A necessary and sufficient condition for oscillation of the Sturm–Liouville dynamic equation on time scales

In this paper, we investigate oscillatory properties of the second order Sturm–Liouville dynamic equation on a time scale (∗) (r(t)x Δ ) Δ +c(t)x σ=0. Using the so-called trigonometric transformation we establish a necessary and sufficient condition for oscillation of (∗). This condition is then use...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 141; no. 1; pp. 147 - 158
Main Authors: Došlý, Ondřej, Hilger, Stefan
Format: Journal Article
Language:English
Published: Elsevier B.V 01-04-2002
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we investigate oscillatory properties of the second order Sturm–Liouville dynamic equation on a time scale (∗) (r(t)x Δ ) Δ +c(t)x σ=0. Using the so-called trigonometric transformation we establish a necessary and sufficient condition for oscillation of (∗). This condition is then used to derive an explicit oscillation criterion for this equation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(01)00442-3