11232882
– volume: 50
  start-page: 3812
  year: 2012
  ident: ref_39
  article-title: Polarimetric Analysis of Backscatter From the Deepwater Horizon Oil Spill Using L-Band Synthetic Aperture Radar
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2185804
  contributor:
    fullname: Minchew
– ident: ref_48
  doi: 10.1109/CVPR.2018.00464
– volume: 6
  start-page: 2517
  year: 2013
  ident: ref_15
  article-title: Oil Spill Mapping and Measurement in the Gulf of Mexico With Textural Classifier Neural Network Algorithm (TCNNA)
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2013.2244061
  contributor:
    fullname: MacDonald
– ident: ref_47
  doi: 10.1007/978-3-319-50835-1_22
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_16
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
  contributor:
    fullname: Zhu
– ident: ref_37
  doi: 10.1201/9780203009765
– ident: ref_4
– ident: ref_27
– volume: 14
  start-page: 119
  year: 2017
  ident: ref_23
  article-title: A survey on deep learning-based fine-grained object classification and semantic segmentation
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-017-1053-3
  contributor:
    fullname: Zhao
– ident: ref_38
– ident: ref_45
– ident: ref_50
  doi: 10.3390/rs11151762
– ident: ref_30
  doi: 10.1109/CVPR.2018.00745
– volume: 6
  start-page: 2355
  year: 2013
  ident: ref_9
  article-title: Satellite Oil Spill Detection Using Artificial Neural Networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2013.2251864
  contributor:
    fullname: Singha
– ident: ref_20
– ident: ref_46
  doi: 10.1109/ICCV.2017.324
– ident: ref_28
– ident: ref_3
– ident: ref_34
– ident: ref_25
  doi: 10.1109/CVPRW.2018.00047
– volume: 37
  start-page: 1916
  year: 1999
  ident: ref_1
  article-title: Automatic detection of oil spills in ERS SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.774704
  contributor:
    fullname: Solberg
– volume: 52
  start-page: 5302
  year: 2014
  ident: ref_7
  article-title: Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2287916
  contributor:
    fullname: Skrunes
– volume: 94
  start-page: 6251
  year: 1989
  ident: ref_41
  article-title: The damping of ocean waves by surface films: A new look at an old problem
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC094iC05p06251
  contributor:
    fullname: Alpers
– ident: ref_24
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_40
– volume: 38
  start-page: 2282
  year: 2000
  ident: ref_14
  article-title: Neural networks for oil spill detection using ERS-SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.868885
  contributor:
    fullname: Petrocchi
– volume: 13
  start-page: 364
  year: 2016
  ident: ref_32
  article-title: Convolutional neural network with data augmentation for SAR target recognition
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Ding
– ident: ref_44
– volume: 56
  start-page: 7062
  year: 2018
  ident: ref_8
  article-title: Classification of Ocean Surface Slicks in Simulated Hybrid-Polarimetric SAR Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2847724
  contributor:
    fullname: Salberg
– volume: 103
  start-page: 18851
  year: 1998
  ident: ref_13
  article-title: Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JC01915
  contributor:
    fullname: Gade
– ident: ref_22
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_6
– volume: 84
  start-page: 105716
  year: 2019
  ident: ref_18
  article-title: Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105716
  contributor:
    fullname: Cantorna
– ident: ref_29
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_31
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Srivastava
– ident: ref_33
– volume: 11
  start-page: 3954
  year: 2018
  ident: ref_26
  article-title: Deepunet: A deep fully convolutional network for pixel-level sea-land segmentation
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2018.2833382
  contributor:
    fullname: Li
– volume: 62
  start-page: 264
  year: 2007
  ident: ref_11
  article-title: Detection and discrimination between oil spills and look-alike phenomena through neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2007.05.003
  contributor:
    fullname: Topouzelis
– volume: 95
  start-page: 1
  year: 2005
  ident: ref_2
  article-title: Oil spill detection by satellite remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.11.015
  contributor:
    fullname: Brekke
– ident: ref_17
  doi: 10.1007/978-3-030-05710-7
– ident: ref_10
  doi: 10.3390/rs11151762
– ident: ref_36
– ident: ref_19
– volume: GE-24
  start-page: 738
  year: 1986
  ident: ref_42
  article-title: The Influence of Surface Oil on C-and Ku-Band Ocean Backscatter
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1986.289622
  contributor:
    fullname: Singh
– volume: 1
  start-page: 2012
  year: 2012
  ident: ref_21
  article-title: Unsupervised feature learning and deep learning: A review and new perspectives
  publication-title: CoRR
  contributor:
    fullname: Bengio
– volume: 30
  start-page: 487
  year: 2005
  ident: ref_43
  article-title: Operational Oil-Slick Characterization by SAR Imagery and Synergistic Data
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2005.857526
  contributor:
    fullname: Mercier
SSID ssj0000331904
Score 2.5262918
Snippet We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully...
SourceID doaj
cristin
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 2260
SubjectTerms Classification
Datasets
Deep learning
Design improvements
Fysikk: 430
Image detection
Image processing
Image segmentation
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Mineral oils
Neural networks
object detection
Oil spills
Physics: 430
Pollution detection
Radar imaging
Remote sensing
SAR
Semantics
Sensors
Synthetic aperture radar
VDP
Visualization
Title Large-Scale Detection and Categorization of Oil Spills from SAR Images with Deep Learning
URI https://www.proquest.com/docview/2424705456
http://hdl.handle.net/10037/18908
https://doaj.org/article/f859193fcc3c49cdbff469e46e37a3c4
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLZYJbRdJn5NdBRkaVyjprETO0doQSBNm0RBGifLsf02pJJWTXvgv-c9J2VMHHbhkoOTKNH3nt_zl7z3mbFTDb7w0opE-1wn0voqsaWgQ5EDEoBMeiKKV1P145eeXJBMzstWX1QT1soDt8ANgQTWSgHOCSdL5ysAZHRBFkEoi0Mx-qbFKzIVY7BA10plq0cqkNcPl80oi22jGHy3XZxA9T-5KEr2v4nIMc1c7rDP3fqQn7Xvtcu2Qr3HPnZblf952mf336l2O5kitoFPwiqWUtXc1p6PSfVhvuw6K_kc-M-HGZ8uHmazhlMfCZ-e3fDrRwwhDacPsHh_WPBOYvX3Abu7vLgdXyXd_giJEzpfJS4VuS5BQAGUpoPTQWDKA1UC-MplUCHdyLMQRYY0_c-D0mYWFxDSVgGT9RfWq-d1OGRcVr7IvVCpAiW9giqMlLAjzFxQWeWLPjvsMDM1uiYpHQtlRrpMdZ9924BoFq1CBp42BLr5C3qfnRO-L1eQqnUcQFubztbmf7bus8HGOqabao2h_haV0kLw63s844h9yohSx4rcAeutlutwzD40fn0SXewZSE7VZg
link.rule.ids 230,315,782,786,866,887,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Detection+and+Categorization+of+Oil+Spills+from+SAR+Images+with+Deep+Learning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Bianchi%2C+Filippo+Maria&rft.au=Espeseth%2C+Martine+M&rft.au=Borch%2C+Nj%C3%A5l&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=14&rft.spage=2260&rft_id=info:doi/10.3390%2Frs12142260&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon