Diverse contribution of amniogenic somatopleural cells to cardiovascular development: With special reference to thyroid vasculature
Background The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular en...
Saved in:
Published in: | Developmental dynamics Vol. 253; no. 1; pp. 59 - 77 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-01-2024
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Background
The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra‐embryonic ASCs (hereafter referred to as iASCs) remain largely unknown.
Results
By quail‐chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra‐thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single‐cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast‐like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression.
Conclusion
The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
Key Findings
Here, we show that amniogenic somatopleure cells (ASCs) differentiate into various cell types constituting the cardiovascular system, with some populations having a molecular background similar to that of hemangioblasts. Among them, those contributing to the thyroid vascular network were suggested to differentiate into vascular endothelial cells with FGF‐specification and VEGF‐induced maturation. This study will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives. |
---|---|
AbstractList | Background
The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra‐embryonic ASCs (hereafter referred to as iASCs) remain largely unknown.
Results
By quail‐chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra‐thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single‐cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast‐like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression.
Conclusion
The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
Key Findings
Here, we show that amniogenic somatopleure cells (ASCs) differentiate into various cell types constituting the cardiovascular system, with some populations having a molecular background similar to that of hemangioblasts. Among them, those contributing to the thyroid vascular network were suggested to differentiate into vascular endothelial cells with FGF‐specification and VEGF‐induced maturation. This study will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives. BackgroundThe somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra‐embryonic ASCs (hereafter referred to as iASCs) remain largely unknown.ResultsBy quail‐chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra‐thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single‐cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast‐like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression.ConclusionThe present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives. Here, we show that amniogenic somatopleure cells (ASCs) differentiate into various cell types constituting the cardiovascular system, with some populations having a molecular background similar to that of hemangioblasts. Among them, those contributing to the thyroid vascular network were suggested to differentiate into vascular endothelial cells with FGF‐specification and VEGF‐induced maturation. This study will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives. The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra-embryonic ASCs (hereafter referred to as iASCs) remain largely unknown. By quail-chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra-thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single-cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast-like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression. The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives. |
Author | Miyagawa‐Tomita, Sachiko Uchijima, Yasunobu Iwase, Akiyasu Wada, Youichiro Haneda, Yuka Kurihara, Hiroki Kohro, Takahide Asai, Rieko |
Author_xml | – sequence: 1 givenname: Yuka surname: Haneda fullname: Haneda, Yuka organization: Institute for Advanced Medical Sciences, Nippon Medical School – sequence: 2 givenname: Sachiko surname: Miyagawa‐Tomita fullname: Miyagawa‐Tomita, Sachiko organization: Yamazaki University of Animal Health Technology – sequence: 3 givenname: Yasunobu surname: Uchijima fullname: Uchijima, Yasunobu organization: The University of Tokyo – sequence: 4 givenname: Akiyasu surname: Iwase fullname: Iwase, Akiyasu organization: The University of Tokyo – sequence: 5 givenname: Rieko surname: Asai fullname: Asai, Rieko organization: University of California San Francisco – sequence: 6 givenname: Takahide surname: Kohro fullname: Kohro, Takahide organization: Jichi Medical University – sequence: 7 givenname: Youichiro surname: Wada fullname: Wada, Youichiro organization: The University of Tokyo – sequence: 8 givenname: Hiroki orcidid: 0000-0002-6476-5593 surname: Kurihara fullname: Kurihara, Hiroki email: kuri-tky@umin.net organization: The University of Tokyo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36038963$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1LHTEUhkNR6kcL_oIScONmNJNMMpnuirfVguBGLV2FTHJGIzPJNMncctf9453Bq4Lg6pzF8z6cw3uAdnzwgNBRSU5LQuiZXdvNKWf0A9ovSVMXpKzrnWXnspBMyj10kNIjIUSKqvyI9pggTDaC7aN_K7eGmACb4HN07ZRd8Dh0WA_ehXvwzuAUBp3D2MMUdY8N9H3COWCjo3VhrZOZeh2xhTX0YRzA56_4l8sPOI1g3JyI0EEEb2BJ5YdNDM7ibS5PET6h3U73CT5v5yG6_fH95vyyuLq--Hn-7aowTDJaNJQx3pKG84parjVYIaCSAERUFGxbyqrrgLZC0o4IyTgHZgjUUlrDmRbsEJ08eccY_kyQshpcWt7RHsKUFK2JpLzmpZzR4zfoY5iin69TtJmppmIVeRWaGFKa31RjdIOOG1UStRSjlmLUXMyMftkKp3YA-wI-NzEDxRPw1_WweVekVner34vwP5NonB0 |
CitedBy_id | crossref_primary_10_1002_dvdy_685 |
Cites_doi | 10.5962/bhl.title.17672 10.1111/j.1525‐1594.2004.07319.x 10.1126/science.1232877 10.1016/j.ydbio.2013.04.022 10.1038/74651 10.1002/jez.1400650307 10.1016/j.ydbio.2004.12.011 10.1242/dev.146829 10.1016/j.resp.2011.03.029 10.1186/2045‐824X‐6‐10 10.4142/jvs.2013.14.2.151 10.1097/01.tp.0000149503.92433.39 10.1016/0012‐1606(72)90138‐8 10.1016/B978‐0‐12‐387786‐4.00002‐6 10.1242/dev.157222 10.1136/bjo.2003.038497 10.1242/dev.065565 10.1016/j.devcel.2019.01.021 10.1016/j.jri.2007.03.017 10.1038/s41598‐017‐08305‐2 10.1161/CIRCRESAHA.121.318943 10.1186/1471‐213X‐11‐48 10.1254/jphs.CR0070034 10.1532/ijh97.04034 10.1002/ar.22831 10.1002/jmor.1050880104 10.1242/jeb.205.1.25 10.1038/nbt.4314 10.1016/s1534‐5807(01)00040‐5 10.1113/jphysiol.1963.sp007105 10.1679/aohc.52.355 10.1038/s41586‐019‐0969‐x 10.1007/s004290050268 10.1016/j.placenta.2019.06.381 10.1634/stemcells.2004‐0357 10.1038/nature11926 10.1161/CIRCRESAHA.109.201665 10.1016/bs.ctdb.2016.01.004 10.1016/j.cell.2012.09.032 10.1387/ijdb.092935md 10.1016/j.ydbio.2015.10.026 10.1111/j.1749‐6632.2012.06726.x 10.1126/science.220.4594.268 10.1038/s41586‐018‐0414‐6 10.1038/ncomms2569 10.1242/dev.145615 10.1002/dvdy.23813 10.2353/ajpath.2007.070152 10.1016/j.cell.2021.04.048 10.1242/dev.121.2.525 10.1016/s1534‐5807(03)00363‐0 10.1002/jmor.21380 10.1242/dev.126714 10.1152/ajplegacy.1917.44.1.67 10.1016/j.scr.2015.02.002 10.1016/j.ydbio.2009.10.009 10.1371/journal.pone.0092672 10.1002/dvdy.24534 10.1182/blood‐2005‐05‐1970 10.1242/dev.121392 10.1002/dvdy.24430 10.1016/j.stem.2012.07.004 10.2535/ofaj1936.70.4_165 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Association for Anatomy. 2022 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Association for Anatomy. – notice: 2022 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7SS 7TK 8FD FR3 JQ2 K9. P64 RC3 7X8 |
DOI | 10.1002/dvdy.532 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Online Library Free Content PubMed CrossRef Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef PubMed MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1097-0177 |
EndPage | 77 |
ExternalDocumentID | 10_1002_dvdy_532 36038963 DVDY532 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: University of Tokyo – fundername: Japan Society for the Promotion of Science funderid: 19H01048; 19K08308; 20J11793; 21K19519 – fundername: Kyushu University – fundername: Keck School of Medicine of USC – fundername: Japan Society for the Promotion of Science grantid: 21K19519 – fundername: Japan Society for the Promotion of Science grantid: 19H01048 – fundername: Japan Society for the Promotion of Science grantid: 20J11793 – fundername: Japan Society for the Promotion of Science grantid: 19K08308 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DIK DPXWK DR1 DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N G8K GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OK1 P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 SAMSI SUPJJ SV3 UB1 UKR V2E VH1 W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ X7M XG1 XJT XPP XV2 YCJ ZGI ZZTAW ~IA ~WT ABDPE NPM AAMNL AAYXX CITATION 7SS 7TK 8FD FR3 JQ2 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3832-92335b095542d5aaed66e48ee0642edb184ffe2b682f068355e3c0e788dc53a63 |
IEDL.DBID | 33P |
ISSN | 1058-8388 |
IngestDate | Fri Aug 16 23:00:37 EDT 2024 Tue Nov 19 04:31:17 EST 2024 Thu Nov 21 23:32:05 EST 2024 Sat Nov 02 12:30:14 EDT 2024 Sat Aug 24 00:47:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | FGF VEGF angiogenesis cardiovascular development thyroid development quail-chick chimera amniogenic somatopleure |
Language | English |
License | Attribution 2022 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3832-92335b095542d5aaed66e48ee0642edb184ffe2b682f068355e3c0e788dc53a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6476-5593 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdvdy.532 |
PMID | 36038963 |
PQID | 2908294340 |
PQPubID | 946357 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2708257518 proquest_journals_2908294340 crossref_primary_10_1002_dvdy_532 pubmed_primary_36038963 wiley_primary_10_1002_dvdy_532_DVDY532 |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-Jan 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Salt Lake City |
PublicationTitle | Developmental dynamics |
PublicationTitleAlternate | Dev Dyn |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2018; 560 1933; 65 2010; 54 2017; 7 2012; 241 2013; 4 2007; 105 2000; 6 2004; 28 2010; 106 2015; 142 2021; 129 2019; 566 2011; 11 2021; 282 2016; 143 1920; 192 1996; 188 1999; 200 2007; 75 2014; 297 2012; 11 2005; 23 2013; 14 1963; 166 1983; 220 2016; 118 2007; 171 1993; 70 2003; 5 2014; 9 2004; 80 2014; 6 2017; 246 2018; 37 2005; 79 2011; 138 2004; 88 2015; 14 2012; 100 1984; Pt 4 2005; 279 2018; 145 2016; 409 2016; 245 1951; 88 2021; 184 1995 2013; 340 1917 2013; 381 2012; 1271 2011; 178 1972; 28 2009; 336 2012; 151 1989; 52 2019; 84 2019; 48 2002; 205 1960 1978; 126 2013; 495 2001; 1 2017; 144 2006; 107 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 Yamasaki M (e_1_2_9_64_1) 1996; 188 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 Hilfer SR (e_1_2_9_27_1) 1984; 4 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Abdel‐Magied EM (e_1_2_9_25_1) 1978; 126 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 1271 start-page: 97 year: 2012 end-page: 103 article-title: Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development publication-title: Ann N Y Acad Sci – volume: 4 start-page: 1564 year: 2013 article-title: Haemogenic endocardium contributes to transient definitive haematopoiesis publication-title: Nat Commun – volume: 205 start-page: 25 issue: Pt 1 year: 2002 end-page: 35 article-title: Direct observation of syringeal muscle function in songbirds and a parrot publication-title: J Exp Biol – volume: 52 start-page: 355 issue: 4 year: 1989 end-page: 360 article-title: The sites of intra‐embryonic Haemopoiesis prior to the hepatic Haemopoiesis in the Chick publication-title: Arch Histol Cytol – volume: 28 start-page: 22 issue: 1 year: 2004 end-page: 27 article-title: Development of cultivated mucosal epithelial sheet transplantation for ocular surface reconstruction publication-title: Artif Organs – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 14 article-title: Amniogenic somatopleure: a novel origin of multiple cell lineages contributing to the cardiovascular system publication-title: Sci Rep – volume: 138 start-page: 5357 issue: 24 year: 2011 end-page: 5368 article-title: Molecular basis for Flk1 expression in hemato‐cardiovascular progenitors in the mouse publication-title: Development – volume: 297 start-page: 175 issue: 2 year: 2014 end-page: 182 article-title: Heart fields: spatial polarity and temporal dynamics publication-title: Anat Rec – start-page: 525 issue: 2 year: 1995 end-page: 538 article-title: Origins of the avian neural crest: the role of neural plate‐epidermal interactions publication-title: Development – volume: 5 start-page: 877 issue: 6 year: 2003 end-page: 889 article-title: Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart publication-title: Dev Cell – volume: 145 issue: 2 year: 2018 article-title: A branching morphogenesis program governs embryonic growth of the thyroid gland publication-title: Development – volume: 145 issue: 13 year: 2018 article-title: Amniotic ectoderm expansion in mouse occurs via distinct modes and requires SMAD5‐mediated signalling publication-title: Development – volume: 381 start-page: 227 issue: 1 year: 2013 end-page: 240 article-title: Reciprocal epithelial:endothelial paracrine interactions during thyroid development govern follicular organization and C‐cells differentiation publication-title: Dev Biol – volume: 48 start-page: 617 issue: 5 year: 2019 end-page: 630.e3 article-title: Endocardially derived macrophages are essential for valvular remodeling publication-title: Dev Cell – volume: 560 start-page: 494 issue: 7719 year: 2018 end-page: 498 article-title: RNA velocity of single cells publication-title: Nature – volume: 118 start-page: 163 year: 2016 end-page: 204 article-title: SCL/TAL1 in hematopoiesis and cellular reprogramming publication-title: Curr Top Dev Biol – volume: 88 start-page: 49 issue: 1 year: 1951 end-page: 92 article-title: A series of normal stages in the development of the chick embryo publication-title: J Morphol – volume: 409 start-page: 72 issue: 1 year: 2016 end-page: 83 article-title: Postotic and preotic cranial neural crest cells differently contribute to thyroid development publication-title: Dev Biol – volume: 192 year: 1920 – year: 1917 – volume: 6 start-page: 10 year: 2014 article-title: Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration publication-title: Vasc Cell – volume: Pt 4 start-page: 2009 year: 1984 end-page: 2022 article-title: The development of pharyngeal endocrine organs in mouse and chick embryos publication-title: Scan Electron Microsc – volume: 144 start-page: 2123 issue: 12 year: 2017 end-page: 2140 article-title: Development of the thyroid gland publication-title: Development – volume: 200 start-page: 137 issue: 2 year: 1999 end-page: 152 article-title: Origin and development of the avian tongue muscles publication-title: Anat Embryol – volume: 336 start-page: 137 issue: 2 year: 2009 end-page: 144 article-title: The role of secondary heart field in cardiac development publication-title: Dev Biol – volume: 6 start-page: 389 issue: 4 year: 2000 end-page: 395 article-title: Mechanisms of angiogenesis and arteriogenesis publication-title: Nat Med – volume: 14 start-page: 151 issue: 2 year: 2013 end-page: 159 article-title: Isolation and characterization of equine amniotic membrane‐derived mesenchymal stem cells publication-title: J Vet Sci – volume: 70 start-page: 165 issue: 4 year: 1993 end-page: 169 article-title: The sites and expansion of intra‐embryonic blood islands in the early chick embryo publication-title: Okajimas Folia Anat Jpn – volume: 88 start-page: 1280 issue: 10 year: 2004 end-page: 1284 article-title: Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders publication-title: Br J Ophthalmol – volume: 37 start-page: 38 issue: 1 year: 2018 end-page: 44 article-title: Dimensionality reduction for visualizing single‐cell data using UMAP publication-title: Nat Biotechnol – year: 1960 – volume: 14 start-page: 270 issue: 3 year: 2015 end-page: 282 article-title: CDH2 and CDH11 act as regulators of stem cell fate decisions publication-title: Stem Cell Res – volume: 1 start-page: 435 issue: 3 year: 2001 end-page: 440 article-title: The arterial pole of the mouse heart forms from Fgf10‐expressing cells in pharyngeal mesoderm publication-title: Dev Cell – volume: 79 start-page: 528 issue: 5 year: 2005 end-page: 535 article-title: Human amniotic mesenchymal cells have some characteristics of cardiomyocytes publication-title: Transplantation – volume: 166 start-page: 284 year: 1963 end-page: 295 article-title: An acetylcholine‐like substance and cholinesterase in the smooth muscle of the chick amnion publication-title: J Physiol – volume: 129 start-page: 474 issue: 4 year: 2021 end-page: 487 article-title: Unveiling complexity and multipotentiality of early heart fields publication-title: Circ Res – volume: 220 start-page: 268 issue: 4594 year: 1983 end-page: 273 article-title: Neural crest and the origin of vertebrates: a new head publication-title: Science – volume: 23 start-page: 1549 issue: 10 year: 2005 end-page: 1559 article-title: Stem cell characteristics of amniotic epithelial cells publication-title: Stem Cells – volume: 282 start-page: 1080 issue: 7 year: 2021 end-page: 1122 article-title: Phylogeny and evolutionary history of the amniote egg publication-title: J Morphol – volume: 246 start-page: 719 issue: 10 year: 2017 end-page: 739 article-title: Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells publication-title: Dev Dyn – volume: 245 start-page: 1011 issue: 10 year: 2016 end-page: 1028 article-title: Insights into blood cell formation from hemogenic endothelium in lesser‐known anatomic sites publication-title: Dev Dyn – volume: 143 start-page: 1302 issue: 8 year: 2016 end-page: 1312 article-title: An in vitro model of hemogenic endothelium commitment and hematopoietic production publication-title: Development – volume: 105 start-page: 215 issue: 3 year: 2007 end-page: 228 article-title: The potential of amniotic membrane/amnion‐derived cells for regeneration of various tissues publication-title: J Pharmacol Sci – volume: 100 start-page: 33 year: 2012 end-page: 65 article-title: The second heart field publication-title: Curr Top Dev Biol – volume: 151 start-page: 559 issue: 3 year: 2012 end-page: 575 article-title: Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression publication-title: Cell – volume: 28 start-page: 202 issue: 1 year: 1972 end-page: 218 article-title: Early organogenesis of the embryonic chick thyroid: I. . Morphology and biochemistry publication-title: Dev Biol – volume: 142 start-page: 2850 issue: 16 year: 2015 end-page: 2859 article-title: A transgenic quail model that enables dynamic imaging of amniote embryogenesis publication-title: Development – volume: 495 start-page: 227 issue: 7440 year: 2013 end-page: 230 article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem‐cell maintenance publication-title: Nature – volume: 126 start-page: 535 issue: Pt 3 year: 1978 end-page: 546 article-title: The topographical anatomy and blood supply of the carotid body region of the domestic fowl publication-title: J Anat – volume: 184 start-page: 3573 issue: 13 year: 2021 end-page: 3587.e29 article-title: Integrated analysis of multimodal single‐cell data publication-title: Cell. – volume: 80 start-page: 21 issue: 1 year: 2004 end-page: 28 article-title: Angiopoietin‐related/angiopoietin‐like proteins regulate angiogenesis publication-title: Int J Hematol – volume: 107 start-page: 111 issue: 1 year: 2006 end-page: 117 article-title: Deletion of the selection cassette, but not cis‐acting elements, in targeted Flk1‐lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors publication-title: Blood – volume: 106 start-page: 495 issue: 3 year: 2010 end-page: 503 article-title: Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries publication-title: Circ Res – volume: 65 start-page: 443 issue: 3 year: 1933 end-page: 473 article-title: The amnion of the chick as an independent effector publication-title: J Exp Zool – volume: 241 start-page: 1333 issue: 8 year: 2012 end-page: 1349 article-title: Timing and kinetics of E‐ to N‐cadherin switch during neurulation in the avian embryo publication-title: Dev Dyn – volume: 279 start-page: 169 issue: 1 year: 2005 end-page: 178 article-title: VEGF directs newly gastrulated mesoderm to the endothelial lineage publication-title: Dev Biol – volume: 178 start-page: 39 issue: 1 year: 2011 end-page: 50 article-title: Evolution and development of fetal membranes and placentation in amniote vertebrates publication-title: Respir Physiol Neurobiol – volume: 188 start-page: 557 issue: Pt 3 year: 1996 end-page: 564 article-title: Comparative anatomical studies on the thyroid and thymic arteries. IV. Rabbit ( ) publication-title: J Anat – volume: 9 issue: 3 year: 2014 article-title: The involvement of the proamnion in the development of the anterior amnion fold in the chicken publication-title: PLoS One – volume: 84 start-page: 50 year: 2019 end-page: 56 article-title: Amnion‐derived cells as a reliable resource for next‐generation regenerative medicine publication-title: Placenta – volume: 340 start-page: 744 issue: 6133 year: 2013 end-page: 748 article-title: Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field publication-title: Science – volume: 11 start-page: 663 issue: 5 year: 2012 end-page: 675 article-title: Mouse embryonic head as a site for hematopoietic stem cell development publication-title: Cell Stem Cell – volume: 75 start-page: 91 issue: 2 year: 2007 end-page: 96 article-title: Identification of stem cell marker‐positive cells by immunofluorescence in term human amnion publication-title: J Reprod Immunol – volume: 11 start-page: 48 year: 2011 article-title: Amnion formation in the mouse embryo: the single amniochorionic fold model publication-title: BMC Dev Biol – volume: 54 start-page: 761 issue: 5 year: 2010 end-page: 777 article-title: On the origin of amniotic stem cells: of mice and men publication-title: Int J Dev Biol – volume: 171 start-page: 386 issue: 2 year: 2007 end-page: 395 article-title: Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule publication-title: Am J Pathol – volume: 566 start-page: 496 issue: 7745 year: 2019 end-page: 502 article-title: The single‐cell transcriptional landscape of mammalian organogenesis publication-title: Nature – ident: e_1_2_9_18_1 doi: 10.5962/bhl.title.17672 – ident: e_1_2_9_14_1 doi: 10.1111/j.1525‐1594.2004.07319.x – ident: e_1_2_9_49_1 doi: 10.1126/science.1232877 – ident: e_1_2_9_31_1 doi: 10.1016/j.ydbio.2013.04.022 – ident: e_1_2_9_35_1 doi: 10.1038/74651 – ident: e_1_2_9_37_1 doi: 10.1002/jez.1400650307 – ident: e_1_2_9_66_1 doi: 10.1016/j.ydbio.2004.12.011 – ident: e_1_2_9_63_1 doi: 10.1242/dev.146829 – ident: e_1_2_9_2_1 doi: 10.1016/j.resp.2011.03.029 – ident: e_1_2_9_9_1 doi: 10.1186/2045‐824X‐6‐10 – ident: e_1_2_9_8_1 doi: 10.4142/jvs.2013.14.2.151 – ident: e_1_2_9_11_1 doi: 10.1097/01.tp.0000149503.92433.39 – ident: e_1_2_9_29_1 doi: 10.1016/0012‐1606(72)90138‐8 – ident: e_1_2_9_50_1 doi: 10.1016/B978‐0‐12‐387786‐4.00002‐6 – ident: e_1_2_9_61_1 doi: 10.1242/dev.157222 – ident: e_1_2_9_13_1 doi: 10.1136/bjo.2003.038497 – ident: e_1_2_9_32_1 doi: 10.1242/dev.065565 – ident: e_1_2_9_59_1 doi: 10.1016/j.devcel.2019.01.021 – ident: e_1_2_9_7_1 doi: 10.1016/j.jri.2007.03.017 – ident: e_1_2_9_17_1 doi: 10.1038/s41598‐017‐08305‐2 – ident: e_1_2_9_62_1 doi: 10.1161/CIRCRESAHA.121.318943 – ident: e_1_2_9_16_1 doi: 10.1186/1471‐213X‐11‐48 – ident: e_1_2_9_12_1 doi: 10.1254/jphs.CR0070034 – ident: e_1_2_9_44_1 doi: 10.1532/ijh97.04034 – ident: e_1_2_9_48_1 doi: 10.1002/ar.22831 – volume: 4 start-page: 2009 year: 1984 ident: e_1_2_9_27_1 article-title: The development of pharyngeal endocrine organs in mouse and chick embryos publication-title: Scan Electron Microsc contributor: fullname: Hilfer SR – ident: e_1_2_9_20_1 doi: 10.1002/jmor.1050880104 – ident: e_1_2_9_24_1 doi: 10.1242/jeb.205.1.25 – ident: e_1_2_9_39_1 doi: 10.1038/nbt.4314 – ident: e_1_2_9_53_1 doi: 10.1016/s1534‐5807(01)00040‐5 – volume: 126 start-page: 535 issue: 3 year: 1978 ident: e_1_2_9_25_1 article-title: The topographical anatomy and blood supply of the carotid body region of the domestic fowl publication-title: J Anat contributor: fullname: Abdel‐Magied EM – ident: e_1_2_9_38_1 doi: 10.1113/jphysiol.1963.sp007105 – ident: e_1_2_9_54_1 doi: 10.1679/aohc.52.355 – volume: 188 start-page: 557 issue: 3 year: 1996 ident: e_1_2_9_64_1 article-title: Comparative anatomical studies on the thyroid and thymic arteries. IV. Rabbit (Oryctolagus cuniculus) publication-title: J Anat contributor: fullname: Yamasaki M – ident: e_1_2_9_46_1 doi: 10.1038/s41586‐019‐0969‐x – ident: e_1_2_9_23_1 doi: 10.1007/s004290050268 – ident: e_1_2_9_15_1 doi: 10.1016/j.placenta.2019.06.381 – ident: e_1_2_9_6_1 doi: 10.1634/stemcells.2004‐0357 – ident: e_1_2_9_42_1 doi: 10.1038/nature11926 – ident: e_1_2_9_52_1 doi: 10.1161/CIRCRESAHA.109.201665 – ident: e_1_2_9_34_1 doi: 10.1016/bs.ctdb.2016.01.004 – ident: e_1_2_9_10_1 doi: 10.1016/j.cell.2012.09.032 – ident: e_1_2_9_5_1 doi: 10.1387/ijdb.092935md – ident: e_1_2_9_30_1 doi: 10.1016/j.ydbio.2015.10.026 – ident: e_1_2_9_60_1 doi: 10.1111/j.1749‐6632.2012.06726.x – ident: e_1_2_9_19_1 – ident: e_1_2_9_65_1 doi: 10.1126/science.220.4594.268 – ident: e_1_2_9_45_1 doi: 10.1038/s41586‐018‐0414‐6 – ident: e_1_2_9_56_1 doi: 10.1038/ncomms2569 – ident: e_1_2_9_28_1 doi: 10.1242/dev.145615 – ident: e_1_2_9_40_1 doi: 10.1002/dvdy.23813 – ident: e_1_2_9_41_1 doi: 10.2353/ajpath.2007.070152 – ident: e_1_2_9_68_1 doi: 10.1016/j.cell.2021.04.048 – ident: e_1_2_9_22_1 doi: 10.1242/dev.121.2.525 – ident: e_1_2_9_51_1 doi: 10.1016/s1534‐5807(03)00363‐0 – ident: e_1_2_9_3_1 doi: 10.1002/jmor.21380 – ident: e_1_2_9_67_1 doi: 10.1242/dev.126714 – ident: e_1_2_9_36_1 doi: 10.1152/ajplegacy.1917.44.1.67 – ident: e_1_2_9_43_1 doi: 10.1016/j.scr.2015.02.002 – ident: e_1_2_9_47_1 doi: 10.1016/j.ydbio.2009.10.009 – ident: e_1_2_9_4_1 doi: 10.1371/journal.pone.0092672 – ident: e_1_2_9_26_1 doi: 10.1002/dvdy.24534 – ident: e_1_2_9_33_1 doi: 10.1182/blood‐2005‐05‐1970 – ident: e_1_2_9_21_1 doi: 10.1242/dev.121392 – ident: e_1_2_9_57_1 doi: 10.1002/dvdy.24430 – ident: e_1_2_9_58_1 doi: 10.1016/j.stem.2012.07.004 – ident: e_1_2_9_55_1 doi: 10.2535/ofaj1936.70.4_165 |
SSID | ssj0008641 |
Score | 2.4771476 |
Snippet | Background
The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that... The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic... Here, we show that amniogenic somatopleure cells (ASCs) differentiate into various cell types constituting the cardiovascular system, with some populations... BackgroundThe somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that... BACKGROUNDThe somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 59 |
SubjectTerms | amniogenic somatopleure Amnion angiogenesis Cardiac muscle Cardiomyocytes cardiovascular development Cell culture Cell differentiation Chimeras Differentiation Endothelial cells FGF Fibroblast growth factors Gene expression Growth factors Heterogeneity Interstitial cells Pharynx quail‐chick chimera Quorum sensing Smooth muscle Thyroid thyroid development Thyroid gland Transcriptomes Vascular endothelial growth factor VEGF |
Title | Diverse contribution of amniogenic somatopleural cells to cardiovascular development: With special reference to thyroid vasculature |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdvdy.532 https://www.ncbi.nlm.nih.gov/pubmed/36038963 https://www.proquest.com/docview/2908294340 https://search.proquest.com/docview/2708257518 |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50QfHi-7G6SgTxVt1N2m7qTVzFiyL49lLSJMU92IrdFTz7x51JH7KIIHgqpEkbMpPkm8nkG4A9hSg1lVx4SdSL0ECJUi9SWnm2l_hGWuKoI1f2-XX_8kEOTokm56i-C1PyQzQON5oZbr2mCa6S4vCbNNS8m4-DQNDyi0aCu70hrppFWIYuaSWiB-lJIWXNO9vlh3XDyZ3oB7ycRKtuuzlb-E9HF2G-ApnsuNSKJZiy2TLMlGknP5Zh9qI6UMfCp9wVrsDnwEVoWOaC16ssWCxPmXrJhjmq2VCzIkd8SxHnxNXByOdfsFHO9ERMKzPfcUhH7H44emZFmeSeNTlNqBVqyFs-NKxqRycZq3B7dnpzcu5VGRo8jZYt9xAdiiAhFjufm0Apa8LQ-tJaMmusSdB8TFPLk1DytBsi2Aus0F2LZrfRgVChWINWlmd2A7Bvqe2TfaqlQBDJldCRH0lfEyDVwrRht5ZW_FoSccQl5TKPaYRjHOE2dGoxxtVULGJOSd2JBa-Ln2he4ySiUVKZzcdYp0-WMp1AtWG9FH_zExESB2Eo2rDvpPzr3-PB3eARn5t_rbgFcxwhUunQ6UBr9Da22zBdmPGOU-Yvt-P5Ow |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VrXhcoLwXaGukilvKYideB06IBW1VQEilBXqJHNsReyBBZBdpz_xxZvJCK4SExCmSYyeWZ2x_Mx5_A_BDI0pNFBdeHO6FaKCEiRdqoz23F_tWOeKoI1d2_0_3_Fr1jokm56C-C1PyQzQON5oZxXpNE5wc0rsvrKH20Y5_BgLX38--RD2k-xviolmGlSzSViJ-UJ4SStXMsx2-W7ec3IteAcxJvFpsOCcLH-rqF5ivcCY7LBVjET65dAmmy8yT4yWYOavO1LHwf1YULsNTrwjScKyIX68SYbEsYfouHWSoaQPD8gwhLgWdE10HI7d_zoYZMxNhrcy-hCLts6vB8JblZZ571qQ1oVaoJA_ZwLKqHR1mrMDfk-PLo75XJWnwDBq33EOAKIKYiOx8bgOtnZXS-co5smycjdGCTBLHY6l40pGI9wInTMeh5W1NILQUq9BKs9StA_YtcV0yUY0SiCO5Fib0Q-UbwqRG2DZs1-KK7ksujqhkXeYRjXCEI9yGrVqOUTUb84hTXnciwuvgJ5rXOI9olHTqshHW6ZKxTIdQbVgr5d_8REiiIZSiDTuFmN_8e9T717vB58Z7K36H2f7l2Wl0-uv89ybMcURMpX9nC1rDh5H7ClO5HX0rNPsZZyL9Yw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB68oPhyvHvWawTxre6atN3UN7EuihcE776UNElxH04rdveAz_5xZ3qTRQTBp0KaNCEzSb6ZTL8B2FGIUhPJhRMH-wEaKEHiBEorx-7HrpGWOOrIlX1y3b18kOEx0eQc1P_ClPwQjcONVkaxX9MCfzFJ-5M01Pw3b3uewO130kUUTrz5Qlw1u7D0i6yVCB-kI4WUNfFsh7frlqNH0Rd8OQpXi_OmN_ubkc7BnwplssNSLeZhzKYLMFXmnXxbgOmL6kYdC5-yonAR3sMiRMOyInq9SoPFsoSpf2k_Qz3ra5ZnCHAp5JzIOhg5_XM2yJgeCWpl5jMQ6YDd9wfPLC-z3LMmqQm1QhV5zfqGVe3oKmMJbnvHN0cnTpWiwdFo2nIH4aHwYqKxc7nxlLLG960rrSW7xpoY7ccksTz2JU86PqI9zwrdsWh3G-0J5YtlmEiz1P4FHFtiu2SgaikQRXIldOAG0tWESLUwLdiupRW9lEwcUcm5zCOa4QhnuAXrtRijai3mEaes7kSD18FPNK9xFdEsqdRmQ6zTJVOZrqBasFKKv-lE-ERC6IsW7BZS_rb3KLwLH_G5-tOKWzB9Ffai89PLszWY4QiXSufOOkwMXod2A8ZzM9ws9PoDX2P8CQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+contribution+of+amniogenic+somatopleural+cells+to+cardiovascular+development%3A+With+special+reference+to+thyroid+vasculature&rft.jtitle=Developmental+dynamics&rft.au=Haneda%2C+Yuka&rft.au=Miyagawa%E2%80%90Tomita%2C+Sachiko&rft.au=Uchijima%2C+Yasunobu&rft.au=Iwase%2C+Akiyasu&rft.date=2024-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1058-8388&rft.eissn=1097-0177&rft.volume=253&rft.issue=1&rft.spage=59&rft.epage=77&rft_id=info:doi/10.1002%2Fdvdy.532&rft.externalDBID=10.1002%252Fdvdy.532&rft.externalDocID=DVDY532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-8388&client=summon |