Slippage prediction for off-road mobile robots via machine learning regression and proprioceptive sensing

This paper presents a new approach for predicting slippage associated with individual wheels in off-road mobile robots. More specifically, machine learning regression algorithms are trained considering proprioceptive sensing. This contribution is validated by using the MIT single-wheel testbed equip...

Full description

Saved in:
Bibliographic Details
Published in:Robotics and autonomous systems Vol. 105; pp. 85 - 93
Main Authors: Gonzalez, Ramon, Fiacchini, Mirko, Iagnemma, Karl
Format: Journal Article
Language:English
Published: Elsevier B.V 01-07-2018
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a new approach for predicting slippage associated with individual wheels in off-road mobile robots. More specifically, machine learning regression algorithms are trained considering proprioceptive sensing. This contribution is validated by using the MIT single-wheel testbed equipped with an MSL spare wheel. The combination of IMU-related and torque-related features outperforms the torque-related features only. Gaussian process regression results in a proper trade-off between accuracy and computation time. Another advantage of this algorithm is that it returns the variance associated with each prediction, which might be used for future route planning and control tasks. The paper also provides a comparison between machine learning regression and classification algorithms. •Slippage prediction associated with individual wheels in off-road mobile robots.•Machine learning regression algorithms considering proprioceptive sensing.•Gaussian process regression results in the best accuracy. It also returns the variance associated with each prediction.•This methodology will be exploited by the layers: path planning and motion control.
AbstractList This paper presents a new approach for predicting slippage associated with individual wheels in off-road mobile robots. More specifically, machine learning regression algorithms are trained considering proprioceptive sensing. This contribution is validated by using the MIT single-wheel testbed equipped with an MSL spare wheel. The combination of IMU-related and torque-related features outperforms the torque-related features only. Gaussian process regression results in a proper trade-off between accuracy and computation time. Another advantage of this algorithm is that it returns the variance associated with each prediction, which might be used for future route planning and control tasks. The paper also provides a comparison between machine learning regression and classification algorithms.
This paper presents a new approach for predicting slippage associated with individual wheels in off-road mobile robots. More specifically, machine learning regression algorithms are trained considering proprioceptive sensing. This contribution is validated by using the MIT single-wheel testbed equipped with an MSL spare wheel. The combination of IMU-related and torque-related features outperforms the torque-related features only. Gaussian process regression results in a proper trade-off between accuracy and computation time. Another advantage of this algorithm is that it returns the variance associated with each prediction, which might be used for future route planning and control tasks. The paper also provides a comparison between machine learning regression and classification algorithms. •Slippage prediction associated with individual wheels in off-road mobile robots.•Machine learning regression algorithms considering proprioceptive sensing.•Gaussian process regression results in the best accuracy. It also returns the variance associated with each prediction.•This methodology will be exploited by the layers: path planning and motion control.
Author Iagnemma, Karl
Fiacchini, Mirko
Gonzalez, Ramon
Author_xml – sequence: 1
  givenname: Ramon
  surname: Gonzalez
  fullname: Gonzalez, Ramon
  email: ramon@robonity.com
  organization: robonity: tech consulting, Calle Extremadura, no. 5, 04740, Almeria, Spain
– sequence: 2
  givenname: Mirko
  orcidid: 0000-0002-3601-0302
  surname: Fiacchini
  fullname: Fiacchini, Mirko
  email: mirko.fiacchini@gipsa-lab.grenoble-inp.fr
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
– sequence: 3
  givenname: Karl
  surname: Iagnemma
  fullname: Iagnemma, Karl
  email: kdi@mit.edu
  organization: Massachusetts Institute of Technology, 77 Massachusetts Av., 02139 Cambridge, MA, USA
BackLink https://hal.univ-grenoble-alpes.fr/hal-01904487$$DView record in HAL
BookMark eNp9kM1LxDAQxYMouH78BV5y9dA6mbTb5uBBxC9Y8KCCt5Cm0zVLNylJWfC_t90Vj54Ghvd7M--dsWMfPDF2JSAXIJY3mzyGJow5gqhzkDkIecQWoq4wq5T8PGYLUCiyulZwys5S2gCALCu5YO6td8Ng1sSHSK2zowuedyHy0HVZDKbl29C4nvj-QOI7Z_jW2C_nifdkond-zSOtI6U0o8a3k1MYoguWhtHtiCfyaVJdsJPO9Ikuf-c5-3h8eL9_zlavTy_3d6vMyhrHrERsjYBy2ZSqQ1TUFI1BBMQS56eByrZQVd2hVYbIKjS1gCWWtiyWFSp5zq4Pvl-m19MfWxO_dTBOP9-t9LwDoaAo6monJq08aG0MKUXq_gABem5Wb_Q-uJ6b1SAnWE7U7YGiKcbOUdTJOvJ26i-SHXUb3L_8D0MAhXI
CitedBy_id crossref_primary_10_1007_s42452_021_04453_3
crossref_primary_10_3390_land10060648
crossref_primary_10_1017_S0263574721000035
crossref_primary_10_1186_s40648_021_00215_3
crossref_primary_10_1016_j_pss_2021_105271
crossref_primary_10_1007_s10846_023_01968_2
crossref_primary_10_1016_j_jterra_2024_100972
crossref_primary_10_3389_fnbot_2020_620378
crossref_primary_10_1016_j_compag_2019_105176
crossref_primary_10_1109_TITS_2023_3344799
crossref_primary_10_1115_1_4051016
crossref_primary_10_3390_app12031676
crossref_primary_10_3390_s23136127
crossref_primary_10_3389_frspt_2022_1080291
crossref_primary_10_1016_j_micpro_2021_104310
crossref_primary_10_1002_rob_22252
crossref_primary_10_1016_j_jterra_2021_04_005
crossref_primary_10_1016_j_cogsys_2019_09_006
crossref_primary_10_1002_rob_22047
crossref_primary_10_1007_s13369_022_07371_7
crossref_primary_10_1007_s41315_020_00142_3
crossref_primary_10_1016_j_biosystemseng_2022_04_020
crossref_primary_10_3390_robotics13010012
crossref_primary_10_1109_TITS_2021_3097385
crossref_primary_10_1016_j_robot_2019_05_007
crossref_primary_10_15446_dyna_v90n225_105688
crossref_primary_10_3390_s22031062
crossref_primary_10_1016_j_atech_2022_100131
crossref_primary_10_1007_s11370_023_00504_3
crossref_primary_10_1016_j_jterra_2021_11_003
crossref_primary_10_1002_rob_22141
crossref_primary_10_1017_S026357472300187X
crossref_primary_10_3390_app12094789
Cites_doi 10.1016/j.robot.2017.05.014
10.1016/j.jterra.2016.10.001
10.1023/B:AURO.0000047286.62481.1d
10.1109/70.388775
10.1109/ICRA.2016.7487413
10.1177/0278364910370241
10.1002/rob.20179
10.1016/j.jterra.2017.09.001
10.1002/rob.21736
10.1007/s10514-008-9105-8
10.1023/B:STCO.0000035301.49549.88
10.1016/j.robot.2011.05.006
10.1007/s10514-015-9527-z
10.1007/s11263-007-0046-z
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.robot.2018.03.013
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-793X
EndPage 93
ExternalDocumentID oai_HAL_hal_01904487v1
10_1016_j_robot_2018_03_013
S0921889018300174
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
0SF
1XC
VOOES
ID FETCH-LOGICAL-c382t-522da1056b59f229eb4ba220225200350e5d4978f2c9aeec92a810625c5467293
ISSN 0921-8890
IngestDate Tue Oct 15 15:24:18 EDT 2024
Thu Nov 21 22:34:25 EST 2024
Fri Feb 23 02:33:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gaussian process regression
Inertial measurement unit (IMU)
Machine learning regression
Slip
Mars science laboratory (MSL) wheel
Mars Science Laboratory (MSL) wheel
Gaussian Process Regression
Machine Learning Regression
Inertial Measurement Unit (IMU)
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c382t-522da1056b59f229eb4ba220225200350e5d4978f2c9aeec92a810625c5467293
ORCID 0000-0002-3601-0302
OpenAccessLink https://hal.univ-grenoble-alpes.fr/hal-01904487
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01904487v1
crossref_primary_10_1016_j_robot_2018_03_013
elsevier_sciencedirect_doi_10_1016_j_robot_2018_03_013
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
2018-07
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationTitle Robotics and autonomous systems
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Angelova, Matthies, Helmick, Perona (b6) 2007; 24
S. Lee, R. Gonzalez, K. Iagnemma, Robust sampling-based motion planning for autonomous tracked vehicles in deformable high slip terrain, in: IEEE Int. Conf. on Robotics and Automation, ICRA, Stockholm, Sweden, 2016, pp. 2569–2574.
G. Webster, D. Brown, Now a Stationary Research Platform. NASA’s Mars rover Spirit starts a new chapter in Red Planet Scientific Studies.
Smola, Scholkopf (b22) 2004; 14
Bouguelia, Gonzalez, Iagnemma, Byttner (b11) 2017; 73
Barshan, Durrant-Whyte (b13) 1995; 11
Murphy (b24) 2012
Gonzalez, Iagnemma (b10) 2016
Manduchi, Castano, Talukder, Matthies (b3) 2005; 18
Karumanchi, Allen, Bailey, Scheding (b21) 2010; 29
Gonzalez, Fiacchini, Guzman, Alamo, Rodriguez (b25) 2011; 59
Gonzalez, Apostolopoulos, Iagnemma (b12) 2018; 35
Vapnik (b23) 1995
Maimone, Biesiadecki, Tunstel, Cheng, Leger (b2) 2006
Matthies, Maimone, Johnson, Cheng, Willson, Villalpando, Goldberg, Huertas (b4) 2007; 75
Wong (b8) 2001
LaValle (b1) 2006
Iagnemma, Dubowsky (b5) 2004
Ordonez, Gupta, Reese, Seegmiller, Kelly, Collins (b16) 2017; 95
Gonzalez, Jayakumar, Iagnemma (b19) 2017; 69
Gonzalez, Iagnemma (b7) 2017
Marsland (b17) 2015
Gonzalez, Jayakumar, Iagnemma (b20) 2017; 41
Iagnemma, Ward (b14) 2009; 26
Gonzalez, Rodriguez, Guzman (b15) 2014
Rasmussen, Williams (b18) 2006
Gonzalez (10.1016/j.robot.2018.03.013_b10) 2016
Gonzalez (10.1016/j.robot.2018.03.013_b15) 2014
LaValle (10.1016/j.robot.2018.03.013_b1) 2006
Murphy (10.1016/j.robot.2018.03.013_b24) 2012
Angelova (10.1016/j.robot.2018.03.013_b6) 2007; 24
Bouguelia (10.1016/j.robot.2018.03.013_b11) 2017; 73
Karumanchi (10.1016/j.robot.2018.03.013_b21) 2010; 29
Wong (10.1016/j.robot.2018.03.013_b8) 2001
Marsland (10.1016/j.robot.2018.03.013_b17) 2015
Gonzalez (10.1016/j.robot.2018.03.013_b7) 2017
Ordonez (10.1016/j.robot.2018.03.013_b16) 2017; 95
Vapnik (10.1016/j.robot.2018.03.013_b23) 1995
Maimone (10.1016/j.robot.2018.03.013_b2) 2006
Gonzalez (10.1016/j.robot.2018.03.013_b19) 2017; 69
Gonzalez (10.1016/j.robot.2018.03.013_b25) 2011; 59
Matthies (10.1016/j.robot.2018.03.013_b4) 2007; 75
Smola (10.1016/j.robot.2018.03.013_b22) 2004; 14
Manduchi (10.1016/j.robot.2018.03.013_b3) 2005; 18
10.1016/j.robot.2018.03.013_b9
Gonzalez (10.1016/j.robot.2018.03.013_b20) 2017; 41
Gonzalez (10.1016/j.robot.2018.03.013_b12) 2018; 35
Barshan (10.1016/j.robot.2018.03.013_b13) 1995; 11
Iagnemma (10.1016/j.robot.2018.03.013_b14) 2009; 26
Rasmussen (10.1016/j.robot.2018.03.013_b18) 2006
10.1016/j.robot.2018.03.013_b26
Iagnemma (10.1016/j.robot.2018.03.013_b5) 2004
References_xml – year: 2015
  ident: b17
  article-title: Machine Learning. An Algorithmic Perspective
  contributor:
    fullname: Marsland
– volume: 24
  start-page: 205
  year: 2007
  end-page: 231
  ident: b6
  article-title: Learning and prediction of slip from visual information
  publication-title: J. Field Robot.
  contributor:
    fullname: Perona
– year: 2014
  ident: b15
  publication-title: Autonomous Tracked Robots in Planar Off-Road Conditions. Modelling, Localization and Motion Control
  contributor:
    fullname: Guzman
– volume: 41
  start-page: 311
  year: 2017
  end-page: 331
  ident: b20
  article-title: Stochastic mobility prediction of ground vehicles over large spatial regions: A geostatistical approach
  publication-title: Auton. Robots
  contributor:
    fullname: Iagnemma
– year: 2004
  ident: b5
  publication-title: Mobile Robots in Rough Terrain. Estimation, Motion Planning, and Control with Application to Planetary Rovers
  contributor:
    fullname: Dubowsky
– volume: 95
  start-page: 207
  year: 2017
  end-page: 221
  ident: b16
  article-title: Learning of skid-steered kinematic and dynamic models for motion planning
  publication-title: Robot. Auton. Syst.
  contributor:
    fullname: Collins
– volume: 69
  start-page: 1
  year: 2017
  end-page: 11
  ident: b19
  article-title: Generation of stochastic mobility maps for large-scale route planning of ground vehicles: a case study
  publication-title: J. Terramech.
  contributor:
    fullname: Iagnemma
– year: 1995
  ident: b23
  article-title: The Nature of Statistical Learning Theory
  contributor:
    fullname: Vapnik
– volume: 73
  year: 2017
  ident: b11
  article-title: Unsupervised detection of soil embedding events for planetary exploration rovers
  publication-title: J. Terramech.
  contributor:
    fullname: Byttner
– volume: 75
  start-page: 67
  year: 2007
  end-page: 92
  ident: b4
  article-title: Computer vision on mars
  publication-title: Int. J. Comput. Vis.
  contributor:
    fullname: Huertas
– year: 2012
  ident: b24
  article-title: Machine Learning: A Probabilistic Perspective
  contributor:
    fullname: Murphy
– volume: 29
  start-page: 997
  year: 2010
  end-page: 1018
  ident: b21
  article-title: Non-parametric learning to aid path planning over slopes
  publication-title: Int. J. Robot. Res.
  contributor:
    fullname: Scheding
– volume: 11
  start-page: 328
  year: 1995
  end-page: 342
  ident: b13
  article-title: Inertial navigation systems for mobile robots
  publication-title: IEEE Trans. Robot. Autom.
  contributor:
    fullname: Durrant-Whyte
– volume: 18
  start-page: 81
  year: 2005
  end-page: 102
  ident: b3
  article-title: Obstacle detection and terrain classification for autonomous off-road navigation
  publication-title: Auton. Robots
  contributor:
    fullname: Matthies
– volume: 26
  start-page: 33
  year: 2009
  end-page: 46
  ident: b14
  article-title: Classification–based wheel slip detection and detector fusion for mobile robots on outdoor terrain
  publication-title: Auton. Robots
  contributor:
    fullname: Ward
– year: 2001
  ident: b8
  article-title: Theory of Ground Vehicles
  contributor:
    fullname: Wong
– start-page: 1
  year: 2017
  end-page: 14
  ident: b7
  article-title: Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges
  publication-title: J. Field Robot.
  contributor:
    fullname: Iagnemma
– year: 2006
  ident: b18
  publication-title: Gaussian Processes for Machine Learning
  contributor:
    fullname: Williams
– volume: 35
  start-page: 231
  year: 2018
  end-page: 247
  ident: b12
  article-title: Slippage and immobilization detection for planetary exploration rovers via machine learning and proprioceptive sensing
  publication-title: J. Field Robot.
  contributor:
    fullname: Iagnemma
– start-page: 45
  year: 2006
  end-page: 69
  ident: b2
  article-title: Surface navigation and mobility intelligence on the Mars Exploration Rovers
  publication-title: Intelligence for Space Robotics
  contributor:
    fullname: Leger
– volume: 59
  start-page: 711
  year: 2011
  end-page: 726
  ident: b25
  article-title: Robust tube-based predictive control for mobile robots in off-road conditions
  publication-title: Robot. Auton. Syst.
  contributor:
    fullname: Rodriguez
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b22
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  contributor:
    fullname: Scholkopf
– year: 2006
  ident: b1
  article-title: Planning Algorithms
  contributor:
    fullname: LaValle
– year: 2016
  ident: b10
  article-title: Soil embedding avoidance for planetary exploration rovers
  publication-title: 8th ISTVS Amercias Conference
  contributor:
    fullname: Iagnemma
– year: 2004
  ident: 10.1016/j.robot.2018.03.013_b5
  contributor:
    fullname: Iagnemma
– year: 2001
  ident: 10.1016/j.robot.2018.03.013_b8
  contributor:
    fullname: Wong
– volume: 95
  start-page: 207
  year: 2017
  ident: 10.1016/j.robot.2018.03.013_b16
  article-title: Learning of skid-steered kinematic and dynamic models for motion planning
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2017.05.014
  contributor:
    fullname: Ordonez
– volume: 69
  start-page: 1
  year: 2017
  ident: 10.1016/j.robot.2018.03.013_b19
  article-title: Generation of stochastic mobility maps for large-scale route planning of ground vehicles: a case study
  publication-title: J. Terramech.
  doi: 10.1016/j.jterra.2016.10.001
  contributor:
    fullname: Gonzalez
– volume: 18
  start-page: 81
  year: 2005
  ident: 10.1016/j.robot.2018.03.013_b3
  article-title: Obstacle detection and terrain classification for autonomous off-road navigation
  publication-title: Auton. Robots
  doi: 10.1023/B:AURO.0000047286.62481.1d
  contributor:
    fullname: Manduchi
– year: 2014
  ident: 10.1016/j.robot.2018.03.013_b15
  contributor:
    fullname: Gonzalez
– year: 2006
  ident: 10.1016/j.robot.2018.03.013_b1
  contributor:
    fullname: LaValle
– volume: 11
  start-page: 328
  year: 1995
  ident: 10.1016/j.robot.2018.03.013_b13
  article-title: Inertial navigation systems for mobile robots
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.388775
  contributor:
    fullname: Barshan
– year: 1995
  ident: 10.1016/j.robot.2018.03.013_b23
  contributor:
    fullname: Vapnik
– ident: 10.1016/j.robot.2018.03.013_b26
  doi: 10.1109/ICRA.2016.7487413
– volume: 29
  start-page: 997
  year: 2010
  ident: 10.1016/j.robot.2018.03.013_b21
  article-title: Non-parametric learning to aid path planning over slopes
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364910370241
  contributor:
    fullname: Karumanchi
– volume: 24
  start-page: 205
  year: 2007
  ident: 10.1016/j.robot.2018.03.013_b6
  article-title: Learning and prediction of slip from visual information
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20179
  contributor:
    fullname: Angelova
– start-page: 1
  year: 2017
  ident: 10.1016/j.robot.2018.03.013_b7
  article-title: Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges
  publication-title: J. Field Robot.
  contributor:
    fullname: Gonzalez
– year: 2016
  ident: 10.1016/j.robot.2018.03.013_b10
  article-title: Soil embedding avoidance for planetary exploration rovers
  contributor:
    fullname: Gonzalez
– volume: 73
  year: 2017
  ident: 10.1016/j.robot.2018.03.013_b11
  article-title: Unsupervised detection of soil embedding events for planetary exploration rovers
  publication-title: J. Terramech.
  doi: 10.1016/j.jterra.2017.09.001
  contributor:
    fullname: Bouguelia
– ident: 10.1016/j.robot.2018.03.013_b9
– volume: 35
  start-page: 231
  year: 2018
  ident: 10.1016/j.robot.2018.03.013_b12
  article-title: Slippage and immobilization detection for planetary exploration rovers via machine learning and proprioceptive sensing
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21736
  contributor:
    fullname: Gonzalez
– volume: 26
  start-page: 33
  year: 2009
  ident: 10.1016/j.robot.2018.03.013_b14
  article-title: Classification–based wheel slip detection and detector fusion for mobile robots on outdoor terrain
  publication-title: Auton. Robots
  doi: 10.1007/s10514-008-9105-8
  contributor:
    fullname: Iagnemma
– year: 2012
  ident: 10.1016/j.robot.2018.03.013_b24
  contributor:
    fullname: Murphy
– year: 2015
  ident: 10.1016/j.robot.2018.03.013_b17
  contributor:
    fullname: Marsland
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.robot.2018.03.013_b22
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
  contributor:
    fullname: Smola
– volume: 59
  start-page: 711
  year: 2011
  ident: 10.1016/j.robot.2018.03.013_b25
  article-title: Robust tube-based predictive control for mobile robots in off-road conditions
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2011.05.006
  contributor:
    fullname: Gonzalez
– volume: 41
  start-page: 311
  year: 2017
  ident: 10.1016/j.robot.2018.03.013_b20
  article-title: Stochastic mobility prediction of ground vehicles over large spatial regions: A geostatistical approach
  publication-title: Auton. Robots
  doi: 10.1007/s10514-015-9527-z
  contributor:
    fullname: Gonzalez
– start-page: 45
  year: 2006
  ident: 10.1016/j.robot.2018.03.013_b2
  article-title: Surface navigation and mobility intelligence on the Mars Exploration Rovers
  contributor:
    fullname: Maimone
– volume: 75
  start-page: 67
  year: 2007
  ident: 10.1016/j.robot.2018.03.013_b4
  article-title: Computer vision on mars
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0046-z
  contributor:
    fullname: Matthies
– year: 2006
  ident: 10.1016/j.robot.2018.03.013_b18
  contributor:
    fullname: Rasmussen
SSID ssj0003573
Score 2.4464347
Snippet This paper presents a new approach for predicting slippage associated with individual wheels in off-road mobile robots. More specifically, machine learning...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 85
SubjectTerms Automatic
Engineering Sciences
Gaussian process regression
Inertial measurement unit (IMU)
Machine learning regression
Mars science laboratory (MSL) wheel
Slip
Title Slippage prediction for off-road mobile robots via machine learning regression and proprioceptive sensing
URI https://dx.doi.org/10.1016/j.robot.2018.03.013
https://hal.univ-grenoble-alpes.fr/hal-01904487
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELba3QscEE-xvGQhbiGrxEka51hBUUGIA12kvUVO7JTsbpMqfRz49cz4kRQqECBxiSpLdVzP15mx9c03hLxKS1kFSsU-hJvUj6OK-5zL0o8KyE5DGZYhx0Lh-SL9dMnfzuLZaOSkKoax_2ppGANbY-XsX1i7nxQG4DPYHJ5gdXj-kd0XN_UanQRW_8u67KmEbVX5XSukt2oL8ARe1xbtduPta-GtNKFSuQ4SS69TS0OPbayOQLvu6lYTYPbK2yDn3Qa8XtobJnN6z2K3xUoJ5NZuDvTQtQh_8w0Ckr6z_oxtjnr01KLENdSGyd9dtz1kxbJRq5UrXLs5vKUIec9otVdnR-Uz5g6ShQAN0y_0XBkPzFNI-TPdJHhw0UFy4GRNjx8brk1_xaNAYO4krs71ZiKDj2stW1P3-pPC9gLXgcsA94ZROx6TUwZLALd5On0_u_zQh_YoMZQFt24nY6UJg0ev-lWqM_7qLu11EnNxl9yxpw86NbC5R0aquU9uH2hSPiC1AxAdAEQBQNQBiBoAUQMgCgCiFkDUAYgOAKKACPojgKgF0EPy5d3s4s3ct_04_DLibOtDqi4FmGJSJFnFWKaKuBCMQRaYaF3dQCUSGxZWrMyEUmXGBA8DOGCXCYRjyCsfkZOmbdRjQmVUyUCirBarYlkkXIg4U5MgSplSlUrPyGu3dfnayK7kjo94lesfmONO50GUw06fkYnb3txmjiYjzAEPv__iSzBG_wrUWp9PP-Y4hiILMRzn9-GTf539Kbk1_BeekZNtt1PPyXgjdy8ssr4DxxShpg
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slippage+prediction+for+off-road+mobile+robots+via+machine+learning+regression+and+proprioceptive+sensing&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Gonzalez%2C+Ramon&rft.au=Fiacchini%2C+Mirko&rft.au=Iagnemma%2C+Karl&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.eissn=1872-793X&rft.volume=105&rft.spage=85&rft.epage=93&rft_id=info:doi/10.1016%2Fj.robot.2018.03.013&rft.externalDocID=S0921889018300174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon