NOX-dependent reactive oxygen species production underlies arrhythmias susceptibility in dexamethasone-treated rats
Dexamethasone is the most clinically used glucocorticoid with an established role in the treatment of a wide spectrum of inflammatory-related diseases. While the therapeutic actions are well known, dexamethasone treatment causes a number of cardiovascular side effects, which are complex, frequent an...
Saved in:
Published in: | Free radical biology & medicine Vol. 152; pp. 1 - 7 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
20-05-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dexamethasone is the most clinically used glucocorticoid with an established role in the treatment of a wide spectrum of inflammatory-related diseases. While the therapeutic actions are well known, dexamethasone treatment causes a number of cardiovascular side effects, which are complex, frequent and, in some cases, clinically unnoticeable. Here, we investigated whether a therapeutic regimen of dexamethasone affects cardiac arrhythmogenesis, focusing on the contribution of Nox-derived reactive oxygen species (ROS). Male Wistar rats were treated with dexamethasone (2 mg/kg, i.p.) for 7 days. Afterward, hemodynamic measurements, autonomic modulation, left ventricular function, cardiac fibrosis, reactive oxygen species (ROS) generation, Nox protein expression, superoxide dismutase (SOD) and catalase activities, and arrhythmias incidence were evaluated. Here, we show that dexamethasone increases blood pressure, associated with enhanced cardiac and vascular sympathetic modulation. Moreover, a marked increase in the cardiac ROS generation was observed, whereas the enhanced SOD activity did not prevent the higher levels of lipid peroxidation in the dexamethasone group. On the other hand, increased cardiac Nox 4 expression and hydrogen peroxide decomposition rate was observed in dexamethasone-treated rats, while Nox 2 remained unchanged. Interestingly, although preserved ventricular contractility and β-adrenergic responsiveness, we found that dexamethasone-treated rats displayed greater interstitial and perivascular fibrosis than control. Surprisingly, despite the absence of arrhythmias at basal condition, we demonstrated, by in vivo and ex vivo approaches, that dexamethasone-treated rats are more susceptible to develop harmful forms of ventricular arrhythmias when challenged with pharmacological drugs or burst pacing-induced arrhythmias. Notably, concomitant treatment with apocynin, an inhibitor of NADPH oxidase, prevented these ectopic ventricular events. Together, our results reveal that hearts become arrhythmogenic during dexamethasone treatment, uncovering the pivotal role of ROS-generating NADPH oxidases for arrhythmias vulnerability.
•Autonomic imbalance underlies hypertension in dexamethasone-treated rats.•Dexamethasone causes cardiac oxidative stress without ventricular dysfunction.•Dexamethasone-treated rats displayed greater cardiac fibrosis.•Dexamethasone-treated rats have higher incidence of arrhythmias.•Inhibition of NADPH oxidase prevents arrhythmias in dexamethasone-treated rats. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2020.03.005 |