Algebras whose equivalence relations are congruences

It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤  2 or every operation f of the signature is a constant (i.e., f ( a 1 , . . . , a n ) =  c for some c ∈ A and all the a 1 , . . . , a n ∈ A ) or a projection (i.e., f ( a 1 , . ....

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) Vol. 177; no. 6; pp. 886 - 907
Main Authors: Kozhukhov, I. B., Reshetnikov, A. V.
Format: Journal Article
Language:English
Published: Boston Springer US 12-09-2011
Springer
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤  2 or every operation f of the signature is a constant (i.e., f ( a 1 , . . . , a n ) =  c for some c ∈ A and all the a 1 , . . . , a n ∈ A ) or a projection (i.e., f ( a 1 , . . . , a n ) =  a i for some i and all the a 1 , . . . , a n ∈ A ). All the equivalence relations of a groupoid G are its right congruences if and only if either |G| ≤  2 or every element a ∈ G is a right unit or a generalized right zero (i.e., x a  =  y a for all x, y ∈ G ). All the equivalence relations of a semigroup S are right congruences if and only if either |S| ≤  2 or S can be represented as S  =  A ∪ B , where A is an inflation of a right zero semigroup, and B is the empty set or a left zero semigroup, and ab  =  a , ba  =  a 2 for a ∈ A , b ∈ B . If G is a groupoid of 4 or more elements and all the equivalence relations of it are right or left congruences, then either all the equivalence relations of the groupoid G are left congruences, or all of them are right congruences. A similar assertion for semigroups is valid without the restriction on the number of elements.
AbstractList It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤  2 or every operation f of the signature is a constant (i.e., f ( a 1 , . . . , a n ) =  c for some c ∈ A and all the a 1 , . . . , a n ∈ A ) or a projection (i.e., f ( a 1 , . . . , a n ) =  a i for some i and all the a 1 , . . . , a n ∈ A ). All the equivalence relations of a groupoid G are its right congruences if and only if either |G| ≤  2 or every element a ∈ G is a right unit or a generalized right zero (i.e., x a  =  y a for all x, y ∈ G ). All the equivalence relations of a semigroup S are right congruences if and only if either |S| ≤  2 or S can be represented as S  =  A ∪ B , where A is an inflation of a right zero semigroup, and B is the empty set or a left zero semigroup, and ab  =  a , ba  =  a 2 for a ∈ A , b ∈ B . If G is a groupoid of 4 or more elements and all the equivalence relations of it are right or left congruences, then either all the equivalence relations of the groupoid G are left congruences, or all of them are right congruences. A similar assertion for semigroups is valid without the restriction on the number of elements.
It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤ 2 or every operation f of the signature is a constant (i.e., f([a.sub.1], ... , [a.sub.n]) = c for some c ∈ A and all the [a.sub.1], ... , [a.sub.n] ∈ A) or a projection (i.e., f([a.sub.1], ... , [a.sub.n]) = [a.sub.i] for some i and all the [a.sub.1], ... , [a.sub.n] ∈ A). All the equivalence relations of a groupoid G are its right congruences if and only if either |G| ≤ 2 or every element a ∈ G is a right unit or a generalized right zero (i.e., xa = ya for all x, y ∈ G). All the equivalence relations of a semigroup S are right congruences if and only if either |S| ≤ 2 or S can be represented as S = A∪B, where A is an inflation of a right zero semigroup, and B is the empty set or a left zero semigroup, and ab = a, ba = [a.sup.2] for a ∈ A, b ∈ B. If G is a groupoid of 4 or more elements and all the equivalence relations of it are right or left congruences, then either all the equivalence relations of the groupoid G are left congruences, or all of them are right congruences. A similar assertion for semigroups is valid without the restriction on the number of elements.
Audience Academic
Author Reshetnikov, A. V.
Kozhukhov, I. B.
Author_xml – sequence: 1
  givenname: I. B.
  surname: Kozhukhov
  fullname: Kozhukhov, I. B.
  email: kozhuhov_i_b@mail.ru
  organization: Moscow Institute of Electronic Engineering
– sequence: 2
  givenname: A. V.
  surname: Reshetnikov
  fullname: Reshetnikov, A. V.
  organization: Moscow Institute of Electronic Engineering
BookMark eNp9kV1rwyAUhmV0sLbbD9hdYFe7sNNoorksZR-FwmAf12LMMUtJzabJPv79LNlNoQwvFM_zHOW8MzRxnQOELilZUELETaCkyCQmlGKSUYHpCZrSTDAsRZFN4pmIFDMm-BmahbAl0cklmyK-bGsovQ7J11sXIIGPofnULTgDiYdW903nQqI9JKZztR_2hXCOTq1uA1z87XP0enf7snrAm8f79Wq5wYbJjGJDU0lYURbxJW2lTJktCy4KUnGZc2stz2OVG0bKjPHc8rIizFaCUGYzC8Dm6GrsW8cfqcbZrvfa7Jpg1JIJwWmasjRS-AhVgwOv2zgl28TrA35xhI-rgl1jjgrXB0Jkevjuaz2EoNbPT4csHVnjuxA8WPXum532P4oStU9KjUmpmJTaJ6VodNLRCZF1NXi17Qbv4mT_kX4BGdaUOA
CitedBy_id crossref_primary_10_1070_IM8869
crossref_primary_10_4213_im8869
crossref_primary_10_1007_s10958_023_06287_3
crossref_primary_10_1007_s00012_022_00773_6
Cites_doi 10.1016/0021-8693(79)90088-7
10.1090/surv/007.1
ContentType Journal Article
Copyright Springer Science+Business Media, Inc. 2011
COPYRIGHT 2011 Springer
Copyright_xml – notice: Springer Science+Business Media, Inc. 2011
– notice: COPYRIGHT 2011 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-011-0517-1
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 907
ExternalDocumentID A377412232
10_1007_s10958_011_0517_1
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c3851-c128039b9683af8823fb94790d4864fff4639b4c30b5346f4bd03fd7013f5fee3
IEDL.DBID AEJHL
ISSN 1072-3374
IngestDate Tue Nov 19 21:25:00 EST 2024
Thu Nov 14 20:37:50 EST 2024
Tue Nov 12 22:19:07 EST 2024
Thu Aug 01 20:19:19 EDT 2024
Fri Nov 22 00:57:24 EST 2024
Sat Dec 16 12:07:51 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Universal Algebra
Congruence Lattice
Equivalence Relation
Rectangular Band
Torsion Class
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3851-c128039b9683af8823fb94790d4864fff4639b4c30b5346f4bd03fd7013f5fee3
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-011-0517-1.pdf
PageCount 22
ParticipantIDs gale_infotracmisc_A377412232
gale_infotracgeneralonefile_A377412232
gale_infotracacademiconefile_A377412232
gale_incontextgauss_ISR_A377412232
crossref_primary_10_1007_s10958_011_0517_1
springer_journals_10_1007_s10958_011_0517_1
PublicationCentury 2000
PublicationDate 20110912
PublicationDateYYYYMMDD 2011-09-12
PublicationDate_xml – month: 09
  year: 2011
  text: 20110912
  day: 12
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2011
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References Boltnev (CR2) 2005; 6
Shevrin (CR7) 1991
CR4
Shevrin (CR8) 1994; 185
CR5
Artamonov (CR1) 1991
Clifford, Preston, Preston (CR3) 1961
Hotzel (CR6) 1979; 60
AH Clifford (517_CR3) 1961
VA Artamonov (517_CR1) 1991
517_CR5
517_CR4
E Hotzel (517_CR6) 1979; 60
AA Boltnev (517_CR2) 2005; 6
LN Shevrin (517_CR7) 1991
LN Shevrin (517_CR8) 1994; 185
References_xml – start-page: 11
  year: 1991
  end-page: 191
  ident: CR7
  article-title: Semigroups
  publication-title: Handbook on General Algebra [in Russian]
  contributor:
    fullname: Shevrin
– volume: 60
  start-page: 352
  year: 1979
  end-page: 370
  ident: CR6
  article-title: On finiteness conditions in semigroups
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(79)90088-7
  contributor:
    fullname: Hotzel
– ident: CR5
– volume: 6
  start-page: 56
  issue: 1
  year: 2005
  end-page: 63
  ident: CR2
  article-title: The set-theoretic description of semigroups of certain varieties
  publication-title: Chebyshevskii Sb.
  contributor:
    fullname: Boltnev
– volume: 185
  start-page: 153
  issue: 9
  year: 1994
  end-page: 176
  ident: CR8
  article-title: On the theory of epigroups. II
  publication-title: Mat. Sb.
  contributor:
    fullname: Shevrin
– year: 1961
  ident: CR3
  publication-title: The Algebraic Theory of Semigroups, Vols. I, II, Math. Surveys, Vol. 7
  contributor:
    fullname: Preston
– ident: CR4
– start-page: 295
  year: 1991
  end-page: 367
  ident: CR1
  article-title: Universal algebras
  publication-title: Handbook on General Algebra [in Russian]
  contributor:
    fullname: Artamonov
– ident: 517_CR4
– volume: 60
  start-page: 352
  year: 1979
  ident: 517_CR6
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(79)90088-7
  contributor:
    fullname: E Hotzel
– start-page: 295
  volume-title: Handbook on General Algebra [in Russian]
  year: 1991
  ident: 517_CR1
  contributor:
    fullname: VA Artamonov
– start-page: 11
  volume-title: Handbook on General Algebra [in Russian]
  year: 1991
  ident: 517_CR7
  contributor:
    fullname: LN Shevrin
– volume: 185
  start-page: 153
  issue: 9
  year: 1994
  ident: 517_CR8
  publication-title: Mat. Sb.
  contributor:
    fullname: LN Shevrin
– ident: 517_CR5
– volume-title: The Algebraic Theory of Semigroups, Vols. I, II, Math. Surveys, Vol. 7
  year: 1961
  ident: 517_CR3
  doi: 10.1090/surv/007.1
  contributor:
    fullname: AH Clifford
– volume: 6
  start-page: 56
  issue: 1
  year: 2005
  ident: 517_CR2
  publication-title: Chebyshevskii Sb.
  contributor:
    fullname: AA Boltnev
SSID ssj0007683
Score 1.8856806
Snippet It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤  2 or every operation f of the...
It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤ 2 or every operation f of the...
SourceID gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 886
SubjectTerms Algebra
Mathematics
Mathematics and Statistics
Title Algebras whose equivalence relations are congruences
URI https://link.springer.com/article/10.1007/s10958-011-0517-1
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66veiDv8XplCKioETaJmnTx6Kbm6gPTsG3kLbJFKXTdsN_38vaTgvzQZ_60KOkl8vlu9zdF4SOYtsNqK8iHMfMxdTjBHOecMyKzkbmJdw0J_cG_t0Tv-wYmhx3dnSRvp5XGcmpo_7R6xYwU3cF0S8DzwoRTxO2Hga23Qw7172bmf8FAF2U1fsuJsSnVS5z3kdqu1Hlk-sZ0elG0139zxDX0EoJK62wsIN1tKDSDbR8O-NkzTcRDd-GJkucW5_Po1xZ6mPyAmZmVraVVSVxlsyUBSHyMCsKrLfQY7fzcNHD5Z0JOCYAnnDsmOumgigAJUgN8JnoCCYjsBPKPaq1pgBJIhoTO2KEeppGiU104gMS1EwrRbZRIx2lagdZMpCJZ0tHM8kpRG3SDyJAE0oCJPB54rXQaaU78V5QY4hvEmSjCgGqEEYVwmmhQ6NdYSgnUlPTMpSTPBf9wb0ICUBQB2CK20InpZAejTMZy7JFAMZjWKpqksc1yWHB0T1PsF0ThMUT116fVVMpysWb__4Tu3-S3kNLxQG0uW-ijRpjmLl9tJgnk4PSZM2z_3DV_QLmOeLC
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66PagP_hanU4uIghJol7RNH4tubrjtwU3wLaRtUgXptN3w3_eyttPCfNDnHiW93F2-6919QegiNFsedWWAw9BuYeowghmLGLbzyUbbiZgeTu6O3OEzu2trmhxSzsLMu93LkuQ8Uv8YdvNs3XgF6a8NoRVSnjr1HAqmXPd74_vOIgADgs776t0WJsSlZTFz2Usqx1EZlKsl0flJ09n61xq30WYBLA0_t4QdtCKTXbQxWLCyZnuI-m-xrhNnxufLJJOG_Ji9gqFp3zbSsinOEKk0IEmO07zFeh89ddrj2y4ubk3AIQH4hENLXzjlBR5oQSgA0EQFsB2eGVHmUKUUBVAS0JCYgU2oo2gQmURFLmBBZSspyQGqJZNEHiJDeCJyTGEpWzAKeZtwvQDwhBQAClwWOQ10XSqPv-fkGPybBlmrgoMquFYFtxroXKuXa9KJRHe1xGKWZbw3euQ-ARBqAVBpNdBVIaQm01SEohgSgPVonqqK5GVFMs5ZupcJNiuC4D5h5fFNuZW8cN_s9484-pP0GVrrjgd93u8NH47Rev47Wt8-0US1KeziCVrNotlpYb9fcuXlJA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA66geiDv8Xp1CKioJR1TdqmTzLcxqZziFPwLaRNMgXpZrvhv-9lbaeF-SA-92jSL5fkS-_uC0JnoWX7xJOBGYaObRKXYpNSQU0nrWx0XEF1cXJn4PVfaLOlZXKu81qYWbZ7HpJMaxq0SlM0qY2Fqv0ofPMdnYQFR2EHllk4_pQJHGTA0cuN1m2nN1-MgU2nOfaebWLskTywueglha0pX6CL4dHZrtPe-Hd_N9F6RjiNRuohW2hJRtto7X6u1prsINJ4H-r4cWJ8vo4SaciP6Rs4oJ7zRpwnyxk8lga0OozT1Otd9NxuPd10zOw2BTPEQKvMsK4vovIDHxDhCog1VgEMk28JQl2ilCJAVgISYitwMHEVCYSFlfCAIypHSYn3UCkaRXIfGdznwrV4XTmcAuyEe34APENyIAseFW4FXeZAsnEqmsG-5ZE1FAygYBoKVq-gUw0102IUkc52GfJpkrDu4JE1MJDTOhAYu4IuMiM1msQ85FnxAPRH61cVLM8LlsNUvXuRYbVgCNMqLDy-yoeVZdM6-f0jDv5kfYJWHppt1uv27w7RavqXWl9KUUWlCQziEVpOxPQ4c-UvZaXt5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebras+whose+equivalence+relations+are+congruences&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kozhukhov%2C+I.+B.&rft.au=Reshetnikov%2C+A.+V.&rft.date=2011-09-12&rft.pub=Springer+US&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=177&rft.issue=6&rft_id=info:doi/10.1007%2Fs10958-011-0517-1&rft.externalDocID=10_1007_s10958_011_0517_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon