Improving the Chemical Stability of Al Alloy through the Densification of the Alumina Layer Assisted by SiF62− Anion Hydrolysis

In this work, a high-density alumina layer with high chemical stability was successfully developed by controlling the hydrolysis of hexafluorosilicate (SiF62−) anions through the addition of various concentrations of sodium citrate (SCi) into the electrolyte of plasma electrolysis (PE). To achieve t...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Vol. 12; no. 8; p. 1354
Main Authors: Kaseem, Mosab, Dikici, Burak, Liu, Hongfei
Format: Journal Article
Language:English
Published: Basel MDPI AG 14-04-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, a high-density alumina layer with high chemical stability was successfully developed by controlling the hydrolysis of hexafluorosilicate (SiF62−) anions through the addition of various concentrations of sodium citrate (SCi) into the electrolyte of plasma electrolysis (PE). To achieve this aim, the substrate samples were anodized in alkaline aluminate–SiF62−-based electrolytes with 0, 5, and 10 g/L of SCi. The presence of SCi anions in the electrolyte led to the formation of a thick adsorbed electrochemical double layer (EDL) on the substrate surface. The EDL not only affected the movement of SiF62− anions towards the anode but also influenced their hydrolysis reaction, which in turn led to a controllable sealing of structural defects with the hydrolysis products, namely SiO2 and AlF3. Among three different oxide layers, the oxide layer obtained from the electrolyte with 5 g/L SCi showed the highest chemical stability in a corrosive solution, which was linked to the fact that a considerable increase in the compactness of the oxide layers was obtained by the incorporation of SiO2 and AlF3. The mechanism underlying the effects of SCi on triggering the hydrolysis of SiF62− anions and factors affecting chemical stability are discussed based on the experimental data and computational analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12081354