SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices

We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric mat...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 169; no. 2; pp. 531 - 563
Main Authors: Jiang, Rujun, Li, Duan, Wu, Baiyi
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-06-2018
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric matrices in both the objective and constraint functions. By exploiting the block separability of the canonical form, we show that all GTRSs with an optimal value bounded from below are second order cone programming (SOCP) representable. Our result generalizes the recent work of Ben-Tal and den Hertog (Math. Program. 143(1–2):1–29, 2014 ), which establishes the SOCP representability of the GTRS under the assumption of the simultaneous diagonalizability of the two matrices in the objective and constraint functions. We then derive a closed-form solution for the GTRS when the two matrices are not simultaneously diagonalizable. We further extend our method to two variants of the GTRS in which the inequality constraint is replaced by either an equality constraint or an interval constraint.
AbstractList We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric matrices in both the objective and constraint functions. By exploiting the block separability of the canonical form, we show that all GTRSs with an optimal value bounded from below are second order cone programming (SOCP) representable. Our result generalizes the recent work of Ben-Tal and den Hertog (Math. Program. 143(1–2):1–29, 2014), which establishes the SOCP representability of the GTRS under the assumption of the simultaneous diagonalizability of the two matrices in the objective and constraint functions. We then derive a closed-form solution for the GTRS when the two matrices are not simultaneously diagonalizable. We further extend our method to two variants of the GTRS in which the inequality constraint is replaced by either an equality constraint or an interval constraint.
We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality constraint. By applying a simultaneous block diagonalization approach, we obtain a congruent canonical form for the symmetric matrices in both the objective and constraint functions. By exploiting the block separability of the canonical form, we show that all GTRSs with an optimal value bounded from below are second order cone programming (SOCP) representable. Our result generalizes the recent work of Ben-Tal and den Hertog (Math. Program. 143(1–2):1–29, 2014 ), which establishes the SOCP representability of the GTRS under the assumption of the simultaneous diagonalizability of the two matrices in the objective and constraint functions. We then derive a closed-form solution for the GTRS when the two matrices are not simultaneously diagonalizable. We further extend our method to two variants of the GTRS in which the inequality constraint is replaced by either an equality constraint or an interval constraint.
Author Wu, Baiyi
Jiang, Rujun
Li, Duan
Author_xml – sequence: 1
  givenname: Rujun
  surname: Jiang
  fullname: Jiang, Rujun
  organization: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
– sequence: 2
  givenname: Duan
  surname: Li
  fullname: Li, Duan
  organization: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
– sequence: 3
  givenname: Baiyi
  surname: Wu
  fullname: Wu, Baiyi
  email: baiyiwu@outlook.com
  organization: School of Finance, Guangdong University of Foreign Studies
BookMark eNp1kEtLw0AUhQepYFv9Ae4GXEfvnSSTdCnFFxQqqOthMo-akkedmSj11zshgitX5y7OOffwLcis6ztDyCXCNQIUNx4BoUgAiwQxy5PshMwxS3mS8YzPyByA5UnOEc7Iwvs9AGBalnPSvmzXz9QZ27t2aGSo-47Gm4Z3Q3emM0429bfRNLjBh-jbjQY_VAfXV41p6WctqaRKxjm1ks2YbWlvafjqqT-2rQmuVrSVoxh_Tk6tbLy5-NUlebu_e10_Jpvtw9P6dpOotGQh0eWKMa2tLVTGixVoXfFKIcOKQW65XinNVaqxQlOWec5yq0owhUWVppXNIF2Sq6k3zvwYjA9i3w-uiy8Fg5SvCsginCXByaVc731kIA6ubqU7CgQxUhUTVRGpipGqGDNsyvjo7XbG_TX_H_oBTWZ9og
CitedBy_id crossref_primary_10_1016_j_ejco_2021_100012
crossref_primary_10_1111_mafi_12383
crossref_primary_10_1287_ijoo_2022_0079
crossref_primary_10_3390_sym12081369
crossref_primary_10_1287_moor_2022_1305
crossref_primary_10_1080_02331934_2020_1865347
crossref_primary_10_1080_02331934_2022_2092478
crossref_primary_10_1137_21M1468073
crossref_primary_10_1287_ijoo_2023_0089
crossref_primary_10_1137_22M1507656
crossref_primary_10_1007_s10957_022_02031_0
crossref_primary_10_1287_moor_2021_1243
crossref_primary_10_1007_s10589_019_00105_w
crossref_primary_10_1007_s10107_020_01560_8
crossref_primary_10_1051_ro_2020130
crossref_primary_10_1016_j_laa_2023_10_015
crossref_primary_10_1137_18M1174313
crossref_primary_10_1137_18M1215165
crossref_primary_10_1007_s40305_019_00286_5
crossref_primary_10_1007_s10107_017_1206_8
crossref_primary_10_1080_01630563_2020_1733605
Cites_doi 10.1016/0024-3795(76)90066-5
10.1007/s10107-015-0907-0
10.1007/s10107-013-0710-8
10.1145/355900.355912
10.1007/BF02614438
10.1137/S105262340139001X
10.1137/1.9780898717655
10.1137/1.9780898718829
10.1007/s10589-013-9635-7
10.1137/1.9780898719857
10.1007/BF01580852
10.1137/0804009
10.1287/moor.28.2.246.14485
10.1007/s10898-010-9625-6
10.1007/BF02592331
10.1137/S003614450444556X
10.1080/10556789308805542
10.1137/15M1023920
10.1137/0805016
10.1007/s11590-014-0812-0
10.1007/s40314-016-0349-1
10.1137/0904038
10.1137/S003614450444614X
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017
Mathematical Programming is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017
– notice: Mathematical Programming is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-017-1145-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 563
ExternalDocumentID 10_1007_s10107_017_1145_4
GrantInformation_xml – fundername: Hong Kong Research Grants Council
  grantid: 14213716
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c382t-d8922ddff7c46790ddb6bc121b205f6d9cd6c3d1b1e885525fc80e7f1c33bf403
IEDL.DBID AEJHL
ISSN 0025-5610
IngestDate Thu Oct 10 19:08:04 EDT 2024
Thu Nov 21 23:39:31 EST 2024
Sat Dec 16 12:02:31 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 90C20
90C26
Trust region subproblem
Quadratically constrained quadratic programming
Canonical form
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c382t-d8922ddff7c46790ddb6bc121b205f6d9cd6c3d1b1e885525fc80e7f1c33bf403
PQID 2036970414
PQPubID 25307
PageCount 33
ParticipantIDs proquest_journals_2036970414
crossref_primary_10_1007_s10107_017_1145_4
springer_journals_10_1007_s10107_017_1145_4
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SternRJWolkowiczHIndefinite trust region subproblems and nonsymmetric eigenvalue perturbationsSIAM J. Optim.199552286313133019910.1137/08050160846.49017
Adachi, S., Nakatsukasa, Y.: Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint (2016). http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2016/METR16-07.pdf
LancasterPRodmanLCanonical forms for hermitian matrix pairs under strict equivalence and congruenceSIAM Rev.2005473407443217863510.1137/S003614450444556X1087.15014
MoréJJSorensenDCComputing a trust region stepSIAM J. Sci. Stat. Comput.19834355357272311010.1137/09040380551.65042
RendlFWolkowiczHA semidefinite framework for trust region subproblems with applications to large scale minimizationMath. Program1997771273299146138410.1007/BF026144380888.90137
MoréJJGeneralizations of the trust region problemOptim. Methods Softw.199323–418920910.1080/10556789308805542
HsiaYLinGXSheuRLA revisit to quadratic programming with one inequality quadratic constraint via matrix pencilPac. J. Optim.201410346148132486811327.90168
GolubGHVan LoanCFMatrix Computations2012BaltimoreJHU Press1268.65037
PólikITerlakyTA survey of the S-lemmaSIAM Rev.2007493371418235380410.1137/S003614450444614X1128.90046
SturmJFZhangSOn cones of nonnegative quadratic functionsMath. Oper. Res.2003282246267198066210.1287/moor.28.2.246.144851082.90086
XiaYWangSSheuRLS-lemma with equality and its applicationsMath. Program20161561–2513547345920910.1007/s10107-015-0907-01333.90086
YuanYOn a subproblem of trust region algorithms for constrained optimizationMath. Program1990471–35363105484110.1007/BF015808520711.90062
MartínezJMLocal minimizers of quadratic functions on Euclidean balls and spheresSIAM J. Optim.199441159176126041310.1137/08040090801.65057
WangSXiaYStrong duality for generalized trust region subproblem: S-lemma with interval boundsOptim. Lett.20159610631073337366810.1007/s11590-014-0812-01354.90089
Salahi, M., Taati, A.: An efficient algorithm for solving the generalized trust region subproblem. Comp. Appl. Math. (2016). doi:10.1007/s40314-016-0349-1
JiangRLiDSimultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programmingSIAM J. Optim.201626316491668353789110.1137/15M10239201347.65107
PongTKWolkowiczHThe generalized trust region subproblemComput. Optim. Appl.2014582273322320196310.1007/s10589-013-9635-71329.90100
Ben-TalAden HertogDHidden conic quadratic representation of some nonconvex quadratic optimization problemsMath. Program20141431–2129315206110.1007/s10107-013-0710-81295.90036
GuoCHHighamNJTisseurFAn improved arc algorithm for detecting definite hermitian pairsSIAM J. Matrix Anal. Appl.200931311311151255881610.1137/08074218X1202.65054
Ben-TalANemirovskiALectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications2001PhiladelphiaSIAM10.1137/1.97808987188290986.90032
ConnARGouldNITointPLTrust Region Methods2000PhiladelphiaSIAM10.1137/1.97808987198570958.65071
Hmam, H.: Quadratic optimization with one quadratic equality constraint. Tech. Rep., Warfare and Radar Division DSTO Defence Science and Technology Organisation, Report DSTO-TR-2416 (2010)
FengJMLinGXSheuRLXiaYDuality and solutions for quadratic programming over single non-homogeneous quadratic constraintJ. Global Optim.2012542275293297962910.1007/s10898-010-9625-61281.90032
UhligFA canonical form for a pair of real symmetric matrices that generate a nonsingular pencilLinear Algebra Appl.197614318920957301110.1016/0024-3795(76)90066-50338.15009
Ben-TalATeboulleMHidden convexity in some nonconvex quadratically constrained quadratic programmingMath. Program19967215163138516310.1007/BF025923310851.90087
KågströmBRuheAAn algorithm for numerical computation of the Jordan normal form of a complex matrixACM Trans. Math. Softw.19806339841958534710.1145/355900.3559120434.65020
YeYZhangSNew results on quadratic minimizationSIAM J. Optim.2003141245267200594310.1137/S105262340139001X1043.90064
DattaBNNumerical Linear Algebra and Applications2010PhiladelphiaSIAM10.1137/1.97808987176551187.65027
CH Guo (1145_CR9) 2009; 31
JM Feng (1145_CR7) 2012; 54
B Kågström (1145_CR13) 1980; 6
RJ Stern (1145_CR22) 1995; 5
GH Golub (1145_CR8) 2012
Y Xia (1145_CR26) 2016; 156
Y Yuan (1145_CR28) 1990; 47
JF Sturm (1145_CR23) 2003; 28
1145_CR21
JJ Moré (1145_CR16) 1993; 2
S Wang (1145_CR25) 2015; 9
F Rendl (1145_CR20) 1997; 77
BN Datta (1145_CR6) 2010
A Ben-Tal (1145_CR3) 2001
Y Hsia (1145_CR11) 2014; 10
I Pólik (1145_CR18) 2007; 49
Y Ye (1145_CR27) 2003; 14
JJ Moré (1145_CR17) 1983; 4
F Uhlig (1145_CR24) 1976; 14
A Ben-Tal (1145_CR4) 1996; 72
R Jiang (1145_CR12) 2016; 26
JM Martínez (1145_CR15) 1994; 4
1145_CR10
AR Conn (1145_CR5) 2000
1145_CR1
P Lancaster (1145_CR14) 2005; 47
A Ben-Tal (1145_CR2) 2014; 143
TK Pong (1145_CR19) 2014; 58
References_xml – volume: 14
  start-page: 189
  issue: 3
  year: 1976
  ident: 1145_CR24
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(76)90066-5
  contributor:
    fullname: F Uhlig
– volume: 156
  start-page: 513
  issue: 1–2
  year: 2016
  ident: 1145_CR26
  publication-title: Math. Program
  doi: 10.1007/s10107-015-0907-0
  contributor:
    fullname: Y Xia
– volume: 143
  start-page: 1
  issue: 1–2
  year: 2014
  ident: 1145_CR2
  publication-title: Math. Program
  doi: 10.1007/s10107-013-0710-8
  contributor:
    fullname: A Ben-Tal
– volume-title: Matrix Computations
  year: 2012
  ident: 1145_CR8
  contributor:
    fullname: GH Golub
– volume: 6
  start-page: 398
  issue: 3
  year: 1980
  ident: 1145_CR13
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/355900.355912
  contributor:
    fullname: B Kågström
– volume: 77
  start-page: 273
  issue: 1
  year: 1997
  ident: 1145_CR20
  publication-title: Math. Program
  doi: 10.1007/BF02614438
  contributor:
    fullname: F Rendl
– volume: 14
  start-page: 245
  issue: 1
  year: 2003
  ident: 1145_CR27
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340139001X
  contributor:
    fullname: Y Ye
– volume-title: Numerical Linear Algebra and Applications
  year: 2010
  ident: 1145_CR6
  doi: 10.1137/1.9780898717655
  contributor:
    fullname: BN Datta
– volume-title: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications
  year: 2001
  ident: 1145_CR3
  doi: 10.1137/1.9780898718829
  contributor:
    fullname: A Ben-Tal
– volume: 10
  start-page: 461
  issue: 3
  year: 2014
  ident: 1145_CR11
  publication-title: Pac. J. Optim.
  contributor:
    fullname: Y Hsia
– volume: 58
  start-page: 273
  issue: 2
  year: 2014
  ident: 1145_CR19
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9635-7
  contributor:
    fullname: TK Pong
– volume-title: Trust Region Methods
  year: 2000
  ident: 1145_CR5
  doi: 10.1137/1.9780898719857
  contributor:
    fullname: AR Conn
– volume: 47
  start-page: 53
  issue: 1–3
  year: 1990
  ident: 1145_CR28
  publication-title: Math. Program
  doi: 10.1007/BF01580852
  contributor:
    fullname: Y Yuan
– volume: 4
  start-page: 159
  issue: 1
  year: 1994
  ident: 1145_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/0804009
  contributor:
    fullname: JM Martínez
– volume: 28
  start-page: 246
  issue: 2
  year: 2003
  ident: 1145_CR23
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
  contributor:
    fullname: JF Sturm
– volume: 54
  start-page: 275
  issue: 2
  year: 2012
  ident: 1145_CR7
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-010-9625-6
  contributor:
    fullname: JM Feng
– volume: 72
  start-page: 51
  issue: 1
  year: 1996
  ident: 1145_CR4
  publication-title: Math. Program
  doi: 10.1007/BF02592331
  contributor:
    fullname: A Ben-Tal
– volume: 47
  start-page: 407
  issue: 3
  year: 2005
  ident: 1145_CR14
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444556X
  contributor:
    fullname: P Lancaster
– volume: 2
  start-page: 189
  issue: 3–4
  year: 1993
  ident: 1145_CR16
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789308805542
  contributor:
    fullname: JJ Moré
– ident: 1145_CR10
– volume: 26
  start-page: 1649
  issue: 3
  year: 2016
  ident: 1145_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1023920
  contributor:
    fullname: R Jiang
– volume: 5
  start-page: 286
  issue: 2
  year: 1995
  ident: 1145_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/0805016
  contributor:
    fullname: RJ Stern
– volume: 9
  start-page: 1063
  issue: 6
  year: 2015
  ident: 1145_CR25
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-014-0812-0
  contributor:
    fullname: S Wang
– ident: 1145_CR21
  doi: 10.1007/s40314-016-0349-1
– ident: 1145_CR1
– volume: 4
  start-page: 553
  issue: 3
  year: 1983
  ident: 1145_CR17
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0904038
  contributor:
    fullname: JJ Moré
– volume: 49
  start-page: 371
  issue: 3
  year: 2007
  ident: 1145_CR18
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444614X
  contributor:
    fullname: I Pólik
– volume: 31
  start-page: 1131
  issue: 3
  year: 2009
  ident: 1145_CR9
  publication-title: SIAM J. Matrix Anal. Appl.
  contributor:
    fullname: CH Guo
SSID ssj0001388
Score 2.4216292
Snippet We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 531
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Economic models
Full Length Paper
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Matrix methods
Numerical Analysis
Theoretical
Title SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices
URI https://link.springer.com/article/10.1007/s10107-017-1145-4
https://www.proquest.com/docview/2036970414
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5se9GDb7FaZQ-elEh2k002x9IHRXxBFdpTyL6kSFohraK_3tk0aavoQU_ZsJNl2ZnMDDuPD6EzN5CBksR3WKISxw-p7yR2pKQ2EROhpiIHse2HtwPe7tg2OXRxdTF-viwjkrmiXql1I3mWZOiAC88cv4JqYHoYyHat2bnqXS_0L_E4L4FarXdQxjJ_WuSrNVq6mN-iormx6W79Z5vbaLNwLXFzLgs7aE2Pd9HGSsNBeLtZdGnN9lDav2vdY9gU-K0FiheGMQYS_DRvRz360ArndRnYQjgAQTYTBQgNfh0lOMHAm0leXGm_TfHE4OnbBGfvaWrBuiROcxAAne2jx27nodVzCvgFR3qcTh3FI0qVMiaUoE0jVykRCEkoEdRlJlCRVIH0FBFEc84Ytdlgrg4NkZ4njO96B6gKG9CHCBtiEi25DG3tvZRMiEhLIQPjRwKkIamj85IN8cu8y0a87KdsTzSGE7UV1Cz266hRMioufrgstvHUKHR9AtMXJWeW078udvQn6mO0Dg4Tn6eKNVAVzl-foEqmZqeFFNrnYDhsfwLxDdtS
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8EDurBbyOK2oMnTZN1a7fuSBCECGgCJt6W9ctwmJgMNPrX2-4D0OhBb1361jR9r6-_5H38ALhwfOFLgQmisYwRCVyCYjuSQumQ8kC5PCOxHQXDR3bdtm1yvLIWJst2L0OSmadeKXbDWZpkgAyGp4hUQI2EPjGmXGv2xjedhQPGHmMlU6uFB2Uw86dFvj5HS4z5LSyavTad7X_tcwdsFeASNnNr2AVr6nkPbK60HDRfg0Wf1nQfJKO71j00uzLIteDxgmYMjQh8yhtSTz6UhFllBrQkDkYgnfOChga-TmIYQ6OdaVZeaf9N4FTD2dsUpu9JYum6BEwyGgCVHoCHTnvc6qKCgAEJj7kzJFnoulJqHQjjT0NHSu5zgV3MXYdqX4ZC-sKTmGPFGKWuzQdzVKCx8DyuieMdgqrZgDoCUGMdK8FEYKvvhaCch0pw4WsScmMPcR1clnqIXvI-G9Gyo7I90cicqK2hphGpg0apqai4cmlkI6ph4BBspq9KzSynf13s-E_S52C9Ox70o35veHsCNgx8YnniWANUjS7UKaikcn5WmOQnNZXdkA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA4uIHpwF5dRc_CkFJs0adOTiDODy6gDo-CtNJt4qDPQGUV_vS9dnFH0IN7SJg0h7zV58N73fQgd-KEKtSLM46lOPRZR5qWupZWxMZeRobIQse1FNw-i2XI0OSc1Fqaodq9TkiWmwbE0PQ-PB9oeTwDfSFEyGXkQz3OPTaNZBm_A0WdPW5fnnc_DmARC1KqtLlSoE5s_TfL1ahrHm99SpMXN017695qX0WIVdOLT0ktW0JR5XkULE1SE8HT9yd-ar6Gsd3vWxbBCiGgrfS8MbQxD8GNJVP30bjQuEBvYiTvAgHwkK3ka_PKU4hSD1foF7NJ9m-G-xcPXPs7fsszJeCmcFfIAJl9H9-3W3dm5VwkzeCoQdOhpEVOqtbWRgnM29rWWoVSEEkl9bkMdKx2qQBNJjBCcU1cn5pvIEhUE0jI_2EAzsACzibAlNjVKqMih8pXiUsZGSRVaFkvwk3QLHdY2SQYl_0YyZlp2O5rAjjpsNU_YFmrUVkuqXzFPXKY1jnxGoPuottK4-9fJtv80eh_NdZvtpHNxc7WD5iGqEmU9WQPNgCnMLprO9Wiv8s4PwZPmUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOCP+reformulation+for+the+generalized+trust+region+subproblem+via+a+canonical+form+of+two+symmetric+matrices&rft.jtitle=Mathematical+programming&rft.au=Jiang%2C+Rujun&rft.au=Li%2C+Duan&rft.au=Wu%2C+Baiyi&rft.date=2018-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=169&rft.issue=2&rft.spage=531&rft.epage=563&rft_id=info:doi/10.1007%2Fs10107-017-1145-4&rft.externalDocID=10_1007_s10107_017_1145_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon