Darbepoetin alfa suppresses tumor necrosis factor-α-induced endothelin-1 production through antioxidant action in human aortic endothelial cells: Role of sialic acid residues

Recombinant human erythropoietin (r-HuEPO) is widely used to correct anemia in end-stage renal disease patients, who commonly suffer from atherosclerosis. Endothelin-1 (ET-1) has been implicated in the pathogenesis of atherosclerosis. Here, we tested whether darbepoetin alfa, a hypersialylated analo...

Full description

Saved in:
Bibliographic Details
Published in:Free radical biology & medicine Vol. 50; no. 10; pp. 1242 - 1251
Main Authors: Yang, Won Seok, Chang, Jai Won, Han, Nam Jeong, Park, Su-Kil
Format: Journal Article
Language:English
Published: United States Elsevier Inc 15-05-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recombinant human erythropoietin (r-HuEPO) is widely used to correct anemia in end-stage renal disease patients, who commonly suffer from atherosclerosis. Endothelin-1 (ET-1) has been implicated in the pathogenesis of atherosclerosis. Here, we tested whether darbepoetin alfa, a hypersialylated analogue of r-HuEPO, regulates tumor necrosis factor-α (TNF-α)-induced ET-1 production in human aortic endothelial cells, and sought to identify the signal pathways involved. Darbepoetin alfa attenuated TNF-α-induced ET-1 production. It also diminished TNF-α-induced reactive oxygen species (ROS) accumulation and subsequent activation of c-Jun NH2-terminal kinase (JNK), which regulates the DNA-binding activities of both AP-1 and NF-κB required for ET-1 gene transcription. Like a JNK inhibitor, darbepoetin alfa did not affect IκBα degradation or p65 nuclear translocation, but did inhibit mitogen- and stress-activated protein kinase 1 (MSK1) activation and attenuated p65 phosphorylation (serine 276), effects that may account for the reduction in NF-κB DNA-binding activity. Desialylation completely abolished darbepoetin alfa's inhibitory effects on TNF-α-induced ROS accumulation, MSK1 activation, and ET-1 gene expression, without affecting its stimulation of STAT5 activity. These data demonstrate that darbepoetin alfa suppresses TNF-α-induced ET-1 production through its antioxidant action and suggest that the sialic acid residues of darbepoetin alfa are essential for its antioxidant effect, possibly by scavenging ROS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2011.02.005