Synergistic approach to quantifying information on a crack-based network in loess/water material composites using deep learning and network science
[Display omitted] •Deep learning and network science are synergistically applied to the crack networks.•Network science is employed to quantify the interconnected features between nodes.•CNN and YOLO algorithms are proven to be effective in detecting the nodes and edges. Deep learning and network sc...
Saved in:
Published in: | Computational materials science Vol. 166; pp. 240 - 250 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-08-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | [Display omitted]
•Deep learning and network science are synergistically applied to the crack networks.•Network science is employed to quantify the interconnected features between nodes.•CNN and YOLO algorithms are proven to be effective in detecting the nodes and edges.
Deep learning and network science are applied in a synergistic manner to address structural crack issues with the aim of providing the characteristic features of crack generation and a quantitative description of crack networks in natural materials. Loess/water mixtures were chosen as a model system due to the facile formation of cracks resulting from water evaporation. Deep learning algorithms are applied to the detection and classification of edges and nodes in cracks forming in the drying stage of the loess/water mixture system. Deep learning is shown to effectively detect and classify cracks in terms of nodes and edges. Based on the guided information on nodes and edges, cracks were subject to a connectivity analysis with network science.The combined deep learning/network science approach is proven to be suitable for understanding crack formation and propagation in both qualitative and quantitative aspects. |
---|---|
AbstractList | [Display omitted]
•Deep learning and network science are synergistically applied to the crack networks.•Network science is employed to quantify the interconnected features between nodes.•CNN and YOLO algorithms are proven to be effective in detecting the nodes and edges.
Deep learning and network science are applied in a synergistic manner to address structural crack issues with the aim of providing the characteristic features of crack generation and a quantitative description of crack networks in natural materials. Loess/water mixtures were chosen as a model system due to the facile formation of cracks resulting from water evaporation. Deep learning algorithms are applied to the detection and classification of edges and nodes in cracks forming in the drying stage of the loess/water mixture system. Deep learning is shown to effectively detect and classify cracks in terms of nodes and edges. Based on the guided information on nodes and edges, cracks were subject to a connectivity analysis with network science.The combined deep learning/network science approach is proven to be suitable for understanding crack formation and propagation in both qualitative and quantitative aspects. |
Author | Oh, Jiwon Yoon, Young Cha, Jung-Hwan Hwang, Heesu Choi, Eunsoo Lee, Keon-Hee Hwang, Jin-Ha |
Author_xml | – sequence: 1 givenname: Heesu surname: Hwang fullname: Hwang, Heesu organization: Department of Materials Science and Engineering, Hongik University, Seoul 04066, South Korea – sequence: 2 givenname: Jiwon surname: Oh fullname: Oh, Jiwon organization: Department of Materials Science and Engineering, Hongik University, Seoul 04066, South Korea – sequence: 3 givenname: Keon-Hee surname: Lee fullname: Lee, Keon-Hee organization: Department of Materials Science and Engineering, Hongik University, Seoul 04066, South Korea – sequence: 4 givenname: Jung-Hwan surname: Cha fullname: Cha, Jung-Hwan organization: Department of Civil Engineering, Hongik University, Seoul 04066, South Korea – sequence: 5 givenname: Eunsoo surname: Choi fullname: Choi, Eunsoo organization: Department of Computer Engineering, Hongik University, Seoul 04066, South Korea – sequence: 6 givenname: Young surname: Yoon fullname: Yoon, Young email: young.yoon@hongik.ac.kr organization: Department of Civil Engineering, Hongik University, Seoul 04066, South Korea – sequence: 7 givenname: Jin-Ha surname: Hwang fullname: Hwang, Jin-Ha email: jhwang@hongik.ac.kr organization: Department of Materials Science and Engineering, Hongik University, Seoul 04066, South Korea |
BookMark | eNqFkN1KxDAQhYMouLv6DOYFWidptz-XIv7BghfqdRjTqWbtJjXJKvscvrApLnopDDME5nxzcubs0DpLjJ0JyAWI6nyda7fZYAza5BJEm0OZgygP2Ew0dZtBA-KQzaCVdQZyWR2zeQhrSMq2kTP29bCz5F9MiEZzHEfvUL_y6Pj7Fm00_c7YF25s73w6YZzlqZBrj_ote8ZAHbcUP51_S0t8cBTC-SdG8nwzdYMDT-5GF0ykwLdhonVEIx8IvZ1eaP8Q6QtkNZ2wox6HQKf7uWBP11ePl7fZ6v7m7vJilemiETFrC5QEpWyEbrq6hQ51JUFST1I-U1kRYtGVslvKZV31AFJA2yBqFL1EIZpiweofrvYuBE-9Gr3ZoN8pAWrKVq3Vb7ZqylZBqVK2SXnxo6Rk78OQV3vrnfGko-qc-ZfxDdfhjYw |
CitedBy_id | crossref_primary_10_1016_j_earscirev_2021_103526 crossref_primary_10_1016_j_commatsci_2020_109996 crossref_primary_10_1016_j_jpowsour_2020_228458 crossref_primary_10_3390_s20216205 crossref_primary_10_1016_j_aap_2023_107422 crossref_primary_10_1016_j_mechmat_2023_104684 crossref_primary_10_1080_26889277_2022_2053302 crossref_primary_10_3390_app132212166 |
Cites_doi | 10.1145/2647868.2654948 10.1016/0010-938X(84)90014-3 10.1038/nrg1272 10.1016/j.jmat.2017.08.002 10.1177/1475921708102108 10.1038/s41586-018-0337-2 10.1016/j.engfracmech.2008.12.012 10.1090/S0273-0979-06-01148-7 10.1080/14686996.2016.1277503 10.15554/pcij.07011988.124.145 10.1109/CVPR.2015.7298789 10.1145/3065386 10.1109/TMI.2016.2528162 10.1111/mice.12263 10.1088/1361-665X/aad5f6 10.1016/j.jsv.2015.01.024 10.1007/11744023_34 10.1088/0964-1726/13/4/008 10.1126/science.1173644 10.1109/CVPR.2014.81 10.1002/suco.201200060 10.1016/j.autcon.2017.06.008 10.1016/S0893-6080(98)00116-6 10.1038/nature14539 10.1016/j.cemconres.2003.08.029 10.1073/pnas.0610245104 10.1109/CVPR.2016.91 10.1109/TASL.2011.2134090 10.1145/1390156.1390177 10.1088/0964-1726/9/6/313 10.1109/TPAMI.2015.2437384 10.1088/1674-1056/25/1/018212 10.1111/j.1151-2916.1959.tb13596.x 10.1073/pnas.0900282106 10.1007/BF02486001 10.1016/j.commatsci.2017.09.008 10.1016/S0950-0618(99)00009-4 10.1016/j.conbuildmat.2010.05.004 10.1126/science.1167742 10.1016/j.autcon.2016.06.008 10.1088/0964-1726/15/2/009 10.1016/0008-8846(93)90018-5 10.1109/TPAMI.2016.2577031 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.commatsci.2019.04.014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0801 |
EndPage | 250 |
ExternalDocumentID | 10_1016_j_commatsci_2019_04_014 S0927025619302241 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c381t-93a2e04281c8d790dac6202efe22be46eaa3d42d52576f0021098aaca1f2a1183 |
ISSN | 0927-0256 |
IngestDate | Thu Sep 26 15:38:55 EDT 2024 Fri Feb 23 02:27:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Crack detection Convolutional neural networks Complex networks |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-93a2e04281c8d790dac6202efe22be46eaa3d42d52576f0021098aaca1f2a1183 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_commatsci_2019_04_014 elsevier_sciencedirect_doi_10_1016_j_commatsci_2019_04_014 |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationTitle | Computational materials science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ren, He, Girshick, Sun (b0140) 2016; 39 Meyers (b0185) 2006; 44 Schweitzer, Fagiolo, Sornette, Vega-Redondo, Vespignani, White (b0195) 2009; 325 LeCun, Bengio, Hinton (b0095) 2015; 521 Krizhevsky, Sutskever, Hinton (b0115) 2017; 64 Liu, Zhao, Yang, Ju, Shi (b0155) 2017; 140 Cha, Choi, Büyüköztürk (b0200) 2016; 32 Dowling, Kral, Kampe (b0010) 2013 Walker, Lane, Stutzman (b0025) 2004 Landis (b0070) 1999; 13 Leonhardt (b0080) 1988; 33 Newman, Willard, Smith, Piascik (b0035) 2009; 76 Balázs, Bisch, Borosnyói, Burdet, Burns, Ceroni (b0085) 2013; 14 Leng, Barnes, Fernando (b0060) 2006; 15 Barrett, Nix, Tetelman (b0005) 1973 Barabási, Oltvai (b0190) 2004; 5 Kim, Han, Kim, Bae, Hwang, Yang, Choi, Hwang (b0075) 2018; 27 Dahl, Yu, Deng, Acero (b0100) 2012; 20 Girshick, Donahue, Darrell, Malik (b0125) 2015; 38 Shin, Roth, Gao (b0235) 2016; 35 Raster to Vector Conversion Software Vextractor. Vectorize Your Images and Photo. Vextrasoftcom, 2019. N. Qian. On the momentum term in gradient descent learning algorithms, Neural Networks, 1999. Dawood, Zhu, Zayed (b0280) 2017; 81 . OpenJUMP GIS. Openjumporg, 2019. Bradski, Kaehler (b0250) 2008 Shi, Gao, Liu, Zhao, Wu, Ju (b9000) 2016; 25 R. Collobert, J. Weston, A unified architecture for natural language processing, in: Proceedings of The 25Th International Conference On Machine Learning – ICML '08, 2008, pp. 160–167. Chen, Wadhwa, Cha, Durand, Freeman, Buyukozturk (b0270) 2015; 345 Okabe, Yashiro, Kosaka, Takeda (b0045) 2000; 9 Gu, Xu, Xie, Beaudoin (b0065) 1993; 23 Lin, Maire, Belongie, Bourdev, Girshick, Hays (b0245) 2014 R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580–587. Liu, Zhao, Ju, Shi (b0145) 2017; 3 Cha, You, Choi (b0275) 2016; 71 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, real-time object detection, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. Jensen (b0030) 1996; 29 Wang, Zhang, Chen, Shi, Liu (b0150) 2017; 18 Chen, Jahanshahi (b0210) 2017 Analysis N. NetMiner - Social Network Analysis Software. Netminer.com, 2019. What is Deep Learning? | How It Works, Techniques & Applications. Mathworks.com, 2019. Onnela, Saramäki, Hyvönen, Szabó, Lazer, Kaski, Kertész, Barabási (b0180) 2007; 104 Ohno, Ohtsu (b0020) 2010; 24 Fu, Wong, Poon, Tang, Lin (b0090) 2004; 34 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b0265) 2014 Butler, Davies, Cartwright, Isayev, Walsh (b0160) 2018; 559 J. Redmon, F.-A. preprint arXiv:1804.02767, Yolov3: An incremental improvement, arXiv Preprint arXiv:1804.02767, 2018. Atmani, Rameau (b0050) 1984; 24 J. Wan, D. Wang, S. Hoi, P. Wu, J. Zhu, Y. Zhang, et al., Deep learning for content-based image retrieval, in: Proceedings of The ACM International Conference On Multimedia – MM. 2014, pp. 157–166. Chan, Ashebo, Tam, Yu, Chan, Lee (b0055) 2009; 8 Lin, Chang, Chern, Wang (b0040) 2004; 13 Barabási, Pósfai (b0165) 2016 Z. Xu, Y. Yang, Hauptmann A. A discriminative CNN video representation for event detection, in: IEEE Conference On Computer Vision And Pattern Recognition (CVPR), 2015, pp. 1798–1807. Lazer, Pentland, Adamic, Aral, Barabási, Brewer, Christakis, Contractor, Fowler, Gutmann, Jebara, King, Macy, Roy, Alstyne (b0170) 2009; 323 Panella, Boehm, Loo, Kaushik, Gonzalez (b0205) 2018 Knudsen (b0015) 1959; 42 Eagle, Pentland, Lazer (b0175) 2009; 106 E. Rosten, T. Drummond, Machine learning for high-speed corner detection, European Conference on Computer Vision. 2006, 430–443. Dawood (10.1016/j.commatsci.2019.04.014_b0280) 2017; 81 10.1016/j.commatsci.2019.04.014_b0110 Atmani (10.1016/j.commatsci.2019.04.014_b0050) 1984; 24 Barabási (10.1016/j.commatsci.2019.04.014_b0190) 2004; 5 Chen (10.1016/j.commatsci.2019.04.014_b0270) 2015; 345 Kim (10.1016/j.commatsci.2019.04.014_b0075) 2018; 27 10.1016/j.commatsci.2019.04.014_b0120 10.1016/j.commatsci.2019.04.014_b0240 Lin (10.1016/j.commatsci.2019.04.014_b0245) 2014 Shin (10.1016/j.commatsci.2019.04.014_b0235) 2016; 35 Ohno (10.1016/j.commatsci.2019.04.014_b0020) 2010; 24 Liu (10.1016/j.commatsci.2019.04.014_b0155) 2017; 140 Ren (10.1016/j.commatsci.2019.04.014_b0140) 2016; 39 Meyers (10.1016/j.commatsci.2019.04.014_b0185) 2006; 44 Barrett (10.1016/j.commatsci.2019.04.014_b0005) 1973 Chan (10.1016/j.commatsci.2019.04.014_b0055) 2009; 8 10.1016/j.commatsci.2019.04.014_b0225 Leonhardt (10.1016/j.commatsci.2019.04.014_b0080) 1988; 33 10.1016/j.commatsci.2019.04.014_b0105 10.1016/j.commatsci.2019.04.014_b0220 Panella (10.1016/j.commatsci.2019.04.014_b0205) 2018 10.1016/j.commatsci.2019.04.014_b0230 Chen (10.1016/j.commatsci.2019.04.014_b0210) 2017 Cha (10.1016/j.commatsci.2019.04.014_b0275) 2016; 71 Knudsen (10.1016/j.commatsci.2019.04.014_b0015) 1959; 42 Barabási (10.1016/j.commatsci.2019.04.014_b0165) 2016 Lin (10.1016/j.commatsci.2019.04.014_b0040) 2004; 13 Dahl (10.1016/j.commatsci.2019.04.014_b0100) 2012; 20 Eagle (10.1016/j.commatsci.2019.04.014_b0175) 2009; 106 10.1016/j.commatsci.2019.04.014_b0215 Goodfellow (10.1016/j.commatsci.2019.04.014_b0265) 2014 10.1016/j.commatsci.2019.04.014_b0135 10.1016/j.commatsci.2019.04.014_b0255 Fu (10.1016/j.commatsci.2019.04.014_b0090) 2004; 34 Lazer (10.1016/j.commatsci.2019.04.014_b0170) 2009; 323 10.1016/j.commatsci.2019.04.014_b0260 Okabe (10.1016/j.commatsci.2019.04.014_b0045) 2000; 9 Newman (10.1016/j.commatsci.2019.04.014_b0035) 2009; 76 Onnela (10.1016/j.commatsci.2019.04.014_b0180) 2007; 104 Liu (10.1016/j.commatsci.2019.04.014_b0145) 2017; 3 Landis (10.1016/j.commatsci.2019.04.014_b0070) 1999; 13 Krizhevsky (10.1016/j.commatsci.2019.04.014_b0115) 2017; 64 LeCun (10.1016/j.commatsci.2019.04.014_b0095) 2015; 521 Leng (10.1016/j.commatsci.2019.04.014_b0060) 2006; 15 Gu (10.1016/j.commatsci.2019.04.014_b0065) 1993; 23 Girshick (10.1016/j.commatsci.2019.04.014_b0125) 2015; 38 Dowling (10.1016/j.commatsci.2019.04.014_b0010) 2013 Shi (10.1016/j.commatsci.2019.04.014_b9000) 2016; 25 Balázs (10.1016/j.commatsci.2019.04.014_b0085) 2013; 14 Jensen (10.1016/j.commatsci.2019.04.014_b0030) 1996; 29 10.1016/j.commatsci.2019.04.014_b0130 Cha (10.1016/j.commatsci.2019.04.014_b0200) 2016; 32 Bradski (10.1016/j.commatsci.2019.04.014_b0250) 2008 Butler (10.1016/j.commatsci.2019.04.014_b0160) 2018; 559 Schweitzer (10.1016/j.commatsci.2019.04.014_b0195) 2009; 325 Wang (10.1016/j.commatsci.2019.04.014_b0150) 2017; 18 Walker (10.1016/j.commatsci.2019.04.014_b0025) 2004 |
References_xml | – start-page: 829 year: 2018 end-page: 835 ident: b0205 article-title: Deep learning and image processing for automated crack detection and defect measurement in underground structures, ISPRS – International Archives of the Photogrammetry publication-title: Remote Sens. Spat. Informat. Sci. contributor: fullname: Gonzalez – volume: 24 start-page: 2339 year: 2010 end-page: 2346 ident: b0020 article-title: Crack classification in concrete based on acoustic emission publication-title: Constr. Build. Mater. contributor: fullname: Ohtsu – volume: 104 start-page: 7332 year: 2007 end-page: 7336 ident: b0180 article-title: Structure and tie strengths in mobile communication networks publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Barabási – year: 2004 ident: b0025 article-title: Petrographic methods of examining hardened concrete contributor: fullname: Stutzman – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0095 article-title: Deep learning publication-title: Nature contributor: fullname: Hinton – start-page: 2672 year: 2014 end-page: 2680 ident: b0265 publication-title: Generat. Adversarial Net. contributor: fullname: Bengio – volume: 14 start-page: 99 year: 2013 end-page: 123 ident: b0085 article-title: Design for SLS according to fib Model Code 2010 publication-title: Struct. Concr. contributor: fullname: Ceroni – year: 1973 ident: b0005 article-title: The principles of engineering materials contributor: fullname: Tetelman – volume: 23 start-page: 675 year: 1993 end-page: 682 ident: b0065 article-title: An a.c. impedance spectroscopy study of micro-cracking in cement-based composites during compressive loading publication-title: Cem. Concr. Res. contributor: fullname: Beaudoin – volume: 13 start-page: 65 year: 1999 end-page: 72 ident: b0070 article-title: Micro–macro fracture relationships and acoustic emissions in concrete publication-title: Constr. Build. Mater. contributor: fullname: Landis – volume: 27 start-page: 097001 year: 2018 ident: b0075 article-title: Crack monitoring in shape memory alloy/cement composite materials using water-dispersed quantum dots publication-title: Smart Mater. Struct. contributor: fullname: Hwang – volume: 34 start-page: 789 year: 2004 end-page: 797 ident: b0090 article-title: Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures publication-title: Cem. Concr. Res. contributor: fullname: Lin – volume: 106 start-page: 15274 year: 2009 end-page: 15278 ident: b0175 article-title: Inferring friendship network structure by using mobile phone data publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Lazer – volume: 18 start-page: 134 year: 2017 end-page: 146 ident: b0150 article-title: Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations publication-title: Sci. Technol. Adv. Mat. contributor: fullname: Liu – volume: 25 start-page: 018212 year: 2016 ident: b9000 article-title: Multi-scale computation methods: Their applications in lithium-ion battery research and development publication-title: Chin. Phys. B. contributor: fullname: Ju – volume: 15 start-page: 302 year: 2006 end-page: 308 ident: b0060 article-title: Structural health monitoring of concrete cylinders using protected fibre optic sensors publication-title: Smart Mater. Struct. contributor: fullname: Fernando – volume: 64 start-page: 84 year: 2017 end-page: 90 ident: b0115 article-title: ImageNet classification with deep convolutional neural networks publication-title: Comm. ACM contributor: fullname: Hinton – start-page: 740 year: 2014 end-page: 755 ident: b0245 article-title: Microsoft COCO: Common Objects in Context, European conference on computer vision contributor: fullname: Hays – year: 2016 ident: b0165 article-title: Network science contributor: fullname: Pósfai – volume: 8 start-page: 243 year: 2009 end-page: 249 ident: b0055 article-title: Vertical displacement measurements for bridges using optical fiber sensors and CCD cameras — a preliminary study publication-title: Struct. Health Monit. contributor: fullname: Lee – volume: 5 start-page: 101 year: 2004 end-page: 113 ident: b0190 article-title: Network biology: Understanding the cell’s functional organization publication-title: Nat. Rev. Genet. contributor: fullname: Oltvai – volume: 76 start-page: 898 year: 2009 end-page: 910 ident: b0035 article-title: Replica-based crack inspection publication-title: Eng. Fract. Mech. contributor: fullname: Piascik – volume: 32 start-page: 361 year: 2016 end-page: 378 ident: b0200 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput.-Aided Civil Infrastruct. Eng. contributor: fullname: Büyüköztürk – volume: 38 start-page: 142 year: 2015 end-page: 158 ident: b0125 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Malik – start-page: 4392 year: 2017 end-page: 4400 ident: b0210 article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion publication-title: IEEE Trans. Indust. Electron. contributor: fullname: Jahanshahi – volume: 42 start-page: 376 year: 1959 end-page: 387 ident: b0015 article-title: Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size publication-title: J. Am. Ceram. Soc. contributor: fullname: Knudsen – year: 2008 ident: b0250 article-title: Learning OpenCV: Computer vision with the OpenCV library contributor: fullname: Kaehler – year: 2013 ident: b0010 article-title: Mechanical behavior of materials contributor: fullname: Kampe – volume: 24 start-page: 279 year: 1984 end-page: 285 ident: b0050 article-title: Stress corrosion cracking of 304L stainless steel in molten salts media publication-title: Corrosion Sci. contributor: fullname: Rameau – volume: 71 start-page: 181 year: 2016 end-page: 188 ident: b0275 article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines publication-title: Autom. Constr. contributor: fullname: Choi – volume: 29 start-page: 3 year: 1996 end-page: 8 ident: b0030 article-title: Chatterji, State of the art report on micro-cracking and lifetime of concrete—Part 1 publication-title: Mater. Struct. contributor: fullname: Jensen – volume: 81 start-page: 149 year: 2017 end-page: 160 ident: b0280 article-title: Machine vision-based model for spalling detection and quantification in subway networks publication-title: Autom. Constr. contributor: fullname: Zayed – volume: 559 start-page: 547 year: 2018 end-page: 555 ident: b0160 article-title: Machine learning for molecular and materials science publication-title: Nature contributor: fullname: Walsh – volume: 20 start-page: 30 year: 2012 end-page: 42 ident: b0100 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans. Audio Speech Lang. Process. contributor: fullname: Acero – volume: 140 start-page: 315 year: 2017 end-page: 321 ident: b0155 article-title: The onset temperature (Tg) of As publication-title: Comput. Mater. Sci. contributor: fullname: Shi – volume: 9 start-page: 832 year: 2000 end-page: 838 ident: b0045 article-title: Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors publication-title: Smart Mater. Struct. contributor: fullname: Takeda – volume: 3 start-page: 159 year: 2017 end-page: 177 ident: b0145 article-title: Materials discovery and design using machine learning publication-title: J. Materiomics contributor: fullname: Shi – volume: 44 start-page: 63 year: 2006 end-page: 86 ident: b0185 article-title: Contact network epidemiology: Bond percolation applied to infectious disease prediction and control publication-title: Bull. Amer. Math. Soc. contributor: fullname: Meyers – volume: 13 start-page: 712 year: 2004 end-page: 718 ident: b0040 article-title: The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors publication-title: Smart Mater. Struct. contributor: fullname: Wang – volume: 323 start-page: 721 year: 2009 end-page: 723 ident: b0170 article-title: Computational social science publication-title: Science contributor: fullname: Alstyne – volume: 345 start-page: 58 year: 2015 end-page: 71 ident: b0270 article-title: Modal identification of simple structures with high-speed video using motion magnification publication-title: J. Sound Vibr. contributor: fullname: Buyukozturk – volume: 325 start-page: 422 year: 2009 end-page: 425 ident: b0195 article-title: Economic networks: The new challenges publication-title: Science contributor: fullname: White – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: b0235 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging contributor: fullname: Gao – volume: 33 start-page: 124 year: 1988 end-page: 145 ident: b0080 article-title: Cracks and crack control in concrete structures publication-title: PCI J. contributor: fullname: Leonhardt – volume: 39 start-page: 1137 year: 2016 end-page: 1149 ident: b0140 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Sun – ident: 10.1016/j.commatsci.2019.04.014_b0110 doi: 10.1145/2647868.2654948 – volume: 24 start-page: 279 year: 1984 ident: 10.1016/j.commatsci.2019.04.014_b0050 article-title: Stress corrosion cracking of 304L stainless steel in molten salts media publication-title: Corrosion Sci. doi: 10.1016/0010-938X(84)90014-3 contributor: fullname: Atmani – volume: 5 start-page: 101 year: 2004 ident: 10.1016/j.commatsci.2019.04.014_b0190 article-title: Network biology: Understanding the cell’s functional organization publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1272 contributor: fullname: Barabási – ident: 10.1016/j.commatsci.2019.04.014_b0220 – volume: 3 start-page: 159 year: 2017 ident: 10.1016/j.commatsci.2019.04.014_b0145 article-title: Materials discovery and design using machine learning publication-title: J. Materiomics doi: 10.1016/j.jmat.2017.08.002 contributor: fullname: Liu – year: 2013 ident: 10.1016/j.commatsci.2019.04.014_b0010 contributor: fullname: Dowling – volume: 8 start-page: 243 year: 2009 ident: 10.1016/j.commatsci.2019.04.014_b0055 article-title: Vertical displacement measurements for bridges using optical fiber sensors and CCD cameras — a preliminary study publication-title: Struct. Health Monit. doi: 10.1177/1475921708102108 contributor: fullname: Chan – volume: 559 start-page: 547 year: 2018 ident: 10.1016/j.commatsci.2019.04.014_b0160 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 contributor: fullname: Butler – volume: 76 start-page: 898 year: 2009 ident: 10.1016/j.commatsci.2019.04.014_b0035 article-title: Replica-based crack inspection publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2008.12.012 contributor: fullname: Newman – volume: 44 start-page: 63 year: 2006 ident: 10.1016/j.commatsci.2019.04.014_b0185 article-title: Contact network epidemiology: Bond percolation applied to infectious disease prediction and control publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0273-0979-06-01148-7 contributor: fullname: Meyers – volume: 18 start-page: 134 year: 2017 ident: 10.1016/j.commatsci.2019.04.014_b0150 article-title: Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations publication-title: Sci. Technol. Adv. Mat. doi: 10.1080/14686996.2016.1277503 contributor: fullname: Wang – volume: 33 start-page: 124 year: 1988 ident: 10.1016/j.commatsci.2019.04.014_b0080 article-title: Cracks and crack control in concrete structures publication-title: PCI J. doi: 10.15554/pcij.07011988.124.145 contributor: fullname: Leonhardt – start-page: 740 year: 2014 ident: 10.1016/j.commatsci.2019.04.014_b0245 contributor: fullname: Lin – ident: 10.1016/j.commatsci.2019.04.014_b0120 doi: 10.1109/CVPR.2015.7298789 – ident: 10.1016/j.commatsci.2019.04.014_b0225 – year: 1973 ident: 10.1016/j.commatsci.2019.04.014_b0005 contributor: fullname: Barrett – ident: 10.1016/j.commatsci.2019.04.014_b0215 – volume: 64 start-page: 84 year: 2017 ident: 10.1016/j.commatsci.2019.04.014_b0115 article-title: ImageNet classification with deep convolutional neural networks publication-title: Comm. ACM doi: 10.1145/3065386 contributor: fullname: Krizhevsky – volume: 35 start-page: 1285 year: 2016 ident: 10.1016/j.commatsci.2019.04.014_b0235 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 contributor: fullname: Shin – volume: 32 start-page: 361 year: 2016 ident: 10.1016/j.commatsci.2019.04.014_b0200 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput.-Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12263 contributor: fullname: Cha – volume: 27 start-page: 097001 year: 2018 ident: 10.1016/j.commatsci.2019.04.014_b0075 article-title: Crack monitoring in shape memory alloy/cement composite materials using water-dispersed quantum dots publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aad5f6 contributor: fullname: Kim – volume: 345 start-page: 58 year: 2015 ident: 10.1016/j.commatsci.2019.04.014_b0270 article-title: Modal identification of simple structures with high-speed video using motion magnification publication-title: J. Sound Vibr. doi: 10.1016/j.jsv.2015.01.024 contributor: fullname: Chen – ident: 10.1016/j.commatsci.2019.04.014_b0260 doi: 10.1007/11744023_34 – volume: 13 start-page: 712 year: 2004 ident: 10.1016/j.commatsci.2019.04.014_b0040 article-title: The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/13/4/008 contributor: fullname: Lin – volume: 325 start-page: 422 year: 2009 ident: 10.1016/j.commatsci.2019.04.014_b0195 article-title: Economic networks: The new challenges publication-title: Science doi: 10.1126/science.1173644 contributor: fullname: Schweitzer – ident: 10.1016/j.commatsci.2019.04.014_b0135 doi: 10.1109/CVPR.2014.81 – volume: 14 start-page: 99 year: 2013 ident: 10.1016/j.commatsci.2019.04.014_b0085 article-title: Design for SLS according to fib Model Code 2010 publication-title: Struct. Concr. doi: 10.1002/suco.201200060 contributor: fullname: Balázs – volume: 81 start-page: 149 year: 2017 ident: 10.1016/j.commatsci.2019.04.014_b0280 article-title: Machine vision-based model for spalling detection and quantification in subway networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.06.008 contributor: fullname: Dawood – ident: 10.1016/j.commatsci.2019.04.014_b0240 doi: 10.1016/S0893-6080(98)00116-6 – ident: 10.1016/j.commatsci.2019.04.014_b0255 – start-page: 2672 year: 2014 ident: 10.1016/j.commatsci.2019.04.014_b0265 publication-title: Generat. Adversarial Net. contributor: fullname: Goodfellow – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.commatsci.2019.04.014_b0095 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – volume: 34 start-page: 789 year: 2004 ident: 10.1016/j.commatsci.2019.04.014_b0090 article-title: Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2003.08.029 contributor: fullname: Fu – year: 2004 ident: 10.1016/j.commatsci.2019.04.014_b0025 contributor: fullname: Walker – volume: 104 start-page: 7332 year: 2007 ident: 10.1016/j.commatsci.2019.04.014_b0180 article-title: Structure and tie strengths in mobile communication networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610245104 contributor: fullname: Onnela – ident: 10.1016/j.commatsci.2019.04.014_b0130 doi: 10.1109/CVPR.2016.91 – volume: 20 start-page: 30 year: 2012 ident: 10.1016/j.commatsci.2019.04.014_b0100 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2011.2134090 contributor: fullname: Dahl – ident: 10.1016/j.commatsci.2019.04.014_b0105 doi: 10.1145/1390156.1390177 – volume: 9 start-page: 832 year: 2000 ident: 10.1016/j.commatsci.2019.04.014_b0045 article-title: Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/9/6/313 contributor: fullname: Okabe – volume: 38 start-page: 142 year: 2015 ident: 10.1016/j.commatsci.2019.04.014_b0125 article-title: Region-based convolutional networks for accurate object detection and segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2437384 contributor: fullname: Girshick – start-page: 829 year: 2018 ident: 10.1016/j.commatsci.2019.04.014_b0205 article-title: Deep learning and image processing for automated crack detection and defect measurement in underground structures, ISPRS – International Archives of the Photogrammetry publication-title: Remote Sens. Spat. Informat. Sci. contributor: fullname: Panella – volume: 25 start-page: 018212 year: 2016 ident: 10.1016/j.commatsci.2019.04.014_b9000 article-title: Multi-scale computation methods: Their applications in lithium-ion battery research and development publication-title: Chin. Phys. B. doi: 10.1088/1674-1056/25/1/018212 contributor: fullname: Shi – volume: 42 start-page: 376 year: 1959 ident: 10.1016/j.commatsci.2019.04.014_b0015 article-title: Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1959.tb13596.x contributor: fullname: Knudsen – year: 2008 ident: 10.1016/j.commatsci.2019.04.014_b0250 contributor: fullname: Bradski – start-page: 4392 year: 2017 ident: 10.1016/j.commatsci.2019.04.014_b0210 article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion publication-title: IEEE Trans. Indust. Electron. contributor: fullname: Chen – volume: 106 start-page: 15274 issue: 36 year: 2009 ident: 10.1016/j.commatsci.2019.04.014_b0175 article-title: Inferring friendship network structure by using mobile phone data publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0900282106 contributor: fullname: Eagle – volume: 29 start-page: 3 year: 1996 ident: 10.1016/j.commatsci.2019.04.014_b0030 article-title: Chatterji, State of the art report on micro-cracking and lifetime of concrete—Part 1 publication-title: Mater. Struct. doi: 10.1007/BF02486001 contributor: fullname: Jensen – volume: 140 start-page: 315 year: 2017 ident: 10.1016/j.commatsci.2019.04.014_b0155 article-title: The onset temperature (Tg) of AsxSe1−x glasses transition prediction: a comparison of topological and regression analysis methods publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.09.008 contributor: fullname: Liu – volume: 13 start-page: 65 year: 1999 ident: 10.1016/j.commatsci.2019.04.014_b0070 article-title: Micro–macro fracture relationships and acoustic emissions in concrete publication-title: Constr. Build. Mater. doi: 10.1016/S0950-0618(99)00009-4 contributor: fullname: Landis – year: 2016 ident: 10.1016/j.commatsci.2019.04.014_b0165 contributor: fullname: Barabási – volume: 24 start-page: 2339 year: 2010 ident: 10.1016/j.commatsci.2019.04.014_b0020 article-title: Crack classification in concrete based on acoustic emission publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.05.004 contributor: fullname: Ohno – volume: 323 start-page: 721 year: 2009 ident: 10.1016/j.commatsci.2019.04.014_b0170 article-title: Computational social science publication-title: Science doi: 10.1126/science.1167742 contributor: fullname: Lazer – volume: 71 start-page: 181 year: 2016 ident: 10.1016/j.commatsci.2019.04.014_b0275 article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.06.008 contributor: fullname: Cha – ident: 10.1016/j.commatsci.2019.04.014_b0230 – volume: 15 start-page: 302 year: 2006 ident: 10.1016/j.commatsci.2019.04.014_b0060 article-title: Structural health monitoring of concrete cylinders using protected fibre optic sensors publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/15/2/009 contributor: fullname: Leng – volume: 23 start-page: 675 year: 1993 ident: 10.1016/j.commatsci.2019.04.014_b0065 article-title: An a.c. impedance spectroscopy study of micro-cracking in cement-based composites during compressive loading publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(93)90018-5 contributor: fullname: Gu – volume: 39 start-page: 1137 year: 2016 ident: 10.1016/j.commatsci.2019.04.014_b0140 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 contributor: fullname: Ren |
SSID | ssj0016982 |
Score | 2.3561606 |
Snippet | [Display omitted]
•Deep learning and network science are synergistically applied to the crack networks.•Network science is employed to quantify the... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 240 |
SubjectTerms | Complex networks Convolutional neural networks Crack detection Deep learning |
Title | Synergistic approach to quantifying information on a crack-based network in loess/water material composites using deep learning and network science |
URI | https://dx.doi.org/10.1016/j.commatsci.2019.04.014 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdp-rI9jH2y7gs97C2IOYpn2XsrXUqWwV7SQd_M2ZKg3Wp3TULo37F_eHf6cJy2sI0xCCIInyz7ftadTvfB2FsopKqsLPATryYite-lqFDOiURZqOokVVlKwcmzhfpymn-cptPBICZ43Pb9V05jH_KaImf_gtvdoNiB_5Hn2CLXsf0jvi-uKZrPpV_uEoaTgvljDeQXdO1jWLqYRTosgFF9BfU3QRJNjxrvGE6GkO-toZrqxxugVIoX1J65fCIXztfLLEdrZ2rQxlzG-hM-5DEOEgRsXwX2dSSiDTIOuty5lHC2CZbsmQnFWZwt2FmB5meb9qYr0WfTNmJmOvojf5I1x8VM0Fh98wZFVOV988btuBtvvJRKkLbmpZhfunNFxIE2ru3ZzursM0MFQS99xttbMsSbM84JA_gO8OHJAbBwCXF9vOuNBN0Lmg1NBnVhpxHtsX2Jy146ZPuHn6an8-5UKytc8bJu9jv-hnfe7m5tqacBnTxkD8LWhR96zD1iA9M8Zvd7CS2fsJ899PGIPr5qeQ99vIc-jj_gPfTxABy8iDv0vXPY4xEmfIs97rDHCXs8Yo8j9rohAqCesq_H05OjmQhlP0SN6uNKFBOQhrby4zrXqkg01JlMpLFGysqkmQGY6FRqyuObWWe0KHKAGsZWAu6XJ8_YsGkb85xxWRWgVFEbZcepNhogt4nVGRKOQVlzwJL4estLn92ljG6P52XHkZI4UiZpiRw5YB8iG8rwHF75LBE_vyN-8S_EL9m97Qfyig1XV2vzmu0t9fpNANovihfBjA |
link.rule.ids | 315,782,786,27934,27935 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+approach+to+quantifying+information+on+a+crack-based+network+in+loess%2Fwater+material+composites+using+deep+learning+and+network+science&rft.jtitle=Computational+materials+science&rft.au=Hwang%2C+Heesu&rft.au=Oh%2C+Jiwon&rft.au=Lee%2C+Keon-Hee&rft.au=Cha%2C+Jung-Hwan&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=166&rft.spage=240&rft.epage=250&rft_id=info:doi/10.1016%2Fj.commatsci.2019.04.014&rft.externalDocID=S0927025619302241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |