Cerebrovascular reactivity to carbon dioxide is not influenced by variability in the ventilatory sensitivity to carbon dioxide

New Findings What is the central question of this study? Do differing magnitudes of ventilation influence cerebrovascular CO2 reactivity and the cerebral blood flow response to increases in arterial carbon dioxide? What is the main finding and its importance? While a greater ventilation, through vol...

Full description

Saved in:
Bibliographic Details
Published in:Experimental physiology Vol. 105; no. 5; pp. 904 - 915
Main Authors: Howe, Connor A., Caldwell, Hannah G., Carr, Jay, Nowak‐Flück, Daniela, Ainslie, Philip N., Hoiland, Ryan L.
Format: Journal Article
Language:English
Published: England John Wiley & Sons, Inc 01-05-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract New Findings What is the central question of this study? Do differing magnitudes of ventilation influence cerebrovascular CO2 reactivity and the cerebral blood flow response to increases in arterial carbon dioxide? What is the main finding and its importance? While a greater ventilation, through voluntary hyperventilation, is associated with a higher anterior cerebral blood flow during carbon dioxide breathing, this elevated cerebral blood flow is due to a higher blood pressure and not ventilation per se. A greater ventilation, through voluntary hyperventilation, does not influence global or posterior cerebral blood flow during carbon dioxide breathing. Cerebrovascular reactivity to carbon dioxide is not influenced by an individual's ventilatory sensitivity to carbon dioxide. Recent work demonstrated an influence of ventilation on cerebrovascular reactivity to CO2; however, the concomitant influence of changes in mean arterial blood pressure (MAP) on ventilation‐induced differences in cerebral blood flow (CBF) has yet to be examined in this context. Healthy participants (n = 15; 25 ± 3 years of age; 179 ± 6 cm height; 74 ± 10 kg weight; 3 female) underwent end‐tidal forcing to increase their partial pressure of end‐tidal CO2 by +3, +6 and +9 mmHg above baseline in 5‐min sequential steps while maintaining iso‐oxia. This protocol was then repeated twice, with participants hyperventilating and hypoventilating by ∼30% compared to the first trial. Intra‐cranial and extra‐cranial CBF were measured using ultrasound. The MAP (finger photo‐plethysmography) was higher during the hyperventilation and hypoventilation trials compared to normal ventilation (main effects, P < 0.05 for both). While internal carotid artery blood flow was higher during the hyperventilation trial compared to normal ventilation (P = 0.01), this was due to a higher MAP, as indicated by analysis of conductance values (P = 0.68) or inclusion of MAP in covariate analysis (P = 0.11). Global CBF (P = 0.11) and vertebral artery blood flow (P = 0.93) were unaffected by the magnitude of ventilation. Further, CO2 reactivity was not affected by the different breathing trials (P > 0.05 for all). Retrospective analysis of a larger data set (n = 53) confirmed these observations and demonstrated no relationships between the ventilatory and global CBF response to hypercapnia (r2 = 0.04; P = 0.14). Therefore, when differences in MAP are accounted for, cerebrovascular CO2 reactivity (assessed via end‐tidal forcing) is independent of the magnitude of ventilation.
AbstractList What is the central question of this study? Do differing magnitudes of ventilation influence cerebrovascular CO reactivity and the cerebral blood flow response to increases in arterial carbon dioxide? What is the main finding and its importance? While a greater ventilation, through voluntary hyperventilation, is associated with a higher anterior cerebral blood flow during carbon dioxide breathing, this elevated cerebral blood flow is due to a higher blood pressure and not ventilation per se. A greater ventilation, through voluntary hyperventilation, does not influence global or posterior cerebral blood flow during carbon dioxide breathing. Cerebrovascular reactivity to carbon dioxide is not influenced by an individual's ventilatory sensitivity to carbon dioxide. Recent work demonstrated an influence of ventilation on cerebrovascular reactivity to CO ; however, the concomitant influence of changes in mean arterial blood pressure (MAP) on ventilation-induced differences in cerebral blood flow (CBF) has yet to be examined in this context. Healthy participants (n = 15; 25 ± 3 years of age; 179 ± 6 cm height; 74 ± 10 kg weight; 3 female) underwent end-tidal forcing to increase their partial pressure of end-tidal CO by +3, +6 and +9 mmHg above baseline in 5-min sequential steps while maintaining iso-oxia. This protocol was then repeated twice, with participants hyperventilating and hypoventilating by ∼30% compared to the first trial. Intra-cranial and extra-cranial CBF were measured using ultrasound. The MAP (finger photo-plethysmography) was higher during the hyperventilation and hypoventilation trials compared to normal ventilation (main effects, P < 0.05 for both). While internal carotid artery blood flow was higher during the hyperventilation trial compared to normal ventilation (P = 0.01), this was due to a higher MAP, as indicated by analysis of conductance values (P = 0.68) or inclusion of MAP in covariate analysis (P = 0.11). Global CBF (P = 0.11) and vertebral artery blood flow (P = 0.93) were unaffected by the magnitude of ventilation. Further, CO reactivity was not affected by the different breathing trials (P > 0.05 for all). Retrospective analysis of a larger data set (n = 53) confirmed these observations and demonstrated no relationships between the ventilatory and global CBF response to hypercapnia (r  = 0.04; P = 0.14). Therefore, when differences in MAP are accounted for, cerebrovascular CO reactivity (assessed via end-tidal forcing) is independent of the magnitude of ventilation.
NEW FINDINGSWhat is the central question of this study? Do differing magnitudes of ventilation influence cerebrovascular CO2 reactivity and the cerebral blood flow response to increases in arterial carbon dioxide? What is the main finding and its importance? While a greater ventilation, through voluntary hyperventilation, is associated with a higher anterior cerebral blood flow during carbon dioxide breathing, this elevated cerebral blood flow is due to a higher blood pressure and not ventilation per se. A greater ventilation, through voluntary hyperventilation, does not influence global or posterior cerebral blood flow during carbon dioxide breathing. Cerebrovascular reactivity to carbon dioxide is not influenced by an individual's ventilatory sensitivity to carbon dioxide. ABSTRACTRecent work demonstrated an influence of ventilation on cerebrovascular reactivity to CO2 ; however, the concomitant influence of changes in mean arterial blood pressure (MAP) on ventilation-induced differences in cerebral blood flow (CBF) has yet to be examined in this context. Healthy participants (n = 15; 25 ± 3 years of age; 179 ± 6 cm height; 74 ± 10 kg weight; 3 female) underwent end-tidal forcing to increase their partial pressure of end-tidal CO2 by +3, +6 and +9 mmHg above baseline in 5-min sequential steps while maintaining iso-oxia. This protocol was then repeated twice, with participants hyperventilating and hypoventilating by ∼30% compared to the first trial. Intra-cranial and extra-cranial CBF were measured using ultrasound. The MAP (finger photo-plethysmography) was higher during the hyperventilation and hypoventilation trials compared to normal ventilation (main effects, P < 0.05 for both). While internal carotid artery blood flow was higher during the hyperventilation trial compared to normal ventilation (P = 0.01), this was due to a higher MAP, as indicated by analysis of conductance values (P = 0.68) or inclusion of MAP in covariate analysis (P = 0.11). Global CBF (P = 0.11) and vertebral artery blood flow (P = 0.93) were unaffected by the magnitude of ventilation. Further, CO2 reactivity was not affected by the different breathing trials (P > 0.05 for all). Retrospective analysis of a larger data set (n = 53) confirmed these observations and demonstrated no relationships between the ventilatory and global CBF response to hypercapnia (r2 = 0.04; P = 0.14). Therefore, when differences in MAP are accounted for, cerebrovascular CO2 reactivity (assessed via end-tidal forcing) is independent of the magnitude of ventilation.
Recent work demonstrated an influence of ventilation on cerebrovascular reactivity to CO2; however, the concomitant influence of changes in mean arterial blood pressure (MAP) on ventilation‐induced differences in cerebral blood flow (CBF) has yet to be examined in this context. Healthy participants (n = 15; 25 ± 3 years of age; 179 ± 6 cm height; 74 ± 10 kg weight; 3 female) underwent end‐tidal forcing to increase their partial pressure of end‐tidal CO2 by +3, +6 and +9 mmHg above baseline in 5‐min sequential steps while maintaining iso‐oxia. This protocol was then repeated twice, with participants hyperventilating and hypoventilating by ∼30% compared to the first trial. Intra‐cranial and extra‐cranial CBF were measured using ultrasound. The MAP (finger photo‐plethysmography) was higher during the hyperventilation and hypoventilation trials compared to normal ventilation (main effects, P < 0.05 for both). While internal carotid artery blood flow was higher during the hyperventilation trial compared to normal ventilation (P = 0.01), this was due to a higher MAP, as indicated by analysis of conductance values (P = 0.68) or inclusion of MAP in covariate analysis (P = 0.11). Global CBF (P = 0.11) and vertebral artery blood flow (P = 0.93) were unaffected by the magnitude of ventilation. Further, CO2 reactivity was not affected by the different breathing trials (P > 0.05 for all). Retrospective analysis of a larger data set (n = 53) confirmed these observations and demonstrated no relationships between the ventilatory and global CBF response to hypercapnia (r2 = 0.04; P = 0.14). Therefore, when differences in MAP are accounted for, cerebrovascular CO2 reactivity (assessed via end‐tidal forcing) is independent of the magnitude of ventilation.
New Findings What is the central question of this study? Do differing magnitudes of ventilation influence cerebrovascular CO2 reactivity and the cerebral blood flow response to increases in arterial carbon dioxide? What is the main finding and its importance? While a greater ventilation, through voluntary hyperventilation, is associated with a higher anterior cerebral blood flow during carbon dioxide breathing, this elevated cerebral blood flow is due to a higher blood pressure and not ventilation per se. A greater ventilation, through voluntary hyperventilation, does not influence global or posterior cerebral blood flow during carbon dioxide breathing. Cerebrovascular reactivity to carbon dioxide is not influenced by an individual's ventilatory sensitivity to carbon dioxide. Recent work demonstrated an influence of ventilation on cerebrovascular reactivity to CO2; however, the concomitant influence of changes in mean arterial blood pressure (MAP) on ventilation‐induced differences in cerebral blood flow (CBF) has yet to be examined in this context. Healthy participants (n = 15; 25 ± 3 years of age; 179 ± 6 cm height; 74 ± 10 kg weight; 3 female) underwent end‐tidal forcing to increase their partial pressure of end‐tidal CO2 by +3, +6 and +9 mmHg above baseline in 5‐min sequential steps while maintaining iso‐oxia. This protocol was then repeated twice, with participants hyperventilating and hypoventilating by ∼30% compared to the first trial. Intra‐cranial and extra‐cranial CBF were measured using ultrasound. The MAP (finger photo‐plethysmography) was higher during the hyperventilation and hypoventilation trials compared to normal ventilation (main effects, P < 0.05 for both). While internal carotid artery blood flow was higher during the hyperventilation trial compared to normal ventilation (P = 0.01), this was due to a higher MAP, as indicated by analysis of conductance values (P = 0.68) or inclusion of MAP in covariate analysis (P = 0.11). Global CBF (P = 0.11) and vertebral artery blood flow (P = 0.93) were unaffected by the magnitude of ventilation. Further, CO2 reactivity was not affected by the different breathing trials (P > 0.05 for all). Retrospective analysis of a larger data set (n = 53) confirmed these observations and demonstrated no relationships between the ventilatory and global CBF response to hypercapnia (r2 = 0.04; P = 0.14). Therefore, when differences in MAP are accounted for, cerebrovascular CO2 reactivity (assessed via end‐tidal forcing) is independent of the magnitude of ventilation.
Author Howe, Connor A.
Carr, Jay
Hoiland, Ryan L.
Caldwell, Hannah G.
Nowak‐Flück, Daniela
Ainslie, Philip N.
Author_xml – sequence: 1
  givenname: Connor A.
  orcidid: 0000-0002-1133-2444
  surname: Howe
  fullname: Howe, Connor A.
  organization: School of Health and Exercise Sciences
– sequence: 2
  givenname: Hannah G.
  surname: Caldwell
  fullname: Caldwell, Hannah G.
  organization: School of Health and Exercise Sciences
– sequence: 3
  givenname: Jay
  surname: Carr
  fullname: Carr, Jay
  organization: School of Health and Exercise Sciences
– sequence: 4
  givenname: Daniela
  surname: Nowak‐Flück
  fullname: Nowak‐Flück, Daniela
  organization: School of Health and Exercise Sciences
– sequence: 5
  givenname: Philip N.
  surname: Ainslie
  fullname: Ainslie, Philip N.
  organization: School of Health and Exercise Sciences
– sequence: 6
  givenname: Ryan L.
  orcidid: 0000-0002-5657-0059
  surname: Hoiland
  fullname: Hoiland, Ryan L.
  email: ryanleohoiland@gmail.com
  organization: West 12th Avenue, University of British Columbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32091142$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1r3DAQhkVJ6W7SQn5BEPSSi7caS5atY1mSphBoDwn0ZvQxplq8UirZm_iS3x4v2SRQyGnm8LwPw7zH5CjEgIScAlsBAP928Zs1DajyA1mCkKoQovpzRJZMVU3BZM0W5DjnDWPAWSM-kQUvmQIQ5ZI8rjGhSXGnsx17nWhCbQe_88NEh0itTiYG6nx88A6pzzTEgfrQ9SMGi46aie508tr4fh_xgQ5_ke4wDL7XQ0wTzRiyf8_4mXzsdJ_xy2GekNvLi5v1VXH968fP9ffrwvJG8MJALTveNVqAbErtDFolGQrhjJSd0p01WDPXSTSgGLOlEpWQ0NTghANR8RNy_uy9S_HfiHlotz5b7HsdMI65LbnkTMw_3KNf_0M3cUxhvm6m1IxVdQ1vQptizgm79i75rU5TC6zdd9K-dDKjZwfhaLboXsGXEmZg9Qzc-x6nd0XzcgVlzTh_AvQpl9E
CitedBy_id crossref_primary_10_1113_JP281446
crossref_primary_10_1113_EP090690
crossref_primary_10_1007_s00421_023_05324_y
crossref_primary_10_1177_0271678X211065924
crossref_primary_10_1113_JP280682
crossref_primary_10_1113_EP088570
crossref_primary_10_1152_japplphysiol_00963_2020
crossref_primary_10_1139_apnm_2021_0220
crossref_primary_10_1152_japplphysiol_00182_2021
crossref_primary_10_1152_japplphysiol_00400_2022
crossref_primary_10_1007_s00421_021_04721_5
crossref_primary_10_1113_JP281615
crossref_primary_10_51582_interconf_19_20_03_2023_046
crossref_primary_10_1113_EP090031
crossref_primary_10_1113_EP090122
crossref_primary_10_1113_JP280369
crossref_primary_10_1113_JP282427
crossref_primary_10_1111_apha_14197
crossref_primary_10_1113_JP284449
crossref_primary_10_1113_EP089982
crossref_primary_10_1371_journal_pone_0298587
crossref_primary_10_1113_EP089446
Cites_doi 10.1152/jappl.1967.23.1.53
10.1111/j.1469-7793.2003.t01-1-00323.x
10.1152/ajpregu.90772.2008
10.1152/japplphysiol.00614.2012
10.1152/japplphysiol.00490.2015
10.1113/jphysiol.2012.228551
10.1177/0271678X16639326
10.1113/JP272012
10.1113/jphysiol.2013.259150
10.1016/j.jneumeth.2011.01.011
10.1016/j.resp.2011.04.009
10.1113/jphysiol.2007.137075
10.1002/brb3.275
10.1152/ajpregu.00721.2009
10.1152/ajpheart.1987.252.4.H738
10.1113/EP087744
10.1152/jappl.1979.47.5.954
10.14814/phy2.12451
10.1152/jappl.2001.91.2.929
10.1016/j.resp.2016.01.004
10.1016/0301-5629(85)90107-3
10.1002/cphy.c100083
10.1093/brain/124.3.457
10.1152/jappl.1985.58.5.1659
10.1042/CS20070292
10.1152/jappl.1982.52.5.1353
10.1113/jphysiol.2008.154716
10.1152/ajpregu.00432.2010
10.1152/ajpregu.00211.2015
10.1002/cphy.c180021
10.1152/jappl.1983.55.2.447
10.1152/japplphysiol.00050.2018
10.1113/jphysiol.2006.110627
10.1152/japplphysiol.00463.2012
10.1172/JCI101995
10.1038/217779a0
10.1164/rccm.200406-807OC
10.1113/jphysiol.2013.268953
10.1152/japplphysiol.90914.2008
10.1152/jappl.1975.38.6.1095
10.1152/japplphysiol.00787.2015
10.1152/ajpregu.91008.2008
10.1152/ajpregu.00106.2016
ContentType Journal Article
Copyright 2020 The Authors. Experimental Physiology © 2020 The Physiological Society
2020 The Authors. Experimental Physiology © 2020 The Physiological Society.
2020 The Physiological Society
Copyright_xml – notice: 2020 The Authors. Experimental Physiology © 2020 The Physiological Society
– notice: 2020 The Authors. Experimental Physiology © 2020 The Physiological Society.
– notice: 2020 The Physiological Society
DBID NPM
AAYXX
CITATION
7QP
7TK
7TS
7X8
DOI 10.1113/EP088192
DatabaseName PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Calcium & Calcified Tissue Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-445X
EndPage 915
ExternalDocumentID 10_1113_EP088192
32091142
EPH12703
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canada Research Chairs
  funderid: F16‐02798
– fundername: Canada Research Chairs
  grantid: F16-02798
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
18M
1OC
24P
29G
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABITZ
ABPVW
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFZJQ
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EMB
EMOBN
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQS
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SUPJJ
SV3
TEORI
TLM
TR2
UB1
V8K
W8F
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.55
.GJ
.Y3
1OB
31~
3O-
53G
ABUWG
ACQPF
AFKRA
BBNVY
BENPR
BHPHI
C1A
CAG
CCPQU
CHEAL
COF
EJD
FIJ
GROUPED_DOAJ
H13
HCIFZ
HF~
IPNFZ
L98
LW6
M7P
MVM
NPM
PGMZT
RPM
SAMSI
X7M
ZXP
AAYXX
CITATION
7QP
7TK
7TS
7X8
ID FETCH-LOGICAL-c3843-b176f3f8a41682adbec960e44db66f9afcbe70df6eb1900c2945461871d4d1453
IEDL.DBID 33P
ISSN 0958-0670
IngestDate Fri Aug 16 21:20:35 EDT 2024
Thu Oct 10 16:04:28 EDT 2024
Thu Nov 21 23:48:00 EST 2024
Sat Sep 28 08:26:06 EDT 2024
Sat Aug 24 01:07:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords cerebral blood flow
hypercapnia
ventilation
CO2 reactivity
Language English
License 2020 The Authors. Experimental Physiology © 2020 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3843-b176f3f8a41682adbec960e44db66f9afcbe70df6eb1900c2945461871d4d1453
Notes https://doi.org/10.1113/EP088570
Edited by: Michael White
Linked articles: This article is highlighted in a Viewpoint article by Samora & Vianna. To read this paper, visit
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5657-0059
0000-0002-1133-2444
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/EP088192
PMID 32091142
PQID 2396305771
PQPubID 37290
PageCount 12
ParticipantIDs proquest_miscellaneous_2363048815
proquest_journals_2396305771
crossref_primary_10_1113_EP088192
pubmed_primary_32091142
wiley_primary_10_1113_EP088192_EPH12703
PublicationCentury 2000
PublicationDate 1 May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 1 May 2020
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Experimental physiology
PublicationTitleAlternate Exp Physiol
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2001; 91
2001; 124
2019; 9
2005; 172
2015; 3
1982b; 52
1967; 23
1975; 38
2007; 584
2018; 125
2019; 104
2015; 309
2016; 225
2009; 296
2008; 586
2011; 196
2006; 577
2014; 592
2016; 36
2016; 120
2011; 177
1983; 55
2012; 590
1987; 252
1968; 217
2012; 2
2003; 548
2014; 4
2012; 113
1979; 47
2010; 299
2016; 311
2010; 298
2016; 594
2013; 591
2008; 114
1985; 11
2014; 94
1982a; 52
1948; 27
1985; 58
2009; 106
32175640 - Exp Physiol. 2020 May;105(5):771-772
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Robbins P. A. (e_1_2_9_33_1) 1982; 52
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Lu H. (e_1_2_9_18_1) 2014; 94
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 47
  start-page: 954
  year: 1979
  end-page: 960
  article-title: Difference between end‐tidal and arterial PCO in exercise
  publication-title: Journal of Applied Physiology. Respiratory, Environmental and Exercise Physiology
– volume: 124
  start-page: 457
  year: 2001
  end-page: 467
  article-title: Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion
  publication-title: Brain
– volume: 120
  start-page: 282
  year: 2016
  end-page: 296
  article-title: Measuring the human ventilatory and cerebral blood flow response to CO : A technical consideration for the end‐tidal‐to‐arterial gas gradient
  publication-title: Journal of Applied Physiology
– volume: 113
  start-page: 700
  year: 2012
  end-page: 706
  article-title: Sympathetic regulation of the human cerebrovascular response to carbon dioxide
  publication-title: Journal of Applied Physiology
– volume: 177
  start-page: 71
  year: 2011
  end-page: 79
  article-title: Measuring the respiratory chemoreflexes in humans
  publication-title: Respiratory Physiology & Neurobiology
– volume: 23
  start-page: 53
  year: 1967
  end-page: 70
  article-title: Blood‐brain tissue P relationships and ventilation during rebreathing
  publication-title: Journal of Applied Physiology
– volume: 217
  start-page: 779
  year: 1968
  article-title: Conductance or resistance?
  publication-title: Nature
– volume: 590
  start-page: 3261
  year: 2012
  end-page: 3275
  article-title: Regional brain blood flow in man during acute changes in arterial blood gases
  publication-title: Journal of Physiology
– volume: 27
  start-page: 484
  year: 1948
  end-page: 492
  article-title: The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men
  publication-title: Journal of Clinical Investigation
– volume: 94
  year: 2014
  article-title: MRI mapping of cerebrovascular reactivity via gas inhalation challenges
  publication-title: Journal of Visualized Experiments
– volume: 172
  start-page: 371
  year: 2005
  end-page: 378
  article-title: Cerebrovascular response to carbon dioxide in patients with congestive heart failure
  publication-title: American Journal of Respiratory and Critical Care Medicine
– volume: 9
  start-page: 1101
  year: 2019
  end-page: 1154
  article-title: Regulation of the cerebral circulation by arterial carbon dioxide
  publication-title: Comprehensive Physiology
– volume: 548
  start-page: 323
  year: 2003
  end-page: 332
  article-title: Mechanisms of the cerebrovascular response to apnoea in humans
  publication-title: Journal of Physiology
– volume: 4
  start-page: 775
  year: 2014
  end-page: 788
  article-title: Factors affecting the determination of cerebrovascular reactivity
  publication-title: Brain and Behavior
– volume: 3
  year: 2015
  article-title: Cerebrovascular regulation in men and women: Stimulus‐specific role of cyclooxygenase
  publication-title: Physiological Reports
– volume: 52
  start-page: 1353
  year: 1982a
  end-page: 1357
  article-title: A prediction‐correction scheme for forcing alveolar gases along certain times courses
  publication-title: Journal of Applied Physiology. Respiratory, Environmental and Exercise Physiology
– volume: 296
  start-page: R402
  year: 2009
  end-page: R410
  article-title: Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 309
  start-page: R707
  year: 2015
  end-page: R720
  article-title: Technical recommendations for the use of carotid duplex ultrasound for the assessment of extracranial blood flow
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 113
  start-page: 1058
  year: 2012
  end-page: 1067
  article-title: Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans
  publication-title: Journal of Applied Physiology
– volume: 252
  start-page: H738
  year: 1987
  end-page: H742
  article-title: Segmental vascular responses to acute hypertension in cerebrum and brain stem
  publication-title: American Journal of Physiology
– volume: 299
  start-page: 1407
  year: 2010
  end-page: 1414
  article-title: Ventilatory restraint of sympathetic activity during chemoreflex stress
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 52
  start-page: 1358
  year: 1982b
  end-page: 1362
  article-title: A fast gas‐mixing system for breath‐to‐breath respiratory control studies
  publication-title: Journal of Applied Physiology. Respiratory, Environmental and Exercise Physiology
– volume: 91
  start-page: 929
  year: 2001
  end-page: 937
  article-title: Improved analysis of brachial artery ultrasound using a novel edge‐detection software system
  publication-title: Journal of Applied Physiology
– volume: 114
  start-page: 489
  year: 2008
  end-page: 497
  article-title: Clinical significance of chemosensitivity in chronic heart failure: Influence on neurohormonal derangement, Cheyne–Stokes respiration and arrhythmias
  publication-title: Clinical Science
– volume: 298
  start-page: R1648
  year: 2010
  end-page: R1658
  article-title: Influence of indomethacin on the ventilatory and cerebrovascular responsiveness to CO and breathing stability: The influence of PCO gradients
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 125
  start-page: 1917
  year: 2018
  end-page: 1930
  article-title: Effect of healthy aging on cerebral blood flow, CO reactivity, and neurovascular coupling during exercise
  publication-title: Journal of Applied Physiology
– volume: 58
  start-page: 1659
  year: 1985
  end-page: 1668
  article-title: Ventral medullary pH and ventilatory to hyperperfusion and hypoxia responses
  publication-title: Journal of Applied Physiology
– volume: 584
  start-page: 347
  year: 2007
  end-page: 357
  article-title: Human cerebrovascular and ventilatory CO reactivity to end‐tidal, arterial and internal jugular vein PCO
  publication-title: Journal of Physiology
– volume: 592
  start-page: 841
  year: 2014
  end-page: 859
  article-title: Integrative regulation of human brain blood flow
  publication-title: Journal of Physiology
– volume: 594
  start-page: 3463
  year: 2016
  end-page: 3481
  article-title: Carbon dioxide mediated vasomotion of extra‐cranial cerebral arteries in humans: A role for prostaglandins?
  publication-title: Journal of Physiology
– volume: 586
  start-page: 3675
  year: 2008
  end-page: 3682
  article-title: Non‐invasive prospective targeting of arterial PCO in subjects at rest
  publication-title: Journal of Physiology
– volume: 2
  start-page: 221
  year: 2012
  end-page: 254
  article-title: Central chemoreceptors: Locations and functions
  publication-title: Comprehensive Physiology
– volume: 577
  start-page: 319
  year: 2006
  end-page: 329
  article-title: Influence of cerebrovascular function on the hypercapnic ventilatory response in healthy humans
  publication-title: Journal of Physiology
– volume: 225
  start-page: 60
  year: 2016
  end-page: 69
  article-title: Sequential gas delivery provides precise control of alveolar gas exchange
  publication-title: Respiratory Physiology & Neurobiology
– volume: 196
  start-page: 221
  year: 2011
  end-page: 237
  article-title: Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function
  publication-title: Journal of Neuroscience Methods
– volume: 55
  start-page: 447
  year: 1983
  end-page: 452
  article-title: Regional medullary blood flow during isocapnic hyperpnea in anesthetized cats
  publication-title: Journal of Applied Physiology
– volume: 311
  start-page: R222
  year: 2016
  end-page: R231
  article-title: Cerebral blood flow regulation in women across menstrual phase: Differential contribution of cyclooxygenase to basal, hypoxic, and hypercapnic vascular tone
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 120
  start-page: 843
  year: 2016
  end-page: 854
  article-title: Role of CO in the cerebral hyperemic response to incremental normoxic and hyperoxic exercise
  publication-title: Journal of Applied Physiology
– volume: 106
  start-page: 850
  year: 2009
  end-page: 856
  article-title: Influence of cerebral blood flow on breathing stability
  publication-title: Journal of Applied Physiology
– volume: 591
  start-page: 5809
  year: 2013
  end-page: 5821
  article-title: Measuring cerebrovascular reactivity: What stimulus to use ?
  publication-title: Journal of Physiology
– volume: 38
  start-page: 1095
  year: 1975
  end-page: 1098
  article-title: Normal values for hypoxic and hypercapnic ventilatory drives in man normal ventilatory values for hypoxic in man and hypercapnic drives
  publication-title: Journal of Applied Physiology
– volume: 11
  start-page: 735
  year: 1985
  end-page: 741
  article-title: On the measurement of the mean velocity of blood flow over the cardiac cycle using Doppler ultrasound
  publication-title: Ultrasound in Medicine & Biology
– volume: 36
  start-page: 1004
  year: 2016
  end-page: 1011
  article-title: The CO stimulus for cerebrovascular reactivity: Fixing inspired concentrations vs. targeting end‐tidal partial pressures
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 296
  start-page: R1473
  year: 2009
  end-page: R1495
  article-title: Integration of cerebrovascular CO reactivity and chemoreflex control of breathing: Mechanisms of regulation, measurement, and interpretation
  publication-title: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
– volume: 104
  start-page: 1363
  year: 2019
  end-page: 1370
  article-title: Does respiratory drive modify the cerebral vascular response to changes in end‐tidal carbon dioxide ?
  publication-title: Experimental Physiology
– ident: e_1_2_9_30_1
  doi: 10.1152/jappl.1967.23.1.53
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1469-7793.2003.t01-1-00323.x
– ident: e_1_2_9_37_1
  doi: 10.1152/ajpregu.90772.2008
– ident: e_1_2_9_26_1
  doi: 10.1152/japplphysiol.00614.2012
– ident: e_1_2_9_34_1
  doi: 10.1152/japplphysiol.00490.2015
– ident: e_1_2_9_41_1
  doi: 10.1113/jphysiol.2012.228551
– ident: e_1_2_9_9_1
  doi: 10.1177/0271678X16639326
– ident: e_1_2_9_14_1
  doi: 10.1113/JP272012
– volume: 94
  start-page: e52306
  year: 2014
  ident: e_1_2_9_18_1
  article-title: MRI mapping of cerebrovascular reactivity via gas inhalation challenges
  publication-title: Journal of Visualized Experiments
  contributor:
    fullname: Lu H.
– ident: e_1_2_9_8_1
  doi: 10.1113/jphysiol.2013.259150
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jneumeth.2011.01.011
– ident: e_1_2_9_4_1
  doi: 10.1016/j.resp.2011.04.009
– ident: e_1_2_9_25_1
  doi: 10.1113/jphysiol.2007.137075
– ident: e_1_2_9_31_1
  doi: 10.1002/brb3.275
– ident: e_1_2_9_6_1
  doi: 10.1152/ajpregu.00721.2009
– ident: e_1_2_9_7_1
  doi: 10.1152/ajpheart.1987.252.4.H738
– ident: e_1_2_9_24_1
  doi: 10.1113/EP087744
– ident: e_1_2_9_16_1
  doi: 10.1152/jappl.1979.47.5.954
– ident: e_1_2_9_28_1
  doi: 10.14814/phy2.12451
– ident: e_1_2_9_43_1
  doi: 10.1152/jappl.2001.91.2.929
– ident: e_1_2_9_10_1
  doi: 10.1016/j.resp.2016.01.004
– ident: e_1_2_9_5_1
  doi: 10.1016/0301-5629(85)90107-3
– ident: e_1_2_9_20_1
  doi: 10.1002/cphy.c100083
– ident: e_1_2_9_19_1
  doi: 10.1093/brain/124.3.457
– ident: e_1_2_9_21_1
  doi: 10.1152/jappl.1985.58.5.1659
– ident: e_1_2_9_11_1
  doi: 10.1042/CS20070292
– ident: e_1_2_9_32_1
  doi: 10.1152/jappl.1982.52.5.1353
– volume: 52
  start-page: 1358
  year: 1982
  ident: e_1_2_9_33_1
  article-title: A fast gas‐mixing system for breath‐to‐breath respiratory control studies
  publication-title: Journal of Applied Physiology. Respiratory, Environmental and Exercise Physiology
  contributor:
    fullname: Robbins P. A.
– ident: e_1_2_9_15_1
  doi: 10.1113/jphysiol.2008.154716
– ident: e_1_2_9_36_1
  doi: 10.1152/ajpregu.00432.2010
– ident: e_1_2_9_38_1
  doi: 10.1152/ajpregu.00211.2015
– ident: e_1_2_9_13_1
  doi: 10.1002/cphy.c180021
– ident: e_1_2_9_22_1
  doi: 10.1152/jappl.1983.55.2.447
– ident: e_1_2_9_23_1
  doi: 10.1152/japplphysiol.00050.2018
– ident: e_1_2_9_46_1
  doi: 10.1113/jphysiol.2006.110627
– ident: e_1_2_9_3_1
  doi: 10.1152/japplphysiol.00463.2012
– ident: e_1_2_9_17_1
  doi: 10.1172/JCI101995
– ident: e_1_2_9_35_1
  doi: 10.1038/217779a0
– ident: e_1_2_9_45_1
  doi: 10.1164/rccm.200406-807OC
– ident: e_1_2_9_42_1
  doi: 10.1113/jphysiol.2013.268953
– ident: e_1_2_9_44_1
  doi: 10.1152/japplphysiol.90914.2008
– ident: e_1_2_9_12_1
  doi: 10.1152/jappl.1975.38.6.1095
– ident: e_1_2_9_39_1
  doi: 10.1152/japplphysiol.00787.2015
– ident: e_1_2_9_2_1
  doi: 10.1152/ajpregu.91008.2008
– ident: e_1_2_9_27_1
  doi: 10.1152/ajpregu.00106.2016
SSID ssj0013084
Score 2.438934
Snippet New Findings What is the central question of this study? Do differing magnitudes of ventilation influence cerebrovascular CO2 reactivity and the cerebral blood...
What is the central question of this study? Do differing magnitudes of ventilation influence cerebrovascular CO reactivity and the cerebral blood flow response...
Recent work demonstrated an influence of ventilation on cerebrovascular reactivity to CO2; however, the concomitant influence of changes in mean arterial blood...
NEW FINDINGSWhat is the central question of this study? Do differing magnitudes of ventilation influence cerebrovascular CO2 reactivity and the cerebral blood...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 904
SubjectTerms Blood flow
Blood pressure
Carbon dioxide
Carotid artery
Cerebral blood flow
CO2 reactivity
Conductance
Hypercapnia
Hyperventilation
Hypoventilation
Mechanical ventilation
Skull
Ultrasound
Ventilation
Vertebrae
Title Cerebrovascular reactivity to carbon dioxide is not influenced by variability in the ventilatory sensitivity to carbon dioxide
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FEP088192
https://www.ncbi.nlm.nih.gov/pubmed/32091142
https://www.proquest.com/docview/2396305771
https://search.proquest.com/docview/2363048815
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA46Jy9u4zI6SgTRU7Fp0jb1JjrDnERQwVtpmhQGtJVZxLn42_2StiMiguCtkKWlb8n38jZCTqEAlWa578kIHGwzqTxVGO5p8AbTRqhQudYJ9_Htk7wZ2DI5l20uTF0fYnnhZiXD6Wsr4JlqupAwW2xgcAcBAT6B-oWR4LI3-N2XA8F3zYYBIKRnU1GaurNYetEu_H4S_YCX39GqO26GG__50E2y3oBMelVzxRZZMeU26V6VMLBfFvSMurBPd5_eJR_XZgK7eBmSSoEi87qlBJ1VNM8mqiqpHlfvY23oeErLakbHbWsTTdWCvsHerst9LzBCASmpi6J8dh58OrUx8r_tuEMeh4OH65HXNGXwci4F9xSLo4IXMgOSk0GmwQMwgowQWkVRkWRFrkzs6yLCIZD4fh4kIhQRg12mhWYi5LukU1al2ScUByhk3gSBLxOsjyQvgCd0EvthUETS9MhJS6D0ta69kdY2C0_bn9oj_ZZyaSN90zTgUCsAojHDFsthyI11hmSlqeZ2DqZAe7GwR_Zqii9fwgOgKCaw-bkj7K9vx8PIuu75wZ9nHpK1wJrsLmayTzqzydwckdWpnh87Dv4ErNfwUQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50fdAXr_VYzwiiT8W2SdMUn0RXVjxYcAXfStOksKCt7CHui7_dSdquLCIIvhVytHRmMt9kLoBjPACl8lLXERw52GRSOTLT1FHIG57STAbStk54DB-exVXblMk5r3NhyvoQ0ws3Ixn2vDYCbi6kKyk31QbaXZQQBCjzsMA48qHJ36DdbxeCa9sNI4QQjklGqSrP4tqzeuWsLvoBMGfxqlU41yv_-tRVWK5wJrkoGWMN5nS-Ds2LHG3s1wk5ITby016pN-HzUg_QNJ5GpRIEkmnZVYKMCpImA1nkRPWLj77SpD8keTEi_bq7iSJyQt7R5C4rfk9whCCqJDaQ8sU68cnQhMn_tuMGPF23e5cdp-rL4KRUMOpIL-QZzUSCYE74iUI2QDtIM6Yk51mUZKnUoasyjnogct3Uj1jAuIemmWLKYwHdhEZe5HobCOpQFHvt-66IcD0XNENIoaLQDfyMC92Co5pC8VtZfiMuzRYa1z-1BXs16eJKAIexT_FkQSwaerjFdBhFx_hDklwXYzMHpyDjeEELtkqST19CfQRSHsPNTy1lf307PnSM957u_HnmISx2evd38d3Nw-0uLPnGgrchlHvQGA3Geh_mh2p8YNn5C-E09Hk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48QHzxWo_1jCD6VGybtE19kz1QFFlQwbfSNAksaLvsIe6Lv91J2q6ILAi-FXK0dK5vMpMZgDNUgEJ6mevwEDnY3KRyhFbUkcgbnlRMBMK2TniMHl54u2PK5FzVd2HK-hCzAzcjGVZfGwEfSF0JuSk20OmhgCA-WYRlhijc1M2ntPcdQXBtt2FEENwxd1GqwrO49rJe-dMU_cKXP-GqtTfd9f986QasVSiTXJdssQkLKt-CxnWOHvbblJwTm_dpD9Qb8NlSQ3SMZzmpBGFkVvaUIOOCZOlQFDmR_eKjLxXpj0hejEm_7m0iiZiSd3S4y3rfUxwhiCmJTaN8tSF8MjJJ8vN23IbnbuepdeNUXRmcjHJGHeFFoaaapwjluJ9KZAL0ghRjUoShjlOdCRW5UodoBWLXzfyYBSz00DGTTHosoDuwlBe52gOCFhSFXvm-y2NcH3KqEVDIOHIDX4dcNeG0JlAyKItvJKXTQpP6pzbhsKZcUonfKPEp6hVEopGHW8yGUXBMNCTNVTExc3AKqi8vaMJuSfHZS6iPMMpjuPmFJezct-PDjYnd0_0_zzyBlV67m9zfPtwdwKpv3HebP3kIS-PhRB3B4khOji0zfwHuwvMf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebrovascular+reactivity+to+carbon+dioxide+is+not+influenced+by+variability+in+the+ventilatory+sensitivity+to+carbon+dioxide&rft.jtitle=Experimental+physiology&rft.au=Howe%2C+Connor+A.&rft.au=Caldwell%2C+Hannah+G.&rft.au=Carr%2C+Jay&rft.au=Nowak%E2%80%90Fl%C3%BCck%2C+Daniela&rft.date=2020-05-01&rft.issn=0958-0670&rft.eissn=1469-445X&rft.volume=105&rft.issue=5&rft.spage=904&rft.epage=915&rft_id=info:doi/10.1113%2FEP088192&rft.externalDBID=10.1113%252FEP088192&rft.externalDocID=EPH12703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon