Large-Scale Detection and Categorization of Oil Spills from SAR Images with Deep Learning
We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully designed neural network model for image segmentation trained on an extensive dataset, we obtain state-of-the-art performance in oil spill detection,...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 12; no. 14; p. 2260 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-07-2020
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully designed neural network model for image segmentation trained on an extensive dataset, we obtain state-of-the-art performance in oil spill detection, achieving results that are comparable to results produced by human operators. We also introduce a classification task, which is novel in the context of oil spill detection in SAR. Specifically, after being detected, each oil spill is also classified according to different categories of its shape and texture characteristics. The classification results provide valuable insights for improving the design of services for oil spill monitoring by world-leading providers. Finally, we present our operational pipeline and a visualization tool for large-scale data, which allows detection and analysis of the historical occurrence of oil spills worldwide. |
---|---|
AbstractList | We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully designed neural network model for image segmentation trained on an extensive dataset, we obtain state-of-the-art performance in oil spill detection, achieving results that are comparable to results produced by human operators. We also introduce a classification task, which is novel in the context of oil spill detection in SAR. Specifically, after being detected, each oil spill is also classified according to different categories of its shape and texture characteristics. The classification results provide valuable insights for improving the design of services for oil spill monitoring by world-leading providers. Finally, we present our operational pipeline and a visualization tool for large-scale data, which allows detection and analysis of the historical occurrence of oil spills worldwide. |
Author | Borch, Njål Bianchi, Filippo Maria Espeseth, Martine M. |
Author_xml | – sequence: 1 givenname: Filippo Maria orcidid: 0000-0002-7145-3846 surname: Bianchi fullname: Bianchi, Filippo Maria – sequence: 2 givenname: Martine M. orcidid: 0000-0002-0281-2382 surname: Espeseth fullname: Espeseth, Martine M. – sequence: 3 givenname: Njål surname: Borch fullname: Borch, Njål |
BookMark | eNpNkU1rGzEQhkVJoGmSS_9ABb0VttHnrnQM7pfBEIiTQ05irB1tZdaSK20o6a_PNk7TzGWGl3ce5uMdOUo5ISHvOfsspWUXpXLBlRAte0NOBOtEo4QVR6_qt-S81i2bQ0pumTohdysoAzZrDyPSLzihn2JOFFJPFzDhkEv8A09SDvQqjnS9j-NYaSh5R9eX13S5gwEr_R2nn3M_7ukKoaSYhjNyHGCseP6cT8ntt683ix_N6ur7cnG5arw0emo8k9rYIEMbDBcKvUGJ2IfOhtBvvAgb3ikt0HaGKWO1ssGCAK2Vgg0yIU_J8sDtM2zdvsQdlAeXIbonIZfBQZmiH9EFoy23MngvvbK-34SgWouqRdnBLM2sDweWL7FOMbmUCzg-n6tz3FhmZsfHg2Nf8q97rJPb5vuS5gWdUEJ1TCvdzq5P_zi51oLhZS7O3N9fuf-_ko-w6YVS |
CitedBy_id | crossref_primary_10_1109_JSTARS_2021_3123163 crossref_primary_10_1109_JSTARS_2022_3213768 crossref_primary_10_2478_rgg_2022_0005 crossref_primary_10_1016_j_marpolbul_2021_112313 crossref_primary_10_1016_j_scitotenv_2023_169500 crossref_primary_10_3390_rs15143662 crossref_primary_10_1007_s10661_023_12040_9 crossref_primary_10_1109_TGRS_2021_3115492 crossref_primary_10_3390_rs12203338 crossref_primary_10_3390_s21072351 crossref_primary_10_1016_j_jag_2022_102695 crossref_primary_10_3390_rs15123018 crossref_primary_10_1109_TGRS_2021_3126175 crossref_primary_10_3390_jmse11071406 crossref_primary_10_1109_JSTARS_2021_3138781 crossref_primary_10_1109_JSTARS_2022_3162387 crossref_primary_10_15622_ia_21_5_4 crossref_primary_10_3390_rs13183606 crossref_primary_10_3390_app11125569 crossref_primary_10_1016_j_ocecoaman_2022_106381 crossref_primary_10_1109_TGRS_2023_3241681 crossref_primary_10_3390_rs15041101 crossref_primary_10_1016_j_jhazmat_2021_126425 crossref_primary_10_1080_10106049_2022_2082545 crossref_primary_10_3390_rs14153565 crossref_primary_10_1016_j_engappai_2022_104890 crossref_primary_10_1016_j_jag_2024_103914 crossref_primary_10_1109_TGRS_2024_3373488 crossref_primary_10_1016_j_jhydrol_2024_130819 crossref_primary_10_3390_rs14163900 crossref_primary_10_1109_TGRS_2022_3146027 crossref_primary_10_1007_s12517_023_11709_2 crossref_primary_10_1016_j_jag_2021_102463 crossref_primary_10_1109_JSTARS_2020_3036914 crossref_primary_10_1109_JSTARS_2023_3264007 crossref_primary_10_3233_JIFS_235657 crossref_primary_10_1016_j_rse_2023_113872 crossref_primary_10_3390_e24101453 crossref_primary_10_1109_TGRS_2022_3204886 crossref_primary_10_3390_jmse11081552 crossref_primary_10_1016_j_rse_2024_114205 crossref_primary_10_1109_TGRS_2022_3180891 crossref_primary_10_1007_s40868_021_00109_4 crossref_primary_10_52547_jsdp_18_1_102 |
Cites_doi | 10.1016/j.rse.2017.09.002 10.1109/CVPR.2017.195 10.3390/rs11232882 10.1109/TGRS.2012.2185804 10.1109/CVPR.2018.00464 10.1109/JSTARS.2013.2244061 10.1007/978-3-319-50835-1_22 10.1109/MGRS.2017.2762307 10.1201/9780203009765 10.1007/s11633-017-1053-3 10.3390/rs11151762 10.1109/CVPR.2018.00745 10.1109/JSTARS.2013.2251864 10.1109/ICCV.2017.324 10.1109/CVPRW.2018.00047 10.1109/36.774704 10.1109/TGRS.2013.2287916 10.1029/JC094iC05p06251 10.1007/978-3-319-24574-4_28 10.1109/36.868885 10.1109/TGRS.2018.2847724 10.1029/97JC01915 10.1007/978-3-030-01234-2_49 10.1016/j.asoc.2019.105716 10.1109/JSTARS.2018.2833382 10.1016/j.isprsjprs.2007.05.003 10.1016/j.rse.2004.11.015 10.1007/978-3-030-05710-7 10.1109/TGRS.1986.289622 10.1109/JOE.2005.857526 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS 3HK DOA |
DOI | 10.3390/rs12142260 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Databases Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection NORA - Norwegian Open Research Archives Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_f859193fcc3c49cdbff469e46e37a3c4 10037_18908 10_3390_rs12142260 |
GeographicLocations | Barents Sea North Sea |
GeographicLocations_xml | – name: North Sea – name: Barents Sea |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI 3HK AAPBV ABPTK C1A DKF IPNFZ |
ID | FETCH-LOGICAL-c385t-c03589f3f6f8124ec8e3eedf79ffdbc2fb17452e9780489549f9a2a5544abe023 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:12:19 EDT 2024 Sat Apr 29 05:43:27 EDT 2023 Sat Nov 09 13:40:28 EST 2024 Thu Sep 26 21:38:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-c03589f3f6f8124ec8e3eedf79ffdbc2fb17452e9780489549f9a2a5544abe023 |
Notes | Remote Sensing |
ORCID | 0000-0002-0281-2382 0000-0002-7145-3846 |
OpenAccessLink | https://doaj.org/article/f859193fcc3c49cdbff469e46e37a3c4 |
PQID | 2424705456 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f859193fcc3c49cdbff469e46e37a3c4 cristin_nora_10037_18908 proquest_journals_2424705456 crossref_primary_10_3390_rs12142260 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Mercier (ref_43) 2005; 30 MacDonald (ref_15) 2013; 6 ref_10 Brekke (ref_2) 2005; 95 ref_51 ref_19 ref_17 Minchew (ref_39) 2012; 50 Cantorna (ref_18) 2019; 84 Li (ref_26) 2018; 11 Singh (ref_42) 1986; GE-24 ref_25 Salberg (ref_8) 2018; 56 ref_24 ref_22 Singha (ref_9) 2013; 6 ref_20 Gade (ref_13) 1998; 103 ref_29 ref_28 ref_27 Alpers (ref_41) 1989; 94 Alpers (ref_12) 2017; 201 Zhu (ref_16) 2017; 5 Zhao (ref_23) 2017; 14 ref_36 Ding (ref_32) 2016; 13 ref_35 ref_34 ref_33 ref_30 ref_38 ref_37 Topouzelis (ref_11) 2007; 62 Bengio (ref_21) 2012; 1 Solberg (ref_1) 1999; 37 ref_47 ref_46 ref_45 ref_44 ref_40 ref_3 Srivastava (ref_31) 2014; 15 Skrunes (ref_7) 2014; 52 Petrocchi (ref_14) 2000; 38 ref_49 ref_48 ref_5 ref_4 ref_6 |
References_xml | – ident: ref_49 – volume: 201 start-page: 133 year: 2017 ident: ref_12 article-title: Oil spill detection by imaging radars: Challenges and pitfalls publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.002 contributor: fullname: Alpers – ident: ref_35 doi: 10.1109/CVPR.2017.195 – ident: ref_51 – ident: ref_5 doi: 10.3390/rs11232882 – volume: 50 start-page: 3812 year: 2012 ident: ref_39 article-title: Polarimetric Analysis of Backscatter From the Deepwater Horizon Oil Spill Using L-Band Synthetic Aperture Radar publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2185804 contributor: fullname: Minchew – ident: ref_48 doi: 10.1109/CVPR.2018.00464 – volume: 6 start-page: 2517 year: 2013 ident: ref_15 article-title: Oil Spill Mapping and Measurement in the Gulf of Mexico With Textural Classifier Neural Network Algorithm (TCNNA) publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2013.2244061 contributor: fullname: MacDonald – ident: ref_47 doi: 10.1007/978-3-319-50835-1_22 – volume: 5 start-page: 8 year: 2017 ident: ref_16 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 contributor: fullname: Zhu – ident: ref_37 doi: 10.1201/9780203009765 – ident: ref_4 – ident: ref_27 – volume: 14 start-page: 119 year: 2017 ident: ref_23 article-title: A survey on deep learning-based fine-grained object classification and semantic segmentation publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-017-1053-3 contributor: fullname: Zhao – ident: ref_38 – ident: ref_45 – ident: ref_50 doi: 10.3390/rs11151762 – ident: ref_30 doi: 10.1109/CVPR.2018.00745 – volume: 6 start-page: 2355 year: 2013 ident: ref_9 article-title: Satellite Oil Spill Detection Using Artificial Neural Networks publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2013.2251864 contributor: fullname: Singha – ident: ref_20 – ident: ref_46 doi: 10.1109/ICCV.2017.324 – ident: ref_28 – ident: ref_3 – ident: ref_34 – ident: ref_25 doi: 10.1109/CVPRW.2018.00047 – volume: 37 start-page: 1916 year: 1999 ident: ref_1 article-title: Automatic detection of oil spills in ERS SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.774704 contributor: fullname: Solberg – volume: 52 start-page: 5302 year: 2014 ident: ref_7 article-title: Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2287916 contributor: fullname: Skrunes – volume: 94 start-page: 6251 year: 1989 ident: ref_41 article-title: The damping of ocean waves by surface films: A new look at an old problem publication-title: J. Geophys. Res. doi: 10.1029/JC094iC05p06251 contributor: fullname: Alpers – ident: ref_24 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_40 – volume: 38 start-page: 2282 year: 2000 ident: ref_14 article-title: Neural networks for oil spill detection using ERS-SAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.868885 contributor: fullname: Petrocchi – volume: 13 start-page: 364 year: 2016 ident: ref_32 article-title: Convolutional neural network with data augmentation for SAR target recognition publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Ding – ident: ref_44 – volume: 56 start-page: 7062 year: 2018 ident: ref_8 article-title: Classification of Ocean Surface Slicks in Simulated Hybrid-Polarimetric SAR Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2847724 contributor: fullname: Salberg – volume: 103 start-page: 18851 year: 1998 ident: ref_13 article-title: Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR publication-title: J. Geophys. Res. doi: 10.1029/97JC01915 contributor: fullname: Gade – ident: ref_22 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_6 – volume: 84 start-page: 105716 year: 2019 ident: ref_18 article-title: Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105716 contributor: fullname: Cantorna – ident: ref_29 – volume: 15 start-page: 1929 year: 2014 ident: ref_31 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. contributor: fullname: Srivastava – ident: ref_33 – volume: 11 start-page: 3954 year: 2018 ident: ref_26 article-title: Deepunet: A deep fully convolutional network for pixel-level sea-land segmentation publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2018.2833382 contributor: fullname: Li – volume: 62 start-page: 264 year: 2007 ident: ref_11 article-title: Detection and discrimination between oil spills and look-alike phenomena through neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2007.05.003 contributor: fullname: Topouzelis – volume: 95 start-page: 1 year: 2005 ident: ref_2 article-title: Oil spill detection by satellite remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.11.015 contributor: fullname: Brekke – ident: ref_17 doi: 10.1007/978-3-030-05710-7 – ident: ref_10 doi: 10.3390/rs11151762 – ident: ref_36 – ident: ref_19 – volume: GE-24 start-page: 738 year: 1986 ident: ref_42 article-title: The Influence of Surface Oil on C-and Ku-Band Ocean Backscatter publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1986.289622 contributor: fullname: Singh – volume: 1 start-page: 2012 year: 2012 ident: ref_21 article-title: Unsupervised feature learning and deep learning: A review and new perspectives publication-title: CoRR contributor: fullname: Bengio – volume: 30 start-page: 487 year: 2005 ident: ref_43 article-title: Operational Oil-Slick Characterization by SAR Imagery and Synergistic Data publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2005.857526 contributor: fullname: Mercier |
SSID | ssj0000331904 |
Score | 2.5262918 |
Snippet | We propose a deep-learning framework to detect and categorize oil spills in synthetic aperture radar (SAR) images at a large scale. Through a carefully... |
SourceID | doaj cristin proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 2260 |
SubjectTerms | Classification Datasets Deep learning Design improvements Fysikk: 430 Image detection Image processing Image segmentation Matematikk og Naturvitenskap: 400 Mathematics and natural science: 400 Mineral oils Neural networks object detection Oil spills Physics: 430 Pollution detection Radar imaging Remote sensing SAR Semantics Sensors Synthetic aperture radar VDP Visualization |
Title | Large-Scale Detection and Categorization of Oil Spills from SAR Images with Deep Learning |
URI | https://www.proquest.com/docview/2424705456 http://hdl.handle.net/10037/18908 https://doaj.org/article/f859193fcc3c49cdbff469e46e37a3c4 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLZYJbRdJn5NdBRkaVyjprETO0doQSBNm0RBGifLsf02pJJWTXvgv-c9J2VMHHbhkoOTKNH3nt_zl7z3mbFTDb7w0opE-1wn0voqsaWgQ5EDEoBMeiKKV1P145eeXJBMzstWX1QT1soDt8ANgQTWSgHOCSdL5ysAZHRBFkEoi0Mx-qbFKzIVY7BA10plq0cqkNcPl80oi22jGHy3XZxA9T-5KEr2v4nIMc1c7rDP3fqQn7Xvtcu2Qr3HPnZblf952mf336l2O5kitoFPwiqWUtXc1p6PSfVhvuw6K_kc-M-HGZ8uHmazhlMfCZ-e3fDrRwwhDacPsHh_WPBOYvX3Abu7vLgdXyXd_giJEzpfJS4VuS5BQAGUpoPTQWDKA1UC-MplUCHdyLMQRYY0_c-D0mYWFxDSVgGT9RfWq-d1OGRcVr7IvVCpAiW9giqMlLAjzFxQWeWLPjvsMDM1uiYpHQtlRrpMdZ9924BoFq1CBp42BLr5C3qfnRO-L1eQqnUcQFubztbmf7bus8HGOqabao2h_haV0kLw63s844h9yohSx4rcAeutlutwzD40fn0SXewZSE7VZg |
link.rule.ids | 230,315,782,786,866,887,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Detection+and+Categorization+of+Oil+Spills+from+SAR+Images+with+Deep+Learning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Bianchi%2C+Filippo+Maria&rft.au=Espeseth%2C+Martine+M&rft.au=Borch%2C+Nj%C3%A5l&rft.date=2020-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=14&rft.spage=2260&rft_id=info:doi/10.3390%2Frs12142260&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |