Diverse contribution of amniogenic somatopleural cells to cardiovascular development: With special reference to thyroid vasculature

Background The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular en...

Full description

Saved in:
Bibliographic Details
Published in:Developmental dynamics Vol. 253; no. 1; pp. 59 - 77
Main Authors: Haneda, Yuka, Miyagawa‐Tomita, Sachiko, Uchijima, Yasunobu, Iwase, Akiyasu, Asai, Rieko, Kohro, Takahide, Wada, Youichiro, Kurihara, Hiroki
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-01-2024
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra‐embryonic ASCs (hereafter referred to as iASCs) remain largely unknown. Results By quail‐chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra‐thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single‐cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast‐like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression. Conclusion The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives. Key Findings Here, we show that amniogenic somatopleure cells (ASCs) differentiate into various cell types constituting the cardiovascular system, with some populations having a molecular background similar to that of hemangioblasts. Among them, those contributing to the thyroid vascular network were suggested to differentiate into vascular endothelial cells with FGF‐specification and VEGF‐induced maturation. This study will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
AbstractList Background The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra‐embryonic ASCs (hereafter referred to as iASCs) remain largely unknown. Results By quail‐chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra‐thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single‐cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast‐like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression. Conclusion The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives. Key Findings Here, we show that amniogenic somatopleure cells (ASCs) differentiate into various cell types constituting the cardiovascular system, with some populations having a molecular background similar to that of hemangioblasts. Among them, those contributing to the thyroid vascular network were suggested to differentiate into vascular endothelial cells with FGF‐specification and VEGF‐induced maturation. This study will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
BackgroundThe somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra‐embryonic ASCs (hereafter referred to as iASCs) remain largely unknown.ResultsBy quail‐chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra‐thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single‐cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast‐like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression.ConclusionThe present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
Here, we show that amniogenic somatopleure cells (ASCs) differentiate into various cell types constituting the cardiovascular system, with some populations having a molecular background similar to that of hemangioblasts. Among them, those contributing to the thyroid vascular network were suggested to differentiate into vascular endothelial cells with FGF‐specification and VEGF‐induced maturation. This study will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra-embryonic ASCs (hereafter referred to as iASCs) remain largely unknown. By quail-chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra-thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single-cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast-like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression. The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
Author Miyagawa‐Tomita, Sachiko
Uchijima, Yasunobu
Iwase, Akiyasu
Wada, Youichiro
Haneda, Yuka
Kurihara, Hiroki
Kohro, Takahide
Asai, Rieko
Author_xml – sequence: 1
  givenname: Yuka
  surname: Haneda
  fullname: Haneda, Yuka
  organization: Institute for Advanced Medical Sciences, Nippon Medical School
– sequence: 2
  givenname: Sachiko
  surname: Miyagawa‐Tomita
  fullname: Miyagawa‐Tomita, Sachiko
  organization: Yamazaki University of Animal Health Technology
– sequence: 3
  givenname: Yasunobu
  surname: Uchijima
  fullname: Uchijima, Yasunobu
  organization: The University of Tokyo
– sequence: 4
  givenname: Akiyasu
  surname: Iwase
  fullname: Iwase, Akiyasu
  organization: The University of Tokyo
– sequence: 5
  givenname: Rieko
  surname: Asai
  fullname: Asai, Rieko
  organization: University of California San Francisco
– sequence: 6
  givenname: Takahide
  surname: Kohro
  fullname: Kohro, Takahide
  organization: Jichi Medical University
– sequence: 7
  givenname: Youichiro
  surname: Wada
  fullname: Wada, Youichiro
  organization: The University of Tokyo
– sequence: 8
  givenname: Hiroki
  orcidid: 0000-0002-6476-5593
  surname: Kurihara
  fullname: Kurihara, Hiroki
  email: kuri-tky@umin.net
  organization: The University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36038963$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1LHTEUhkNR6kcL_oIScONmNJNMMpnuirfVguBGLV2FTHJGIzPJNMncctf9453Bq4Lg6pzF8z6cw3uAdnzwgNBRSU5LQuiZXdvNKWf0A9ovSVMXpKzrnWXnspBMyj10kNIjIUSKqvyI9pggTDaC7aN_K7eGmACb4HN07ZRd8Dh0WA_ehXvwzuAUBp3D2MMUdY8N9H3COWCjo3VhrZOZeh2xhTX0YRzA56_4l8sPOI1g3JyI0EEEb2BJ5YdNDM7ibS5PET6h3U73CT5v5yG6_fH95vyyuLq--Hn-7aowTDJaNJQx3pKG84parjVYIaCSAERUFGxbyqrrgLZC0o4IyTgHZgjUUlrDmRbsEJ08eccY_kyQshpcWt7RHsKUFK2JpLzmpZzR4zfoY5iin69TtJmppmIVeRWaGFKa31RjdIOOG1UStRSjlmLUXMyMftkKp3YA-wI-NzEDxRPw1_WweVekVner34vwP5NonB0
CitedBy_id crossref_primary_10_1002_dvdy_685
Cites_doi 10.5962/bhl.title.17672
10.1111/j.1525‐1594.2004.07319.x
10.1126/science.1232877
10.1016/j.ydbio.2013.04.022
10.1038/74651
10.1002/jez.1400650307
10.1016/j.ydbio.2004.12.011
10.1242/dev.146829
10.1016/j.resp.2011.03.029
10.1186/2045‐824X‐6‐10
10.4142/jvs.2013.14.2.151
10.1097/01.tp.0000149503.92433.39
10.1016/0012‐1606(72)90138‐8
10.1016/B978‐0‐12‐387786‐4.00002‐6
10.1242/dev.157222
10.1136/bjo.2003.038497
10.1242/dev.065565
10.1016/j.devcel.2019.01.021
10.1016/j.jri.2007.03.017
10.1038/s41598‐017‐08305‐2
10.1161/CIRCRESAHA.121.318943
10.1186/1471‐213X‐11‐48
10.1254/jphs.CR0070034
10.1532/ijh97.04034
10.1002/ar.22831
10.1002/jmor.1050880104
10.1242/jeb.205.1.25
10.1038/nbt.4314
10.1016/s1534‐5807(01)00040‐5
10.1113/jphysiol.1963.sp007105
10.1679/aohc.52.355
10.1038/s41586‐019‐0969‐x
10.1007/s004290050268
10.1016/j.placenta.2019.06.381
10.1634/stemcells.2004‐0357
10.1038/nature11926
10.1161/CIRCRESAHA.109.201665
10.1016/bs.ctdb.2016.01.004
10.1016/j.cell.2012.09.032
10.1387/ijdb.092935md
10.1016/j.ydbio.2015.10.026
10.1111/j.1749‐6632.2012.06726.x
10.1126/science.220.4594.268
10.1038/s41586‐018‐0414‐6
10.1038/ncomms2569
10.1242/dev.145615
10.1002/dvdy.23813
10.2353/ajpath.2007.070152
10.1016/j.cell.2021.04.048
10.1242/dev.121.2.525
10.1016/s1534‐5807(03)00363‐0
10.1002/jmor.21380
10.1242/dev.126714
10.1152/ajplegacy.1917.44.1.67
10.1016/j.scr.2015.02.002
10.1016/j.ydbio.2009.10.009
10.1371/journal.pone.0092672
10.1002/dvdy.24534
10.1182/blood‐2005‐05‐1970
10.1242/dev.121392
10.1002/dvdy.24430
10.1016/j.stem.2012.07.004
10.2535/ofaj1936.70.4_165
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Association for Anatomy.
2022 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Association for Anatomy.
– notice: 2022 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SS
7TK
8FD
FR3
JQ2
K9.
P64
RC3
7X8
DOI 10.1002/dvdy.532
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library Free Content
PubMed
CrossRef
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Entomology Abstracts
CrossRef
PubMed
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1097-0177
EndPage 77
ExternalDocumentID 10_1002_dvdy_532
36038963
DVDY532
Genre article
Journal Article
GrantInformation_xml – fundername: University of Tokyo
– fundername: Japan Society for the Promotion of Science
  funderid: 19H01048; 19K08308; 20J11793; 21K19519
– fundername: Kyushu University
– fundername: Keck School of Medicine of USC
– fundername: Japan Society for the Promotion of Science
  grantid: 21K19519
– fundername: Japan Society for the Promotion of Science
  grantid: 19H01048
– fundername: Japan Society for the Promotion of Science
  grantid: 20J11793
– fundername: Japan Society for the Promotion of Science
  grantid: 19K08308
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
SAMSI
SUPJJ
SV3
UB1
UKR
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
X7M
XG1
XJT
XPP
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
ABDPE
NPM
AAMNL
AAYXX
CITATION
7SS
7TK
8FD
FR3
JQ2
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3832-92335b095542d5aaed66e48ee0642edb184ffe2b682f068355e3c0e788dc53a63
IEDL.DBID 33P
ISSN 1058-8388
IngestDate Fri Aug 16 23:00:37 EDT 2024
Tue Nov 19 04:31:17 EST 2024
Thu Nov 21 23:32:05 EST 2024
Sat Nov 02 12:30:14 EDT 2024
Sat Aug 24 00:47:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords FGF
VEGF
angiogenesis
cardiovascular development
thyroid development
quail-chick chimera
amniogenic somatopleure
Language English
License Attribution
2022 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3832-92335b095542d5aaed66e48ee0642edb184ffe2b682f068355e3c0e788dc53a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6476-5593
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdvdy.532
PMID 36038963
PQID 2908294340
PQPubID 946357
PageCount 19
ParticipantIDs proquest_miscellaneous_2708257518
proquest_journals_2908294340
crossref_primary_10_1002_dvdy_532
pubmed_primary_36038963
wiley_primary_10_1002_dvdy_532_DVDY532
PublicationCentury 2000
PublicationDate January 2024
2024-Jan
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Salt Lake City
PublicationTitle Developmental dynamics
PublicationTitleAlternate Dev Dyn
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 560
1933; 65
2010; 54
2017; 7
2012; 241
2013; 4
2007; 105
2000; 6
2004; 28
2010; 106
2015; 142
2021; 129
2019; 566
2011; 11
2021; 282
2016; 143
1920; 192
1996; 188
1999; 200
2007; 75
2014; 297
2012; 11
2005; 23
2013; 14
1963; 166
1983; 220
2016; 118
2007; 171
1993; 70
2003; 5
2014; 9
2004; 80
2014; 6
2017; 246
2018; 37
2005; 79
2011; 138
2004; 88
2015; 14
2012; 100
1984; Pt 4
2005; 279
2018; 145
2016; 409
2016; 245
1951; 88
2021; 184
1995
2013; 340
1917
2013; 381
2012; 1271
2011; 178
1972; 28
2009; 336
2012; 151
1989; 52
2019; 84
2019; 48
2002; 205
1960
1978; 126
2013; 495
2001; 1
2017; 144
2006; 107
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Yamasaki M (e_1_2_9_64_1) 1996; 188
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
Hilfer SR (e_1_2_9_27_1) 1984; 4
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Abdel‐Magied EM (e_1_2_9_25_1) 1978; 126
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 1271
  start-page: 97
  year: 2012
  end-page: 103
  article-title: Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development
  publication-title: Ann N Y Acad Sci
– volume: 4
  start-page: 1564
  year: 2013
  article-title: Haemogenic endocardium contributes to transient definitive haematopoiesis
  publication-title: Nat Commun
– volume: 205
  start-page: 25
  issue: Pt 1
  year: 2002
  end-page: 35
  article-title: Direct observation of syringeal muscle function in songbirds and a parrot
  publication-title: J Exp Biol
– volume: 52
  start-page: 355
  issue: 4
  year: 1989
  end-page: 360
  article-title: The sites of intra‐embryonic Haemopoiesis prior to the hepatic Haemopoiesis in the Chick
  publication-title: Arch Histol Cytol
– volume: 28
  start-page: 22
  issue: 1
  year: 2004
  end-page: 27
  article-title: Development of cultivated mucosal epithelial sheet transplantation for ocular surface reconstruction
  publication-title: Artif Organs
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 14
  article-title: Amniogenic somatopleure: a novel origin of multiple cell lineages contributing to the cardiovascular system
  publication-title: Sci Rep
– volume: 138
  start-page: 5357
  issue: 24
  year: 2011
  end-page: 5368
  article-title: Molecular basis for Flk1 expression in hemato‐cardiovascular progenitors in the mouse
  publication-title: Development
– volume: 297
  start-page: 175
  issue: 2
  year: 2014
  end-page: 182
  article-title: Heart fields: spatial polarity and temporal dynamics
  publication-title: Anat Rec
– start-page: 525
  issue: 2
  year: 1995
  end-page: 538
  article-title: Origins of the avian neural crest: the role of neural plate‐epidermal interactions
  publication-title: Development
– volume: 5
  start-page: 877
  issue: 6
  year: 2003
  end-page: 889
  article-title: Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart
  publication-title: Dev Cell
– volume: 145
  issue: 2
  year: 2018
  article-title: A branching morphogenesis program governs embryonic growth of the thyroid gland
  publication-title: Development
– volume: 145
  issue: 13
  year: 2018
  article-title: Amniotic ectoderm expansion in mouse occurs via distinct modes and requires SMAD5‐mediated signalling
  publication-title: Development
– volume: 381
  start-page: 227
  issue: 1
  year: 2013
  end-page: 240
  article-title: Reciprocal epithelial:endothelial paracrine interactions during thyroid development govern follicular organization and C‐cells differentiation
  publication-title: Dev Biol
– volume: 48
  start-page: 617
  issue: 5
  year: 2019
  end-page: 630.e3
  article-title: Endocardially derived macrophages are essential for valvular remodeling
  publication-title: Dev Cell
– volume: 560
  start-page: 494
  issue: 7719
  year: 2018
  end-page: 498
  article-title: RNA velocity of single cells
  publication-title: Nature
– volume: 118
  start-page: 163
  year: 2016
  end-page: 204
  article-title: SCL/TAL1 in hematopoiesis and cellular reprogramming
  publication-title: Curr Top Dev Biol
– volume: 88
  start-page: 49
  issue: 1
  year: 1951
  end-page: 92
  article-title: A series of normal stages in the development of the chick embryo
  publication-title: J Morphol
– volume: 409
  start-page: 72
  issue: 1
  year: 2016
  end-page: 83
  article-title: Postotic and preotic cranial neural crest cells differently contribute to thyroid development
  publication-title: Dev Biol
– volume: 192
  year: 1920
– year: 1917
– volume: 6
  start-page: 10
  year: 2014
  article-title: Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration
  publication-title: Vasc Cell
– volume: Pt 4
  start-page: 2009
  year: 1984
  end-page: 2022
  article-title: The development of pharyngeal endocrine organs in mouse and chick embryos
  publication-title: Scan Electron Microsc
– volume: 144
  start-page: 2123
  issue: 12
  year: 2017
  end-page: 2140
  article-title: Development of the thyroid gland
  publication-title: Development
– volume: 200
  start-page: 137
  issue: 2
  year: 1999
  end-page: 152
  article-title: Origin and development of the avian tongue muscles
  publication-title: Anat Embryol
– volume: 336
  start-page: 137
  issue: 2
  year: 2009
  end-page: 144
  article-title: The role of secondary heart field in cardiac development
  publication-title: Dev Biol
– volume: 6
  start-page: 389
  issue: 4
  year: 2000
  end-page: 395
  article-title: Mechanisms of angiogenesis and arteriogenesis
  publication-title: Nat Med
– volume: 14
  start-page: 151
  issue: 2
  year: 2013
  end-page: 159
  article-title: Isolation and characterization of equine amniotic membrane‐derived mesenchymal stem cells
  publication-title: J Vet Sci
– volume: 70
  start-page: 165
  issue: 4
  year: 1993
  end-page: 169
  article-title: The sites and expansion of intra‐embryonic blood islands in the early chick embryo
  publication-title: Okajimas Folia Anat Jpn
– volume: 88
  start-page: 1280
  issue: 10
  year: 2004
  end-page: 1284
  article-title: Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders
  publication-title: Br J Ophthalmol
– volume: 37
  start-page: 38
  issue: 1
  year: 2018
  end-page: 44
  article-title: Dimensionality reduction for visualizing single‐cell data using UMAP
  publication-title: Nat Biotechnol
– year: 1960
– volume: 14
  start-page: 270
  issue: 3
  year: 2015
  end-page: 282
  article-title: CDH2 and CDH11 act as regulators of stem cell fate decisions
  publication-title: Stem Cell Res
– volume: 1
  start-page: 435
  issue: 3
  year: 2001
  end-page: 440
  article-title: The arterial pole of the mouse heart forms from Fgf10‐expressing cells in pharyngeal mesoderm
  publication-title: Dev Cell
– volume: 79
  start-page: 528
  issue: 5
  year: 2005
  end-page: 535
  article-title: Human amniotic mesenchymal cells have some characteristics of cardiomyocytes
  publication-title: Transplantation
– volume: 166
  start-page: 284
  year: 1963
  end-page: 295
  article-title: An acetylcholine‐like substance and cholinesterase in the smooth muscle of the chick amnion
  publication-title: J Physiol
– volume: 129
  start-page: 474
  issue: 4
  year: 2021
  end-page: 487
  article-title: Unveiling complexity and multipotentiality of early heart fields
  publication-title: Circ Res
– volume: 220
  start-page: 268
  issue: 4594
  year: 1983
  end-page: 273
  article-title: Neural crest and the origin of vertebrates: a new head
  publication-title: Science
– volume: 23
  start-page: 1549
  issue: 10
  year: 2005
  end-page: 1559
  article-title: Stem cell characteristics of amniotic epithelial cells
  publication-title: Stem Cells
– volume: 282
  start-page: 1080
  issue: 7
  year: 2021
  end-page: 1122
  article-title: Phylogeny and evolutionary history of the amniote egg
  publication-title: J Morphol
– volume: 246
  start-page: 719
  issue: 10
  year: 2017
  end-page: 739
  article-title: Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells
  publication-title: Dev Dyn
– volume: 245
  start-page: 1011
  issue: 10
  year: 2016
  end-page: 1028
  article-title: Insights into blood cell formation from hemogenic endothelium in lesser‐known anatomic sites
  publication-title: Dev Dyn
– volume: 143
  start-page: 1302
  issue: 8
  year: 2016
  end-page: 1312
  article-title: An in vitro model of hemogenic endothelium commitment and hematopoietic production
  publication-title: Development
– volume: 105
  start-page: 215
  issue: 3
  year: 2007
  end-page: 228
  article-title: The potential of amniotic membrane/amnion‐derived cells for regeneration of various tissues
  publication-title: J Pharmacol Sci
– volume: 100
  start-page: 33
  year: 2012
  end-page: 65
  article-title: The second heart field
  publication-title: Curr Top Dev Biol
– volume: 151
  start-page: 559
  issue: 3
  year: 2012
  end-page: 575
  article-title: Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression
  publication-title: Cell
– volume: 28
  start-page: 202
  issue: 1
  year: 1972
  end-page: 218
  article-title: Early organogenesis of the embryonic chick thyroid: I. . Morphology and biochemistry
  publication-title: Dev Biol
– volume: 142
  start-page: 2850
  issue: 16
  year: 2015
  end-page: 2859
  article-title: A transgenic quail model that enables dynamic imaging of amniote embryogenesis
  publication-title: Development
– volume: 495
  start-page: 227
  issue: 7440
  year: 2013
  end-page: 230
  article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem‐cell maintenance
  publication-title: Nature
– volume: 126
  start-page: 535
  issue: Pt 3
  year: 1978
  end-page: 546
  article-title: The topographical anatomy and blood supply of the carotid body region of the domestic fowl
  publication-title: J Anat
– volume: 184
  start-page: 3573
  issue: 13
  year: 2021
  end-page: 3587.e29
  article-title: Integrated analysis of multimodal single‐cell data
  publication-title: Cell.
– volume: 80
  start-page: 21
  issue: 1
  year: 2004
  end-page: 28
  article-title: Angiopoietin‐related/angiopoietin‐like proteins regulate angiogenesis
  publication-title: Int J Hematol
– volume: 107
  start-page: 111
  issue: 1
  year: 2006
  end-page: 117
  article-title: Deletion of the selection cassette, but not cis‐acting elements, in targeted Flk1‐lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors
  publication-title: Blood
– volume: 106
  start-page: 495
  issue: 3
  year: 2010
  end-page: 503
  article-title: Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries
  publication-title: Circ Res
– volume: 65
  start-page: 443
  issue: 3
  year: 1933
  end-page: 473
  article-title: The amnion of the chick as an independent effector
  publication-title: J Exp Zool
– volume: 241
  start-page: 1333
  issue: 8
  year: 2012
  end-page: 1349
  article-title: Timing and kinetics of E‐ to N‐cadherin switch during neurulation in the avian embryo
  publication-title: Dev Dyn
– volume: 279
  start-page: 169
  issue: 1
  year: 2005
  end-page: 178
  article-title: VEGF directs newly gastrulated mesoderm to the endothelial lineage
  publication-title: Dev Biol
– volume: 178
  start-page: 39
  issue: 1
  year: 2011
  end-page: 50
  article-title: Evolution and development of fetal membranes and placentation in amniote vertebrates
  publication-title: Respir Physiol Neurobiol
– volume: 188
  start-page: 557
  issue: Pt 3
  year: 1996
  end-page: 564
  article-title: Comparative anatomical studies on the thyroid and thymic arteries. IV. Rabbit ( )
  publication-title: J Anat
– volume: 9
  issue: 3
  year: 2014
  article-title: The involvement of the proamnion in the development of the anterior amnion fold in the chicken
  publication-title: PLoS One
– volume: 84
  start-page: 50
  year: 2019
  end-page: 56
  article-title: Amnion‐derived cells as a reliable resource for next‐generation regenerative medicine
  publication-title: Placenta
– volume: 340
  start-page: 744
  issue: 6133
  year: 2013
  end-page: 748
  article-title: Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field
  publication-title: Science
– volume: 11
  start-page: 663
  issue: 5
  year: 2012
  end-page: 675
  article-title: Mouse embryonic head as a site for hematopoietic stem cell development
  publication-title: Cell Stem Cell
– volume: 75
  start-page: 91
  issue: 2
  year: 2007
  end-page: 96
  article-title: Identification of stem cell marker‐positive cells by immunofluorescence in term human amnion
  publication-title: J Reprod Immunol
– volume: 11
  start-page: 48
  year: 2011
  article-title: Amnion formation in the mouse embryo: the single amniochorionic fold model
  publication-title: BMC Dev Biol
– volume: 54
  start-page: 761
  issue: 5
  year: 2010
  end-page: 777
  article-title: On the origin of amniotic stem cells: of mice and men
  publication-title: Int J Dev Biol
– volume: 171
  start-page: 386
  issue: 2
  year: 2007
  end-page: 395
  article-title: Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule
  publication-title: Am J Pathol
– volume: 566
  start-page: 496
  issue: 7745
  year: 2019
  end-page: 502
  article-title: The single‐cell transcriptional landscape of mammalian organogenesis
  publication-title: Nature
– ident: e_1_2_9_18_1
  doi: 10.5962/bhl.title.17672
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1525‐1594.2004.07319.x
– ident: e_1_2_9_49_1
  doi: 10.1126/science.1232877
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ydbio.2013.04.022
– ident: e_1_2_9_35_1
  doi: 10.1038/74651
– ident: e_1_2_9_37_1
  doi: 10.1002/jez.1400650307
– ident: e_1_2_9_66_1
  doi: 10.1016/j.ydbio.2004.12.011
– ident: e_1_2_9_63_1
  doi: 10.1242/dev.146829
– ident: e_1_2_9_2_1
  doi: 10.1016/j.resp.2011.03.029
– ident: e_1_2_9_9_1
  doi: 10.1186/2045‐824X‐6‐10
– ident: e_1_2_9_8_1
  doi: 10.4142/jvs.2013.14.2.151
– ident: e_1_2_9_11_1
  doi: 10.1097/01.tp.0000149503.92433.39
– ident: e_1_2_9_29_1
  doi: 10.1016/0012‐1606(72)90138‐8
– ident: e_1_2_9_50_1
  doi: 10.1016/B978‐0‐12‐387786‐4.00002‐6
– ident: e_1_2_9_61_1
  doi: 10.1242/dev.157222
– ident: e_1_2_9_13_1
  doi: 10.1136/bjo.2003.038497
– ident: e_1_2_9_32_1
  doi: 10.1242/dev.065565
– ident: e_1_2_9_59_1
  doi: 10.1016/j.devcel.2019.01.021
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jri.2007.03.017
– ident: e_1_2_9_17_1
  doi: 10.1038/s41598‐017‐08305‐2
– ident: e_1_2_9_62_1
  doi: 10.1161/CIRCRESAHA.121.318943
– ident: e_1_2_9_16_1
  doi: 10.1186/1471‐213X‐11‐48
– ident: e_1_2_9_12_1
  doi: 10.1254/jphs.CR0070034
– ident: e_1_2_9_44_1
  doi: 10.1532/ijh97.04034
– ident: e_1_2_9_48_1
  doi: 10.1002/ar.22831
– volume: 4
  start-page: 2009
  year: 1984
  ident: e_1_2_9_27_1
  article-title: The development of pharyngeal endocrine organs in mouse and chick embryos
  publication-title: Scan Electron Microsc
  contributor:
    fullname: Hilfer SR
– ident: e_1_2_9_20_1
  doi: 10.1002/jmor.1050880104
– ident: e_1_2_9_24_1
  doi: 10.1242/jeb.205.1.25
– ident: e_1_2_9_39_1
  doi: 10.1038/nbt.4314
– ident: e_1_2_9_53_1
  doi: 10.1016/s1534‐5807(01)00040‐5
– volume: 126
  start-page: 535
  issue: 3
  year: 1978
  ident: e_1_2_9_25_1
  article-title: The topographical anatomy and blood supply of the carotid body region of the domestic fowl
  publication-title: J Anat
  contributor:
    fullname: Abdel‐Magied EM
– ident: e_1_2_9_38_1
  doi: 10.1113/jphysiol.1963.sp007105
– ident: e_1_2_9_54_1
  doi: 10.1679/aohc.52.355
– volume: 188
  start-page: 557
  issue: 3
  year: 1996
  ident: e_1_2_9_64_1
  article-title: Comparative anatomical studies on the thyroid and thymic arteries. IV. Rabbit (Oryctolagus cuniculus)
  publication-title: J Anat
  contributor:
    fullname: Yamasaki M
– ident: e_1_2_9_46_1
  doi: 10.1038/s41586‐019‐0969‐x
– ident: e_1_2_9_23_1
  doi: 10.1007/s004290050268
– ident: e_1_2_9_15_1
  doi: 10.1016/j.placenta.2019.06.381
– ident: e_1_2_9_6_1
  doi: 10.1634/stemcells.2004‐0357
– ident: e_1_2_9_42_1
  doi: 10.1038/nature11926
– ident: e_1_2_9_52_1
  doi: 10.1161/CIRCRESAHA.109.201665
– ident: e_1_2_9_34_1
  doi: 10.1016/bs.ctdb.2016.01.004
– ident: e_1_2_9_10_1
  doi: 10.1016/j.cell.2012.09.032
– ident: e_1_2_9_5_1
  doi: 10.1387/ijdb.092935md
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ydbio.2015.10.026
– ident: e_1_2_9_60_1
  doi: 10.1111/j.1749‐6632.2012.06726.x
– ident: e_1_2_9_19_1
– ident: e_1_2_9_65_1
  doi: 10.1126/science.220.4594.268
– ident: e_1_2_9_45_1
  doi: 10.1038/s41586‐018‐0414‐6
– ident: e_1_2_9_56_1
  doi: 10.1038/ncomms2569
– ident: e_1_2_9_28_1
  doi: 10.1242/dev.145615
– ident: e_1_2_9_40_1
  doi: 10.1002/dvdy.23813
– ident: e_1_2_9_41_1
  doi: 10.2353/ajpath.2007.070152
– ident: e_1_2_9_68_1
  doi: 10.1016/j.cell.2021.04.048
– ident: e_1_2_9_22_1
  doi: 10.1242/dev.121.2.525
– ident: e_1_2_9_51_1
  doi: 10.1016/s1534‐5807(03)00363‐0
– ident: e_1_2_9_3_1
  doi: 10.1002/jmor.21380
– ident: e_1_2_9_67_1
  doi: 10.1242/dev.126714
– ident: e_1_2_9_36_1
  doi: 10.1152/ajplegacy.1917.44.1.67
– ident: e_1_2_9_43_1
  doi: 10.1016/j.scr.2015.02.002
– ident: e_1_2_9_47_1
  doi: 10.1016/j.ydbio.2009.10.009
– ident: e_1_2_9_4_1
  doi: 10.1371/journal.pone.0092672
– ident: e_1_2_9_26_1
  doi: 10.1002/dvdy.24534
– ident: e_1_2_9_33_1
  doi: 10.1182/blood‐2005‐05‐1970
– ident: e_1_2_9_21_1
  doi: 10.1242/dev.121392
– ident: e_1_2_9_57_1
  doi: 10.1002/dvdy.24430
– ident: e_1_2_9_58_1
  doi: 10.1016/j.stem.2012.07.004
– ident: e_1_2_9_55_1
  doi: 10.2535/ofaj1936.70.4_165
SSID ssj0008641
Score 2.4771476
Snippet Background The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that...
The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic...
Here, we show that amniogenic somatopleure cells (ASCs) differentiate into various cell types constituting the cardiovascular system, with some populations...
BackgroundThe somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that...
BACKGROUNDThe somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 59
SubjectTerms amniogenic somatopleure
Amnion
angiogenesis
Cardiac muscle
Cardiomyocytes
cardiovascular development
Cell culture
Cell differentiation
Chimeras
Differentiation
Endothelial cells
FGF
Fibroblast growth factors
Gene expression
Growth factors
Heterogeneity
Interstitial cells
Pharynx
quail‐chick chimera
Quorum sensing
Smooth muscle
Thyroid
thyroid development
Thyroid gland
Transcriptomes
Vascular endothelial growth factor
VEGF
Title Diverse contribution of amniogenic somatopleural cells to cardiovascular development: With special reference to thyroid vasculature
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdvdy.532
https://www.ncbi.nlm.nih.gov/pubmed/36038963
https://www.proquest.com/docview/2908294340
https://search.proquest.com/docview/2708257518
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50QfHi-7G6SgTxVt1N2m7qTVzFiyL49lLSJMU92IrdFTz7x51JH7KIIHgqpEkbMpPkm8nkG4A9hSg1lVx4SdSL0ECJUi9SWnm2l_hGWuKoI1f2-XX_8kEOTokm56i-C1PyQzQON5oZbr2mCa6S4vCbNNS8m4-DQNDyi0aCu70hrppFWIYuaSWiB-lJIWXNO9vlh3XDyZ3oB7ycRKtuuzlb-E9HF2G-ApnsuNSKJZiy2TLMlGknP5Zh9qI6UMfCp9wVrsDnwEVoWOaC16ssWCxPmXrJhjmq2VCzIkd8SxHnxNXByOdfsFHO9ERMKzPfcUhH7H44emZFmeSeNTlNqBVqyFs-NKxqRycZq3B7dnpzcu5VGRo8jZYt9xAdiiAhFjufm0Apa8LQ-tJaMmusSdB8TFPLk1DytBsi2Aus0F2LZrfRgVChWINWlmd2A7Bvqe2TfaqlQBDJldCRH0lfEyDVwrRht5ZW_FoSccQl5TKPaYRjHOE2dGoxxtVULGJOSd2JBa-Ln2he4ySiUVKZzcdYp0-WMp1AtWG9FH_zExESB2Eo2rDvpPzr3-PB3eARn5t_rbgFcxwhUunQ6UBr9Da22zBdmPGOU-Yvt-P5Ow
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VrXhcoLwXaGukilvKYideB06IBW1VQEilBXqJHNsReyBBZBdpz_xxZvJCK4SExCmSYyeWZ2x_Mx5_A_BDI0pNFBdeHO6FaKCEiRdqoz23F_tWOeKoI1d2_0_3_Fr1jokm56C-C1PyQzQON5oZxXpNE5wc0rsvrKH20Y5_BgLX38--RD2k-xviolmGlSzSViJ-UJ4SStXMsx2-W7ec3IteAcxJvFpsOCcLH-rqF5ivcCY7LBVjET65dAmmy8yT4yWYOavO1LHwf1YULsNTrwjScKyIX68SYbEsYfouHWSoaQPD8gwhLgWdE10HI7d_zoYZMxNhrcy-hCLts6vB8JblZZ571qQ1oVaoJA_ZwLKqHR1mrMDfk-PLo75XJWnwDBq33EOAKIKYiOx8bgOtnZXS-co5smycjdGCTBLHY6l40pGI9wInTMeh5W1NILQUq9BKs9StA_YtcV0yUY0SiCO5Fib0Q-UbwqRG2DZs1-KK7ksujqhkXeYRjXCEI9yGrVqOUTUb84hTXnciwuvgJ5rXOI9olHTqshHW6ZKxTIdQbVgr5d_8REiiIZSiDTuFmN_8e9T717vB58Z7K36H2f7l2Wl0-uv89ybMcURMpX9nC1rDh5H7ClO5HX0rNPsZZyL9Yw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB68oPhyvHvWawTxre6atN3UN7EuihcE776UNElxH04rdveAz_5xZ3qTRQTBp0KaNCEzSb6ZTL8B2FGIUhPJhRMH-wEaKEHiBEorx-7HrpGWOOrIlX1y3b18kOEx0eQc1P_ClPwQjcONVkaxX9MCfzFJ-5M01Pw3b3uewO130kUUTrz5Qlw1u7D0i6yVCB-kI4WUNfFsh7frlqNH0Rd8OQpXi_OmN_ubkc7BnwplssNSLeZhzKYLMFXmnXxbgOmL6kYdC5-yonAR3sMiRMOyInq9SoPFsoSpf2k_Qz3ra5ZnCHAp5JzIOhg5_XM2yJgeCWpl5jMQ6YDd9wfPLC-z3LMmqQm1QhV5zfqGVe3oKmMJbnvHN0cnTpWiwdFo2nIH4aHwYqKxc7nxlLLG960rrSW7xpoY7ccksTz2JU86PqI9zwrdsWh3G-0J5YtlmEiz1P4FHFtiu2SgaikQRXIldOAG0tWESLUwLdiupRW9lEwcUcm5zCOa4QhnuAXrtRijai3mEaes7kSD18FPNK9xFdEsqdRmQ6zTJVOZrqBasFKKv-lE-ERC6IsW7BZS_rb3KLwLH_G5-tOKWzB9Ffai89PLszWY4QiXSufOOkwMXod2A8ZzM9ws9PoDX2P8CQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+contribution+of+amniogenic+somatopleural+cells+to+cardiovascular+development%3A+With+special+reference+to+thyroid+vasculature&rft.jtitle=Developmental+dynamics&rft.au=Haneda%2C+Yuka&rft.au=Miyagawa%E2%80%90Tomita%2C+Sachiko&rft.au=Uchijima%2C+Yasunobu&rft.au=Iwase%2C+Akiyasu&rft.date=2024-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1058-8388&rft.eissn=1097-0177&rft.volume=253&rft.issue=1&rft.spage=59&rft.epage=77&rft_id=info:doi/10.1002%2Fdvdy.532&rft.externalDBID=10.1002%252Fdvdy.532&rft.externalDocID=DVDY532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-8388&client=summon