Algebras whose equivalence relations are congruences
It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤ 2 or every operation f of the signature is a constant (i.e., f ( a 1 , . . . , a n ) = c for some c ∈ A and all the a 1 , . . . , a n ∈ A ) or a projection (i.e., f ( a 1 , . ....
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) Vol. 177; no. 6; pp. 886 - 907 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Boston
Springer US
12-09-2011
Springer |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | It is proved that all the equivalence relations of a universal algebra
A
are its congruences if and only if either
|A| ≤
2 or every operation
f
of the signature is a constant (i.e.,
f
(
a
1
, . . . , a
n
) =
c
for some
c ∈ A
and all the
a
1
, . . . , a
n
∈
A
) or a projection (i.e.,
f
(
a
1
, . . . , a
n
) =
a
i
for some
i
and all the
a
1
, . . . , a
n
∈
A
). All the equivalence relations of a groupoid
G
are its right congruences if and only if either
|G| ≤
2 or every element
a
∈
G
is a right unit or a generalized right zero (i.e.,
x
a
=
y
a
for all
x, y
∈
G
). All the equivalence relations of a semigroup
S
are right congruences if and only if either
|S| ≤
2 or
S
can be represented as
S
=
A
∪
B
, where
A
is an inflation of a right zero semigroup, and
B
is the empty set or a left zero semigroup, and
ab
=
a
,
ba
=
a
2
for
a
∈
A
,
b
∈
B
. If
G
is a groupoid of 4 or more elements and all the equivalence relations of it are right or left congruences, then either all the equivalence relations of the groupoid
G
are left congruences, or all of them are right congruences. A similar assertion for semigroups is valid without the restriction on the number of elements. |
---|---|
AbstractList | It is proved that all the equivalence relations of a universal algebra
A
are its congruences if and only if either
|A| ≤
2 or every operation
f
of the signature is a constant (i.e.,
f
(
a
1
, . . . , a
n
) =
c
for some
c ∈ A
and all the
a
1
, . . . , a
n
∈
A
) or a projection (i.e.,
f
(
a
1
, . . . , a
n
) =
a
i
for some
i
and all the
a
1
, . . . , a
n
∈
A
). All the equivalence relations of a groupoid
G
are its right congruences if and only if either
|G| ≤
2 or every element
a
∈
G
is a right unit or a generalized right zero (i.e.,
x
a
=
y
a
for all
x, y
∈
G
). All the equivalence relations of a semigroup
S
are right congruences if and only if either
|S| ≤
2 or
S
can be represented as
S
=
A
∪
B
, where
A
is an inflation of a right zero semigroup, and
B
is the empty set or a left zero semigroup, and
ab
=
a
,
ba
=
a
2
for
a
∈
A
,
b
∈
B
. If
G
is a groupoid of 4 or more elements and all the equivalence relations of it are right or left congruences, then either all the equivalence relations of the groupoid
G
are left congruences, or all of them are right congruences. A similar assertion for semigroups is valid without the restriction on the number of elements. It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤ 2 or every operation f of the signature is a constant (i.e., f([a.sub.1], ... , [a.sub.n]) = c for some c ∈ A and all the [a.sub.1], ... , [a.sub.n] ∈ A) or a projection (i.e., f([a.sub.1], ... , [a.sub.n]) = [a.sub.i] for some i and all the [a.sub.1], ... , [a.sub.n] ∈ A). All the equivalence relations of a groupoid G are its right congruences if and only if either |G| ≤ 2 or every element a ∈ G is a right unit or a generalized right zero (i.e., xa = ya for all x, y ∈ G). All the equivalence relations of a semigroup S are right congruences if and only if either |S| ≤ 2 or S can be represented as S = A∪B, where A is an inflation of a right zero semigroup, and B is the empty set or a left zero semigroup, and ab = a, ba = [a.sup.2] for a ∈ A, b ∈ B. If G is a groupoid of 4 or more elements and all the equivalence relations of it are right or left congruences, then either all the equivalence relations of the groupoid G are left congruences, or all of them are right congruences. A similar assertion for semigroups is valid without the restriction on the number of elements. |
Audience | Academic |
Author | Reshetnikov, A. V. Kozhukhov, I. B. |
Author_xml | – sequence: 1 givenname: I. B. surname: Kozhukhov fullname: Kozhukhov, I. B. email: kozhuhov_i_b@mail.ru organization: Moscow Institute of Electronic Engineering – sequence: 2 givenname: A. V. surname: Reshetnikov fullname: Reshetnikov, A. V. organization: Moscow Institute of Electronic Engineering |
BookMark | eNp9kV1rwyAUhmV0sLbbD9hdYFe7sNNoorksZR-FwmAf12LMMUtJzabJPv79LNlNoQwvFM_zHOW8MzRxnQOELilZUELETaCkyCQmlGKSUYHpCZrSTDAsRZFN4pmIFDMm-BmahbAl0cklmyK-bGsovQ7J11sXIIGPofnULTgDiYdW903nQqI9JKZztR_2hXCOTq1uA1z87XP0enf7snrAm8f79Wq5wYbJjGJDU0lYURbxJW2lTJktCy4KUnGZc2stz2OVG0bKjPHc8rIizFaCUGYzC8Dm6GrsW8cfqcbZrvfa7Jpg1JIJwWmasjRS-AhVgwOv2zgl28TrA35xhI-rgl1jjgrXB0Jkevjuaz2EoNbPT4csHVnjuxA8WPXum532P4oStU9KjUmpmJTaJ6VodNLRCZF1NXi17Qbv4mT_kX4BGdaUOA |
CitedBy_id | crossref_primary_10_1070_IM8869 crossref_primary_10_4213_im8869 crossref_primary_10_1007_s10958_023_06287_3 crossref_primary_10_1007_s00012_022_00773_6 |
Cites_doi | 10.1016/0021-8693(79)90088-7 10.1090/surv/007.1 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, Inc. 2011 COPYRIGHT 2011 Springer |
Copyright_xml | – notice: Springer Science+Business Media, Inc. 2011 – notice: COPYRIGHT 2011 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-011-0517-1 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 907 |
ExternalDocumentID | A377412232 10_1007_s10958_011_0517_1 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c3851-c128039b9683af8823fb94790d4864fff4639b4c30b5346f4bd03fd7013f5fee3 |
IEDL.DBID | AEJHL |
ISSN | 1072-3374 |
IngestDate | Tue Nov 19 21:25:00 EST 2024 Thu Nov 14 20:37:50 EST 2024 Tue Nov 12 22:19:07 EST 2024 Thu Aug 01 20:19:19 EDT 2024 Fri Nov 22 00:57:24 EST 2024 Sat Dec 16 12:07:51 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Universal Algebra Congruence Lattice Equivalence Relation Rectangular Band Torsion Class |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3851-c128039b9683af8823fb94790d4864fff4639b4c30b5346f4bd03fd7013f5fee3 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-011-0517-1.pdf |
PageCount | 22 |
ParticipantIDs | gale_infotracmisc_A377412232 gale_infotracgeneralonefile_A377412232 gale_infotracacademiconefile_A377412232 gale_incontextgauss_ISR_A377412232 crossref_primary_10_1007_s10958_011_0517_1 springer_journals_10_1007_s10958_011_0517_1 |
PublicationCentury | 2000 |
PublicationDate | 20110912 |
PublicationDateYYYYMMDD | 2011-09-12 |
PublicationDate_xml | – month: 09 year: 2011 text: 20110912 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2011 |
Publisher | Springer US Springer |
Publisher_xml | – name: Springer US – name: Springer |
References | Boltnev (CR2) 2005; 6 Shevrin (CR7) 1991 CR4 Shevrin (CR8) 1994; 185 CR5 Artamonov (CR1) 1991 Clifford, Preston, Preston (CR3) 1961 Hotzel (CR6) 1979; 60 AH Clifford (517_CR3) 1961 VA Artamonov (517_CR1) 1991 517_CR5 517_CR4 E Hotzel (517_CR6) 1979; 60 AA Boltnev (517_CR2) 2005; 6 LN Shevrin (517_CR7) 1991 LN Shevrin (517_CR8) 1994; 185 |
References_xml | – start-page: 11 year: 1991 end-page: 191 ident: CR7 article-title: Semigroups publication-title: Handbook on General Algebra [in Russian] contributor: fullname: Shevrin – volume: 60 start-page: 352 year: 1979 end-page: 370 ident: CR6 article-title: On finiteness conditions in semigroups publication-title: J. Algebra doi: 10.1016/0021-8693(79)90088-7 contributor: fullname: Hotzel – ident: CR5 – volume: 6 start-page: 56 issue: 1 year: 2005 end-page: 63 ident: CR2 article-title: The set-theoretic description of semigroups of certain varieties publication-title: Chebyshevskii Sb. contributor: fullname: Boltnev – volume: 185 start-page: 153 issue: 9 year: 1994 end-page: 176 ident: CR8 article-title: On the theory of epigroups. II publication-title: Mat. Sb. contributor: fullname: Shevrin – year: 1961 ident: CR3 publication-title: The Algebraic Theory of Semigroups, Vols. I, II, Math. Surveys, Vol. 7 contributor: fullname: Preston – ident: CR4 – start-page: 295 year: 1991 end-page: 367 ident: CR1 article-title: Universal algebras publication-title: Handbook on General Algebra [in Russian] contributor: fullname: Artamonov – ident: 517_CR4 – volume: 60 start-page: 352 year: 1979 ident: 517_CR6 publication-title: J. Algebra doi: 10.1016/0021-8693(79)90088-7 contributor: fullname: E Hotzel – start-page: 295 volume-title: Handbook on General Algebra [in Russian] year: 1991 ident: 517_CR1 contributor: fullname: VA Artamonov – start-page: 11 volume-title: Handbook on General Algebra [in Russian] year: 1991 ident: 517_CR7 contributor: fullname: LN Shevrin – volume: 185 start-page: 153 issue: 9 year: 1994 ident: 517_CR8 publication-title: Mat. Sb. contributor: fullname: LN Shevrin – ident: 517_CR5 – volume-title: The Algebraic Theory of Semigroups, Vols. I, II, Math. Surveys, Vol. 7 year: 1961 ident: 517_CR3 doi: 10.1090/surv/007.1 contributor: fullname: AH Clifford – volume: 6 start-page: 56 issue: 1 year: 2005 ident: 517_CR2 publication-title: Chebyshevskii Sb. contributor: fullname: AA Boltnev |
SSID | ssj0007683 |
Score | 1.8856806 |
Snippet | It is proved that all the equivalence relations of a universal algebra
A
are its congruences if and only if either
|A| ≤
2 or every operation
f
of the... It is proved that all the equivalence relations of a universal algebra A are its congruences if and only if either |A| ≤ 2 or every operation f of the... |
SourceID | gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 886 |
SubjectTerms | Algebra Mathematics Mathematics and Statistics |
Title | Algebras whose equivalence relations are congruences |
URI | https://link.springer.com/article/10.1007/s10958-011-0517-1 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66veiDv8XplCKioETaJmnTx6Kbm6gPTsG3kLbJFKXTdsN_38vaTgvzQZ_60KOkl8vlu9zdF4SOYtsNqK8iHMfMxdTjBHOecMyKzkbmJdw0J_cG_t0Tv-wYmhx3dnSRvp5XGcmpo_7R6xYwU3cF0S8DzwoRTxO2Hga23Qw7172bmf8FAF2U1fsuJsSnVS5z3kdqu1Hlk-sZ0elG0139zxDX0EoJK62wsIN1tKDSDbR8O-NkzTcRDd-GJkucW5_Po1xZ6mPyAmZmVraVVSVxlsyUBSHyMCsKrLfQY7fzcNHD5Z0JOCYAnnDsmOumgigAJUgN8JnoCCYjsBPKPaq1pgBJIhoTO2KEeppGiU104gMS1EwrRbZRIx2lagdZMpCJZ0tHM8kpRG3SDyJAE0oCJPB54rXQaaU78V5QY4hvEmSjCgGqEEYVwmmhQ6NdYSgnUlPTMpSTPBf9wb0ICUBQB2CK20InpZAejTMZy7JFAMZjWKpqksc1yWHB0T1PsF0ThMUT116fVVMpysWb__4Tu3-S3kNLxQG0uW-ijRpjmLl9tJgnk4PSZM2z_3DV_QLmOeLC |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66PagP_hanU4uIghJol7RNH4tubrjtwU3wLaRtUgXptN3w3_eyttPCfNDnHiW93F2-6919QegiNFsedWWAw9BuYeowghmLGLbzyUbbiZgeTu6O3OEzu2trmhxSzsLMu93LkuQ8Uv8YdvNs3XgF6a8NoRVSnjr1HAqmXPd74_vOIgADgs776t0WJsSlZTFz2Usqx1EZlKsl0flJ09n61xq30WYBLA0_t4QdtCKTXbQxWLCyZnuI-m-xrhNnxufLJJOG_Ji9gqFp3zbSsinOEKk0IEmO07zFeh89ddrj2y4ubk3AIQH4hENLXzjlBR5oQSgA0EQFsB2eGVHmUKUUBVAS0JCYgU2oo2gQmURFLmBBZSspyQGqJZNEHiJDeCJyTGEpWzAKeZtwvQDwhBQAClwWOQ10XSqPv-fkGPybBlmrgoMquFYFtxroXKuXa9KJRHe1xGKWZbw3euQ-ARBqAVBpNdBVIaQm01SEohgSgPVonqqK5GVFMs5ZupcJNiuC4D5h5fFNuZW8cN_s9484-pP0GVrrjgd93u8NH47Rev47Wt8-0US1KeziCVrNotlpYb9fcuXlJA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA66geiDv8Xp1CKioJR1TdqmTzLcxqZziFPwLaRNMgXpZrvhv-9lbaeF-SA-92jSL5fkS-_uC0JnoWX7xJOBGYaObRKXYpNSQU0nrWx0XEF1cXJn4PVfaLOlZXKu81qYWbZ7HpJMaxq0SlM0qY2Fqv0ofPMdnYQFR2EHllk4_pQJHGTA0cuN1m2nN1-MgU2nOfaebWLskTywueglha0pX6CL4dHZrtPe-Hd_N9F6RjiNRuohW2hJRtto7X6u1prsINJ4H-r4cWJ8vo4SaciP6Rs4oJ7zRpwnyxk8lga0OozT1Otd9NxuPd10zOw2BTPEQKvMsK4vovIDHxDhCog1VgEMk28JQl2ilCJAVgISYitwMHEVCYSFlfCAIypHSYn3UCkaRXIfGdznwrV4XTmcAuyEe34APENyIAseFW4FXeZAsnEqmsG-5ZE1FAygYBoKVq-gUw0102IUkc52GfJpkrDu4JE1MJDTOhAYu4IuMiM1msQ85FnxAPRH61cVLM8LlsNUvXuRYbVgCNMqLDy-yoeVZdM6-f0jDv5kfYJWHppt1uv27w7RavqXWl9KUUWlCQziEVpOxPQ4c-UvZaXt5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebras+whose+equivalence+relations+are+congruences&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kozhukhov%2C+I.+B.&rft.au=Reshetnikov%2C+A.+V.&rft.date=2011-09-12&rft.pub=Springer+US&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=177&rft.issue=6&rft_id=info:doi/10.1007%2Fs10958-011-0517-1&rft.externalDocID=10_1007_s10958_011_0517_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |