Thermoelectric Generation Based on Spin Seebeck Effects
The spin Seebeck effect (SSE) refers to the generation of a spin current as a result of a temperature gradient in magnetic materials including insulators. The SSE is applicable to thermoelectric generation because the thermally generated spin current can be converted into a charge current via spin-o...
Saved in:
Published in: | Proceedings of the IEEE Vol. 104; no. 10; pp. 1946 - 1973 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
IEEE
01-10-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The spin Seebeck effect (SSE) refers to the generation of a spin current as a result of a temperature gradient in magnetic materials including insulators. The SSE is applicable to thermoelectric generation because the thermally generated spin current can be converted into a charge current via spin-orbit interaction in conductive materials adjacent to the magnets. The insulator-based SSE device exhibits unconventional characteristics potentially useful for thermoelectric applications, such as simple structure, device-design flexibility, and convenient scaling capability. In this article, we review recent studies on the SSE from the viewpoint of thermoelectric applications. Firstly, we introduce the thermoelectric generation process and measurement configuration of the SSE, followed by showing fundamental characteristics of the SSE device. Secondly, a theory of the thermoelectric conversion efficiency of the SSE device is presented, which clarifies the difference between the SSE and conventional thermoelectric effects and the efficiency limit of the SSE device. Finally, we show preliminary demonstrations of the SSE in various device structures for future thermoelectric applications and discuss prospects of the SSE-based thermoelectric technologies. |
---|---|
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/JPROC.2016.2535167 |