Effects of microbial phytase on standardized total tract digestibility of phosphorus in feed phosphates fed to growing pigs

An experiment was conducted to test the hypothesis that the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P in feed phosphates are increased by microbial phytase when fed to growing pigs. Monocalcium phosphate (MCP), monosodium phosphate (MSP), an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science Vol. 100; no. 12
Main Authors: Lopez, Diego A, Lee, Su A, Stein, Hans H
Format: Journal Article
Language:English
Published: United States Oxford University Press 01-12-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An experiment was conducted to test the hypothesis that the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P in feed phosphates are increased by microbial phytase when fed to growing pigs. Monocalcium phosphate (MCP), monosodium phosphate (MSP), and magnesium phosphate (MgP) from volcanic deposits were used in the experiment. Three corn-soybean meal based diets that contained 0, 500, or 4,000 units of microbial phytase (FTU), but no feed phosphates, were formulated. Nine additional diets were formulated by adding each of the three feed phosphates to the three basal diets. A P-free diet was also formulated to estimate the basal endogenous loss of P, and therefore, 13 diets were used in the experiment. A total of 117 growing barrows (initial body weight: 15.56 ± 1.68 kg) were allotted to the 13 diets with 9 pigs per diet. Pigs were housed individually in metabolism crates equipped with a feeder and a nipple drinker. Installation of a screen floor under the slatted floor allowed for collection of feces. Diets were fed for 10 d, with the initial 5 d being a period of adaptation to the diet followed by a collection period of 4 d. During the experiment, pigs were fed equal amounts of feed twice daily at 0800 and 1600 h. Results indicated that the ATTD and STTD of P in all diets increased with the inclusion of 500 or 4,000 FTU, but the ATTD and STTD of P in the feed phosphates were not affected by the inclusion of phytase. This indicates that the increases in ATTD and STTD of P that were observed in the mixed diets when phytase was used were due to the release of P from phytate in corn and soybean meal and not from an increase in digestibility of P in feed phosphates. However, MgP had a lower (P < 0.05) ATTD and STTD of P than MCP and MSP. In conclusion, microbial phytase does not increase the digestibility of P in MCP, MSP, or MGP, but the digestibility of P in MgP is less than in MCP and MSP.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8812
1525-3163
DOI:10.1093/jas/skac350