SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices
We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric mat...
Saved in:
Published in: | Mathematical programming Vol. 169; no. 2; pp. 531 - 563 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-06-2018
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric matrices in both the objective and constraint functions. By exploiting the block separability of the canonical form, we show that all GTRSs with an optimal value bounded from below are second order cone programming (SOCP) representable. Our result generalizes the recent work of Ben-Tal and den Hertog (Math. Program. 143(1–2):1–29,
2014
), which establishes the SOCP representability of the GTRS under the assumption of the simultaneous diagonalizability of the two matrices in the objective and constraint functions. We then derive a closed-form solution for the GTRS when the two matrices are not simultaneously diagonalizable. We further extend our method to two variants of the GTRS in which the inequality constraint is replaced by either an equality constraint or an interval constraint. |
---|---|
AbstractList | We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric matrices in both the objective and constraint functions. By exploiting the block separability of the canonical form, we show that all GTRSs with an optimal value bounded from below are second order cone programming (SOCP) representable. Our result generalizes the recent work of Ben-Tal and den Hertog (Math. Program. 143(1–2):1–29, 2014), which establishes the SOCP representability of the GTRS under the assumption of the simultaneous diagonalizability of the two matrices in the objective and constraint functions. We then derive a closed-form solution for the GTRS when the two matrices are not simultaneously diagonalizable. We further extend our method to two variants of the GTRS in which the inequality constraint is replaced by either an equality constraint or an interval constraint. We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric matrices in both the objective and constraint functions. By exploiting the block separability of the canonical form, we show that all GTRSs with an optimal value bounded from below are second order cone programming (SOCP) representable. Our result generalizes the recent work of Ben-Tal and den Hertog (Math. Program. 143(1–2):1–29, 2014 ), which establishes the SOCP representability of the GTRS under the assumption of the simultaneous diagonalizability of the two matrices in the objective and constraint functions. We then derive a closed-form solution for the GTRS when the two matrices are not simultaneously diagonalizable. We further extend our method to two variants of the GTRS in which the inequality constraint is replaced by either an equality constraint or an interval constraint. |
Author | Wu, Baiyi Jiang, Rujun Li, Duan |
Author_xml | – sequence: 1 givenname: Rujun surname: Jiang fullname: Jiang, Rujun organization: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong – sequence: 2 givenname: Duan surname: Li fullname: Li, Duan organization: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong – sequence: 3 givenname: Baiyi surname: Wu fullname: Wu, Baiyi email: baiyiwu@outlook.com organization: School of Finance, Guangdong University of Foreign Studies |
BookMark | eNp1kEtLw0AUhQepYFv9Ae4GXEfvnSSTdCnFFxQqqOthMo-akkedmSj11zshgitX5y7OOffwLcis6ztDyCXCNQIUNx4BoUgAiwQxy5PshMwxS3mS8YzPyByA5UnOEc7Iwvs9AGBalnPSvmzXz9QZ27t2aGSo-47Gm4Z3Q3emM0429bfRNLjBh-jbjQY_VAfXV41p6WctqaRKxjm1ks2YbWlvafjqqT-2rQmuVrSVoxh_Tk6tbLy5-NUlebu_e10_Jpvtw9P6dpOotGQh0eWKMa2tLVTGixVoXfFKIcOKQW65XinNVaqxQlOWec5yq0owhUWVppXNIF2Sq6k3zvwYjA9i3w-uiy8Fg5SvCsginCXByaVc731kIA6ubqU7CgQxUhUTVRGpipGqGDNsyvjo7XbG_TX_H_oBTWZ9og |
CitedBy_id | crossref_primary_10_1016_j_ejco_2021_100012 crossref_primary_10_1111_mafi_12383 crossref_primary_10_1287_ijoo_2022_0079 crossref_primary_10_3390_sym12081369 crossref_primary_10_1287_moor_2022_1305 crossref_primary_10_1080_02331934_2020_1865347 crossref_primary_10_1080_02331934_2022_2092478 crossref_primary_10_1137_21M1468073 crossref_primary_10_1287_ijoo_2023_0089 crossref_primary_10_1137_22M1507656 crossref_primary_10_1007_s10957_022_02031_0 crossref_primary_10_1287_moor_2021_1243 crossref_primary_10_1007_s10589_019_00105_w crossref_primary_10_1007_s10107_020_01560_8 crossref_primary_10_1051_ro_2020130 crossref_primary_10_1016_j_laa_2023_10_015 crossref_primary_10_1137_18M1174313 crossref_primary_10_1137_18M1215165 crossref_primary_10_1007_s40305_019_00286_5 crossref_primary_10_1007_s10107_017_1206_8 crossref_primary_10_1080_01630563_2020_1733605 |
Cites_doi | 10.1016/0024-3795(76)90066-5 10.1007/s10107-015-0907-0 10.1007/s10107-013-0710-8 10.1145/355900.355912 10.1007/BF02614438 10.1137/S105262340139001X 10.1137/1.9780898717655 10.1137/1.9780898718829 10.1007/s10589-013-9635-7 10.1137/1.9780898719857 10.1007/BF01580852 10.1137/0804009 10.1287/moor.28.2.246.14485 10.1007/s10898-010-9625-6 10.1007/BF02592331 10.1137/S003614450444556X 10.1080/10556789308805542 10.1137/15M1023920 10.1137/0805016 10.1007/s11590-014-0812-0 10.1007/s40314-016-0349-1 10.1137/0904038 10.1137/S003614450444614X |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017 Mathematical Programming is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017 – notice: Mathematical Programming is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10107-017-1145-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business (ProQuest) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 563 |
ExternalDocumentID | 10_1007_s10107_017_1145_4 |
GrantInformation_xml | – fundername: Hong Kong Research Grants Council grantid: 14213716 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c382t-d8922ddff7c46790ddb6bc121b205f6d9cd6c3d1b1e885525fc80e7f1c33bf403 |
IEDL.DBID | AEJHL |
ISSN | 0025-5610 |
IngestDate | Thu Oct 10 19:08:04 EDT 2024 Thu Nov 21 23:39:31 EST 2024 Sat Dec 16 12:02:31 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 90C20 90C26 Trust region subproblem Quadratically constrained quadratic programming Canonical form |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c382t-d8922ddff7c46790ddb6bc121b205f6d9cd6c3d1b1e885525fc80e7f1c33bf403 |
PQID | 2036970414 |
PQPubID | 25307 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2036970414 crossref_primary_10_1007_s10107_017_1145_4 springer_journals_10_1007_s10107_017_1145_4 |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | SternRJWolkowiczHIndefinite trust region subproblems and nonsymmetric eigenvalue perturbationsSIAM J. Optim.199552286313133019910.1137/08050160846.49017 Adachi, S., Nakatsukasa, Y.: Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint (2016). http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2016/METR16-07.pdf LancasterPRodmanLCanonical forms for hermitian matrix pairs under strict equivalence and congruenceSIAM Rev.2005473407443217863510.1137/S003614450444556X1087.15014 MoréJJSorensenDCComputing a trust region stepSIAM J. Sci. Stat. Comput.19834355357272311010.1137/09040380551.65042 RendlFWolkowiczHA semidefinite framework for trust region subproblems with applications to large scale minimizationMath. Program1997771273299146138410.1007/BF026144380888.90137 MoréJJGeneralizations of the trust region problemOptim. Methods Softw.199323–418920910.1080/10556789308805542 HsiaYLinGXSheuRLA revisit to quadratic programming with one inequality quadratic constraint via matrix pencilPac. J. Optim.201410346148132486811327.90168 GolubGHVan LoanCFMatrix Computations2012BaltimoreJHU Press1268.65037 PólikITerlakyTA survey of the S-lemmaSIAM Rev.2007493371418235380410.1137/S003614450444614X1128.90046 SturmJFZhangSOn cones of nonnegative quadratic functionsMath. Oper. Res.2003282246267198066210.1287/moor.28.2.246.144851082.90086 XiaYWangSSheuRLS-lemma with equality and its applicationsMath. Program20161561–2513547345920910.1007/s10107-015-0907-01333.90086 YuanYOn a subproblem of trust region algorithms for constrained optimizationMath. Program1990471–35363105484110.1007/BF015808520711.90062 MartínezJMLocal minimizers of quadratic functions on Euclidean balls and spheresSIAM J. Optim.199441159176126041310.1137/08040090801.65057 WangSXiaYStrong duality for generalized trust region subproblem: S-lemma with interval boundsOptim. Lett.20159610631073337366810.1007/s11590-014-0812-01354.90089 Salahi, M., Taati, A.: An efficient algorithm for solving the generalized trust region subproblem. Comp. Appl. Math. (2016). doi:10.1007/s40314-016-0349-1 JiangRLiDSimultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programmingSIAM J. Optim.201626316491668353789110.1137/15M10239201347.65107 PongTKWolkowiczHThe generalized trust region subproblemComput. Optim. Appl.2014582273322320196310.1007/s10589-013-9635-71329.90100 Ben-TalAden HertogDHidden conic quadratic representation of some nonconvex quadratic optimization problemsMath. Program20141431–2129315206110.1007/s10107-013-0710-81295.90036 GuoCHHighamNJTisseurFAn improved arc algorithm for detecting definite hermitian pairsSIAM J. Matrix Anal. Appl.200931311311151255881610.1137/08074218X1202.65054 Ben-TalANemirovskiALectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications2001PhiladelphiaSIAM10.1137/1.97808987188290986.90032 ConnARGouldNITointPLTrust Region Methods2000PhiladelphiaSIAM10.1137/1.97808987198570958.65071 Hmam, H.: Quadratic optimization with one quadratic equality constraint. Tech. Rep., Warfare and Radar Division DSTO Defence Science and Technology Organisation, Report DSTO-TR-2416 (2010) FengJMLinGXSheuRLXiaYDuality and solutions for quadratic programming over single non-homogeneous quadratic constraintJ. Global Optim.2012542275293297962910.1007/s10898-010-9625-61281.90032 UhligFA canonical form for a pair of real symmetric matrices that generate a nonsingular pencilLinear Algebra Appl.197614318920957301110.1016/0024-3795(76)90066-50338.15009 Ben-TalATeboulleMHidden convexity in some nonconvex quadratically constrained quadratic programmingMath. Program19967215163138516310.1007/BF025923310851.90087 KågströmBRuheAAn algorithm for numerical computation of the Jordan normal form of a complex matrixACM Trans. Math. Softw.19806339841958534710.1145/355900.3559120434.65020 YeYZhangSNew results on quadratic minimizationSIAM J. Optim.2003141245267200594310.1137/S105262340139001X1043.90064 DattaBNNumerical Linear Algebra and Applications2010PhiladelphiaSIAM10.1137/1.97808987176551187.65027 CH Guo (1145_CR9) 2009; 31 JM Feng (1145_CR7) 2012; 54 B Kågström (1145_CR13) 1980; 6 RJ Stern (1145_CR22) 1995; 5 GH Golub (1145_CR8) 2012 Y Xia (1145_CR26) 2016; 156 Y Yuan (1145_CR28) 1990; 47 JF Sturm (1145_CR23) 2003; 28 1145_CR21 JJ Moré (1145_CR16) 1993; 2 S Wang (1145_CR25) 2015; 9 F Rendl (1145_CR20) 1997; 77 BN Datta (1145_CR6) 2010 A Ben-Tal (1145_CR3) 2001 Y Hsia (1145_CR11) 2014; 10 I Pólik (1145_CR18) 2007; 49 Y Ye (1145_CR27) 2003; 14 JJ Moré (1145_CR17) 1983; 4 F Uhlig (1145_CR24) 1976; 14 A Ben-Tal (1145_CR4) 1996; 72 R Jiang (1145_CR12) 2016; 26 JM Martínez (1145_CR15) 1994; 4 1145_CR10 AR Conn (1145_CR5) 2000 1145_CR1 P Lancaster (1145_CR14) 2005; 47 A Ben-Tal (1145_CR2) 2014; 143 TK Pong (1145_CR19) 2014; 58 |
References_xml | – volume: 14 start-page: 189 issue: 3 year: 1976 ident: 1145_CR24 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(76)90066-5 contributor: fullname: F Uhlig – volume: 156 start-page: 513 issue: 1–2 year: 2016 ident: 1145_CR26 publication-title: Math. Program doi: 10.1007/s10107-015-0907-0 contributor: fullname: Y Xia – volume: 143 start-page: 1 issue: 1–2 year: 2014 ident: 1145_CR2 publication-title: Math. Program doi: 10.1007/s10107-013-0710-8 contributor: fullname: A Ben-Tal – volume-title: Matrix Computations year: 2012 ident: 1145_CR8 contributor: fullname: GH Golub – volume: 6 start-page: 398 issue: 3 year: 1980 ident: 1145_CR13 publication-title: ACM Trans. Math. Softw. doi: 10.1145/355900.355912 contributor: fullname: B Kågström – volume: 77 start-page: 273 issue: 1 year: 1997 ident: 1145_CR20 publication-title: Math. Program doi: 10.1007/BF02614438 contributor: fullname: F Rendl – volume: 14 start-page: 245 issue: 1 year: 2003 ident: 1145_CR27 publication-title: SIAM J. Optim. doi: 10.1137/S105262340139001X contributor: fullname: Y Ye – volume-title: Numerical Linear Algebra and Applications year: 2010 ident: 1145_CR6 doi: 10.1137/1.9780898717655 contributor: fullname: BN Datta – volume-title: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications year: 2001 ident: 1145_CR3 doi: 10.1137/1.9780898718829 contributor: fullname: A Ben-Tal – volume: 10 start-page: 461 issue: 3 year: 2014 ident: 1145_CR11 publication-title: Pac. J. Optim. contributor: fullname: Y Hsia – volume: 58 start-page: 273 issue: 2 year: 2014 ident: 1145_CR19 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-013-9635-7 contributor: fullname: TK Pong – volume-title: Trust Region Methods year: 2000 ident: 1145_CR5 doi: 10.1137/1.9780898719857 contributor: fullname: AR Conn – volume: 47 start-page: 53 issue: 1–3 year: 1990 ident: 1145_CR28 publication-title: Math. Program doi: 10.1007/BF01580852 contributor: fullname: Y Yuan – volume: 4 start-page: 159 issue: 1 year: 1994 ident: 1145_CR15 publication-title: SIAM J. Optim. doi: 10.1137/0804009 contributor: fullname: JM Martínez – volume: 28 start-page: 246 issue: 2 year: 2003 ident: 1145_CR23 publication-title: Math. Oper. Res. doi: 10.1287/moor.28.2.246.14485 contributor: fullname: JF Sturm – volume: 54 start-page: 275 issue: 2 year: 2012 ident: 1145_CR7 publication-title: J. Global Optim. doi: 10.1007/s10898-010-9625-6 contributor: fullname: JM Feng – volume: 72 start-page: 51 issue: 1 year: 1996 ident: 1145_CR4 publication-title: Math. Program doi: 10.1007/BF02592331 contributor: fullname: A Ben-Tal – volume: 47 start-page: 407 issue: 3 year: 2005 ident: 1145_CR14 publication-title: SIAM Rev. doi: 10.1137/S003614450444556X contributor: fullname: P Lancaster – volume: 2 start-page: 189 issue: 3–4 year: 1993 ident: 1145_CR16 publication-title: Optim. Methods Softw. doi: 10.1080/10556789308805542 contributor: fullname: JJ Moré – ident: 1145_CR10 – volume: 26 start-page: 1649 issue: 3 year: 2016 ident: 1145_CR12 publication-title: SIAM J. Optim. doi: 10.1137/15M1023920 contributor: fullname: R Jiang – volume: 5 start-page: 286 issue: 2 year: 1995 ident: 1145_CR22 publication-title: SIAM J. Optim. doi: 10.1137/0805016 contributor: fullname: RJ Stern – volume: 9 start-page: 1063 issue: 6 year: 2015 ident: 1145_CR25 publication-title: Optim. Lett. doi: 10.1007/s11590-014-0812-0 contributor: fullname: S Wang – ident: 1145_CR21 doi: 10.1007/s40314-016-0349-1 – ident: 1145_CR1 – volume: 4 start-page: 553 issue: 3 year: 1983 ident: 1145_CR17 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0904038 contributor: fullname: JJ Moré – volume: 49 start-page: 371 issue: 3 year: 2007 ident: 1145_CR18 publication-title: SIAM Rev. doi: 10.1137/S003614450444614X contributor: fullname: I Pólik – volume: 31 start-page: 1131 issue: 3 year: 2009 ident: 1145_CR9 publication-title: SIAM J. Matrix Anal. Appl. contributor: fullname: CH Guo |
SSID | ssj0001388 |
Score | 2.4216292 |
Snippet | We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 531 |
SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Economic models Full Length Paper Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Matrix methods Numerical Analysis Theoretical |
Title | SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices |
URI | https://link.springer.com/article/10.1007/s10107-017-1145-4 https://www.proquest.com/docview/2036970414 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5se9GDb7FaZQ-elEh2k002x9IHRXxBFdpTyL6kSFohraK_3tk0aavoQU_ZsJNl2ZnMDDuPD6EzN5CBksR3WKISxw-p7yR2pKQ2EROhpiIHse2HtwPe7tg2OXRxdTF-viwjkrmiXql1I3mWZOiAC88cv4JqYHoYyHat2bnqXS_0L_E4L4FarXdQxjJ_WuSrNVq6mN-iormx6W79Z5vbaLNwLXFzLgs7aE2Pd9HGSsNBeLtZdGnN9lDav2vdY9gU-K0FiheGMQYS_DRvRz360ArndRnYQjgAQTYTBQgNfh0lOMHAm0leXGm_TfHE4OnbBGfvaWrBuiROcxAAne2jx27nodVzCvgFR3qcTh3FI0qVMiaUoE0jVykRCEkoEdRlJlCRVIH0FBFEc84Ytdlgrg4NkZ4njO96B6gKG9CHCBtiEi25DG3tvZRMiEhLIQPjRwKkIamj85IN8cu8y0a87KdsTzSGE7UV1Cz266hRMioufrgstvHUKHR9AtMXJWeW078udvQn6mO0Dg4Tn6eKNVAVzl-foEqmZqeFFNrnYDhsfwLxDdtS |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8EDurBbyOK2oMnTZN1a7fuSBCECGgCJt6W9ctwmJgMNPrX2-4D0OhBb1361jR9r6-_5H38ALhwfOFLgQmisYwRCVyCYjuSQumQ8kC5PCOxHQXDR3bdtm1yvLIWJst2L0OSmadeKXbDWZpkgAyGp4hUQI2EPjGmXGv2xjedhQPGHmMlU6uFB2Uw86dFvj5HS4z5LSyavTad7X_tcwdsFeASNnNr2AVr6nkPbK60HDRfg0Wf1nQfJKO71j00uzLIteDxgmYMjQh8yhtSTz6UhFllBrQkDkYgnfOChga-TmIYQ6OdaVZeaf9N4FTD2dsUpu9JYum6BEwyGgCVHoCHTnvc6qKCgAEJj7kzJFnoulJqHQjjT0NHSu5zgV3MXYdqX4ZC-sKTmGPFGKWuzQdzVKCx8DyuieMdgqrZgDoCUGMdK8FEYKvvhaCch0pw4WsScmMPcR1clnqIXvI-G9Gyo7I90cicqK2hphGpg0apqai4cmlkI6ph4BBspq9KzSynf13s-E_S52C9Ox70o35veHsCNgx8YnniWANUjS7UKaikcn5WmOQnNZXdkA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4uIHpwF5dRc_CkFJs0adOTiDODy6gDo-CtNJt4qDPQGUV_vS9dnFH0IN7SJg0h7zV58N73fQgd-KEKtSLM46lOPRZR5qWupZWxMZeRobIQse1FNw-i2XI0OSc1Fqaodq9TkiWmwbE0PQ-PB9oeTwDfSFEyGXkQz3OPTaNZBm_A0WdPW5fnnc_DmARC1KqtLlSoE5s_TfL1ahrHm99SpMXN017695qX0WIVdOLT0ktW0JR5XkULE1SE8HT9yd-ar6Gsd3vWxbBCiGgrfS8MbQxD8GNJVP30bjQuEBvYiTvAgHwkK3ka_PKU4hSD1foF7NJ9m-G-xcPXPs7fsszJeCmcFfIAJl9H9-3W3dm5VwkzeCoQdOhpEVOqtbWRgnM29rWWoVSEEkl9bkMdKx2qQBNJjBCcU1cn5pvIEhUE0jI_2EAzsACzibAlNjVKqMih8pXiUsZGSRVaFkvwk3QLHdY2SQYl_0YyZlp2O5rAjjpsNU_YFmrUVkuqXzFPXKY1jnxGoPuottK4-9fJtv80eh_NdZvtpHNxc7WD5iGqEmU9WQPNgCnMLprO9Wiv8s4PwZPmUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOCP+reformulation+for+the+generalized+trust+region+subproblem+via+a+canonical+form+of+two+symmetric+matrices&rft.jtitle=Mathematical+programming&rft.au=Jiang%2C+Rujun&rft.au=Li%2C+Duan&rft.au=Wu%2C+Baiyi&rft.date=2018-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=169&rft.issue=2&rft.spage=531&rft.epage=563&rft_id=info:doi/10.1007%2Fs10107-017-1145-4&rft.externalDocID=10_1007_s10107_017_1145_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |