Synergistic approach to quantifying information on a crack-based network in loess/water material composites using deep learning and network science

[Display omitted] •Deep learning and network science are synergistically applied to the crack networks.•Network science is employed to quantify the interconnected features between nodes.•CNN and YOLO algorithms are proven to be effective in detecting the nodes and edges. Deep learning and network sc...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science Vol. 166; pp. 240 - 250
Main Authors: Hwang, Heesu, Oh, Jiwon, Lee, Keon-Hee, Cha, Jung-Hwan, Choi, Eunsoo, Yoon, Young, Hwang, Jin-Ha
Format: Journal Article
Language:English
Published: Elsevier B.V 01-08-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Deep learning and network science are synergistically applied to the crack networks.•Network science is employed to quantify the interconnected features between nodes.•CNN and YOLO algorithms are proven to be effective in detecting the nodes and edges. Deep learning and network science are applied in a synergistic manner to address structural crack issues with the aim of providing the characteristic features of crack generation and a quantitative description of crack networks in natural materials. Loess/water mixtures were chosen as a model system due to the facile formation of cracks resulting from water evaporation. Deep learning algorithms are applied to the detection and classification of edges and nodes in cracks forming in the drying stage of the loess/water mixture system. Deep learning is shown to effectively detect and classify cracks in terms of nodes and edges. Based on the guided information on nodes and edges, cracks were subject to a connectivity analysis with network science.The combined deep learning/network science approach is proven to be suitable for understanding crack formation and propagation in both qualitative and quantitative aspects.
AbstractList [Display omitted] •Deep learning and network science are synergistically applied to the crack networks.•Network science is employed to quantify the interconnected features between nodes.•CNN and YOLO algorithms are proven to be effective in detecting the nodes and edges. Deep learning and network science are applied in a synergistic manner to address structural crack issues with the aim of providing the characteristic features of crack generation and a quantitative description of crack networks in natural materials. Loess/water mixtures were chosen as a model system due to the facile formation of cracks resulting from water evaporation. Deep learning algorithms are applied to the detection and classification of edges and nodes in cracks forming in the drying stage of the loess/water mixture system. Deep learning is shown to effectively detect and classify cracks in terms of nodes and edges. Based on the guided information on nodes and edges, cracks were subject to a connectivity analysis with network science.The combined deep learning/network science approach is proven to be suitable for understanding crack formation and propagation in both qualitative and quantitative aspects.
Author Oh, Jiwon
Yoon, Young
Cha, Jung-Hwan
Hwang, Heesu
Choi, Eunsoo
Lee, Keon-Hee
Hwang, Jin-Ha
Author_xml – sequence: 1
  givenname: Heesu
  surname: Hwang
  fullname: Hwang, Heesu
  organization: Department of Materials Science and Engineering, Hongik University, Seoul 04066, South Korea
– sequence: 2
  givenname: Jiwon
  surname: Oh
  fullname: Oh, Jiwon
  organization: Department of Materials Science and Engineering, Hongik University, Seoul 04066, South Korea
– sequence: 3
  givenname: Keon-Hee
  surname: Lee
  fullname: Lee, Keon-Hee
  organization: Department of Materials Science and Engineering, Hongik University, Seoul 04066, South Korea
– sequence: 4
  givenname: Jung-Hwan
  surname: Cha
  fullname: Cha, Jung-Hwan
  organization: Department of Civil Engineering, Hongik University, Seoul 04066, South Korea
– sequence: 5
  givenname: Eunsoo
  surname: Choi
  fullname: Choi, Eunsoo
  organization: Department of Computer Engineering, Hongik University, Seoul 04066, South Korea
– sequence: 6
  givenname: Young
  surname: Yoon
  fullname: Yoon, Young
  email: young.yoon@hongik.ac.kr
  organization: Department of Civil Engineering, Hongik University, Seoul 04066, South Korea
– sequence: 7
  givenname: Jin-Ha
  surname: Hwang
  fullname: Hwang, Jin-Ha
  email: jhwang@hongik.ac.kr
  organization: Department of Materials Science and Engineering, Hongik University, Seoul 04066, South Korea
BookMark eNqFkN1KxDAQhYMouLv6DOYFWidptz-XIv7BghfqdRjTqWbtJjXJKvscvrApLnopDDME5nxzcubs0DpLjJ0JyAWI6nyda7fZYAza5BJEm0OZgygP2Ew0dZtBA-KQzaCVdQZyWR2zeQhrSMq2kTP29bCz5F9MiEZzHEfvUL_y6Pj7Fm00_c7YF25s73w6YZzlqZBrj_ote8ZAHbcUP51_S0t8cBTC-SdG8nwzdYMDT-5GF0ykwLdhonVEIx8IvZ1eaP8Q6QtkNZ2wox6HQKf7uWBP11ePl7fZ6v7m7vJilemiETFrC5QEpWyEbrq6hQ51JUFST1I-U1kRYtGVslvKZV31AFJA2yBqFL1EIZpiweofrvYuBE-9Gr3ZoN8pAWrKVq3Vb7ZqylZBqVK2SXnxo6Rk78OQV3vrnfGko-qc-ZfxDdfhjYw
CitedBy_id crossref_primary_10_1016_j_earscirev_2021_103526
crossref_primary_10_1016_j_commatsci_2020_109996
crossref_primary_10_1016_j_jpowsour_2020_228458
crossref_primary_10_3390_s20216205
crossref_primary_10_1016_j_aap_2023_107422
crossref_primary_10_1016_j_mechmat_2023_104684
crossref_primary_10_1080_26889277_2022_2053302
crossref_primary_10_3390_app132212166
Cites_doi 10.1145/2647868.2654948
10.1016/0010-938X(84)90014-3
10.1038/nrg1272
10.1016/j.jmat.2017.08.002
10.1177/1475921708102108
10.1038/s41586-018-0337-2
10.1016/j.engfracmech.2008.12.012
10.1090/S0273-0979-06-01148-7
10.1080/14686996.2016.1277503
10.15554/pcij.07011988.124.145
10.1109/CVPR.2015.7298789
10.1145/3065386
10.1109/TMI.2016.2528162
10.1111/mice.12263
10.1088/1361-665X/aad5f6
10.1016/j.jsv.2015.01.024
10.1007/11744023_34
10.1088/0964-1726/13/4/008
10.1126/science.1173644
10.1109/CVPR.2014.81
10.1002/suco.201200060
10.1016/j.autcon.2017.06.008
10.1016/S0893-6080(98)00116-6
10.1038/nature14539
10.1016/j.cemconres.2003.08.029
10.1073/pnas.0610245104
10.1109/CVPR.2016.91
10.1109/TASL.2011.2134090
10.1145/1390156.1390177
10.1088/0964-1726/9/6/313
10.1109/TPAMI.2015.2437384
10.1088/1674-1056/25/1/018212
10.1111/j.1151-2916.1959.tb13596.x
10.1073/pnas.0900282106
10.1007/BF02486001
10.1016/j.commatsci.2017.09.008
10.1016/S0950-0618(99)00009-4
10.1016/j.conbuildmat.2010.05.004
10.1126/science.1167742
10.1016/j.autcon.2016.06.008
10.1088/0964-1726/15/2/009
10.1016/0008-8846(93)90018-5
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.commatsci.2019.04.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
EndPage 250
ExternalDocumentID 10_1016_j_commatsci_2019_04_014
S0927025619302241
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c381t-93a2e04281c8d790dac6202efe22be46eaa3d42d52576f0021098aaca1f2a1183
ISSN 0927-0256
IngestDate Thu Sep 26 15:38:55 EDT 2024
Fri Feb 23 02:27:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Crack detection
Convolutional neural networks
Complex networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-93a2e04281c8d790dac6202efe22be46eaa3d42d52576f0021098aaca1f2a1183
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_commatsci_2019_04_014
elsevier_sciencedirect_doi_10_1016_j_commatsci_2019_04_014
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationTitle Computational materials science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ren, He, Girshick, Sun (b0140) 2016; 39
Meyers (b0185) 2006; 44
Schweitzer, Fagiolo, Sornette, Vega-Redondo, Vespignani, White (b0195) 2009; 325
LeCun, Bengio, Hinton (b0095) 2015; 521
Krizhevsky, Sutskever, Hinton (b0115) 2017; 64
Liu, Zhao, Yang, Ju, Shi (b0155) 2017; 140
Cha, Choi, Büyüköztürk (b0200) 2016; 32
Dowling, Kral, Kampe (b0010) 2013
Walker, Lane, Stutzman (b0025) 2004
Landis (b0070) 1999; 13
Leonhardt (b0080) 1988; 33
Newman, Willard, Smith, Piascik (b0035) 2009; 76
Balázs, Bisch, Borosnyói, Burdet, Burns, Ceroni (b0085) 2013; 14
Leng, Barnes, Fernando (b0060) 2006; 15
Barrett, Nix, Tetelman (b0005) 1973
Barabási, Oltvai (b0190) 2004; 5
Kim, Han, Kim, Bae, Hwang, Yang, Choi, Hwang (b0075) 2018; 27
Dahl, Yu, Deng, Acero (b0100) 2012; 20
Girshick, Donahue, Darrell, Malik (b0125) 2015; 38
Shin, Roth, Gao (b0235) 2016; 35
Raster to Vector Conversion Software Vextractor. Vectorize Your Images and Photo. Vextrasoftcom, 2019.
N. Qian. On the momentum term in gradient descent learning algorithms, Neural Networks, 1999.
Dawood, Zhu, Zayed (b0280) 2017; 81
.
OpenJUMP GIS. Openjumporg, 2019.
Bradski, Kaehler (b0250) 2008
Shi, Gao, Liu, Zhao, Wu, Ju (b9000) 2016; 25
R. Collobert, J. Weston, A unified architecture for natural language processing, in: Proceedings of The 25Th International Conference On Machine Learning – ICML '08, 2008, pp. 160–167.
Chen, Wadhwa, Cha, Durand, Freeman, Buyukozturk (b0270) 2015; 345
Okabe, Yashiro, Kosaka, Takeda (b0045) 2000; 9
Gu, Xu, Xie, Beaudoin (b0065) 1993; 23
Lin, Maire, Belongie, Bourdev, Girshick, Hays (b0245) 2014
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580–587.
Liu, Zhao, Ju, Shi (b0145) 2017; 3
Cha, You, Choi (b0275) 2016; 71
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, real-time object detection, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.
Jensen (b0030) 1996; 29
Wang, Zhang, Chen, Shi, Liu (b0150) 2017; 18
Chen, Jahanshahi (b0210) 2017
Analysis N. NetMiner - Social Network Analysis Software. Netminer.com, 2019.
What is Deep Learning? | How It Works, Techniques & Applications. Mathworks.com, 2019.
Onnela, Saramäki, Hyvönen, Szabó, Lazer, Kaski, Kertész, Barabási (b0180) 2007; 104
Ohno, Ohtsu (b0020) 2010; 24
Fu, Wong, Poon, Tang, Lin (b0090) 2004; 34
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b0265) 2014
Butler, Davies, Cartwright, Isayev, Walsh (b0160) 2018; 559
J. Redmon, F.-A. preprint arXiv:1804.02767, Yolov3: An incremental improvement, arXiv Preprint arXiv:1804.02767, 2018.
Atmani, Rameau (b0050) 1984; 24
J. Wan, D. Wang, S. Hoi, P. Wu, J. Zhu, Y. Zhang, et al., Deep learning for content-based image retrieval, in: Proceedings of The ACM International Conference On Multimedia – MM. 2014, pp. 157–166.
Chan, Ashebo, Tam, Yu, Chan, Lee (b0055) 2009; 8
Lin, Chang, Chern, Wang (b0040) 2004; 13
Barabási, Pósfai (b0165) 2016
Z. Xu, Y. Yang, Hauptmann A. A discriminative CNN video representation for event detection, in: IEEE Conference On Computer Vision And Pattern Recognition (CVPR), 2015, pp. 1798–1807.
Lazer, Pentland, Adamic, Aral, Barabási, Brewer, Christakis, Contractor, Fowler, Gutmann, Jebara, King, Macy, Roy, Alstyne (b0170) 2009; 323
Panella, Boehm, Loo, Kaushik, Gonzalez (b0205) 2018
Knudsen (b0015) 1959; 42
Eagle, Pentland, Lazer (b0175) 2009; 106
E. Rosten, T. Drummond, Machine learning for high-speed corner detection, European Conference on Computer Vision. 2006, 430–443.
Dawood (10.1016/j.commatsci.2019.04.014_b0280) 2017; 81
10.1016/j.commatsci.2019.04.014_b0110
Atmani (10.1016/j.commatsci.2019.04.014_b0050) 1984; 24
Barabási (10.1016/j.commatsci.2019.04.014_b0190) 2004; 5
Chen (10.1016/j.commatsci.2019.04.014_b0270) 2015; 345
Kim (10.1016/j.commatsci.2019.04.014_b0075) 2018; 27
10.1016/j.commatsci.2019.04.014_b0120
10.1016/j.commatsci.2019.04.014_b0240
Lin (10.1016/j.commatsci.2019.04.014_b0245) 2014
Shin (10.1016/j.commatsci.2019.04.014_b0235) 2016; 35
Ohno (10.1016/j.commatsci.2019.04.014_b0020) 2010; 24
Liu (10.1016/j.commatsci.2019.04.014_b0155) 2017; 140
Ren (10.1016/j.commatsci.2019.04.014_b0140) 2016; 39
Meyers (10.1016/j.commatsci.2019.04.014_b0185) 2006; 44
Barrett (10.1016/j.commatsci.2019.04.014_b0005) 1973
Chan (10.1016/j.commatsci.2019.04.014_b0055) 2009; 8
10.1016/j.commatsci.2019.04.014_b0225
Leonhardt (10.1016/j.commatsci.2019.04.014_b0080) 1988; 33
10.1016/j.commatsci.2019.04.014_b0105
10.1016/j.commatsci.2019.04.014_b0220
Panella (10.1016/j.commatsci.2019.04.014_b0205) 2018
10.1016/j.commatsci.2019.04.014_b0230
Chen (10.1016/j.commatsci.2019.04.014_b0210) 2017
Cha (10.1016/j.commatsci.2019.04.014_b0275) 2016; 71
Knudsen (10.1016/j.commatsci.2019.04.014_b0015) 1959; 42
Barabási (10.1016/j.commatsci.2019.04.014_b0165) 2016
Lin (10.1016/j.commatsci.2019.04.014_b0040) 2004; 13
Dahl (10.1016/j.commatsci.2019.04.014_b0100) 2012; 20
Eagle (10.1016/j.commatsci.2019.04.014_b0175) 2009; 106
10.1016/j.commatsci.2019.04.014_b0215
Goodfellow (10.1016/j.commatsci.2019.04.014_b0265) 2014
10.1016/j.commatsci.2019.04.014_b0135
10.1016/j.commatsci.2019.04.014_b0255
Fu (10.1016/j.commatsci.2019.04.014_b0090) 2004; 34
Lazer (10.1016/j.commatsci.2019.04.014_b0170) 2009; 323
10.1016/j.commatsci.2019.04.014_b0260
Okabe (10.1016/j.commatsci.2019.04.014_b0045) 2000; 9
Newman (10.1016/j.commatsci.2019.04.014_b0035) 2009; 76
Onnela (10.1016/j.commatsci.2019.04.014_b0180) 2007; 104
Liu (10.1016/j.commatsci.2019.04.014_b0145) 2017; 3
Landis (10.1016/j.commatsci.2019.04.014_b0070) 1999; 13
Krizhevsky (10.1016/j.commatsci.2019.04.014_b0115) 2017; 64
LeCun (10.1016/j.commatsci.2019.04.014_b0095) 2015; 521
Leng (10.1016/j.commatsci.2019.04.014_b0060) 2006; 15
Gu (10.1016/j.commatsci.2019.04.014_b0065) 1993; 23
Girshick (10.1016/j.commatsci.2019.04.014_b0125) 2015; 38
Dowling (10.1016/j.commatsci.2019.04.014_b0010) 2013
Shi (10.1016/j.commatsci.2019.04.014_b9000) 2016; 25
Balázs (10.1016/j.commatsci.2019.04.014_b0085) 2013; 14
Jensen (10.1016/j.commatsci.2019.04.014_b0030) 1996; 29
10.1016/j.commatsci.2019.04.014_b0130
Cha (10.1016/j.commatsci.2019.04.014_b0200) 2016; 32
Bradski (10.1016/j.commatsci.2019.04.014_b0250) 2008
Butler (10.1016/j.commatsci.2019.04.014_b0160) 2018; 559
Schweitzer (10.1016/j.commatsci.2019.04.014_b0195) 2009; 325
Wang (10.1016/j.commatsci.2019.04.014_b0150) 2017; 18
Walker (10.1016/j.commatsci.2019.04.014_b0025) 2004
References_xml – start-page: 829
  year: 2018
  end-page: 835
  ident: b0205
  article-title: Deep learning and image processing for automated crack detection and defect measurement in underground structures, ISPRS – International Archives of the Photogrammetry
  publication-title: Remote Sens. Spat. Informat. Sci.
  contributor:
    fullname: Gonzalez
– volume: 24
  start-page: 2339
  year: 2010
  end-page: 2346
  ident: b0020
  article-title: Crack classification in concrete based on acoustic emission
  publication-title: Constr. Build. Mater.
  contributor:
    fullname: Ohtsu
– volume: 104
  start-page: 7332
  year: 2007
  end-page: 7336
  ident: b0180
  article-title: Structure and tie strengths in mobile communication networks
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Barabási
– year: 2004
  ident: b0025
  article-title: Petrographic methods of examining hardened concrete
  contributor:
    fullname: Stutzman
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0095
  article-title: Deep learning
  publication-title: Nature
  contributor:
    fullname: Hinton
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: b0265
  publication-title: Generat. Adversarial Net.
  contributor:
    fullname: Bengio
– volume: 14
  start-page: 99
  year: 2013
  end-page: 123
  ident: b0085
  article-title: Design for SLS according to fib Model Code 2010
  publication-title: Struct. Concr.
  contributor:
    fullname: Ceroni
– year: 1973
  ident: b0005
  article-title: The principles of engineering materials
  contributor:
    fullname: Tetelman
– volume: 23
  start-page: 675
  year: 1993
  end-page: 682
  ident: b0065
  article-title: An a.c. impedance spectroscopy study of micro-cracking in cement-based composites during compressive loading
  publication-title: Cem. Concr. Res.
  contributor:
    fullname: Beaudoin
– volume: 13
  start-page: 65
  year: 1999
  end-page: 72
  ident: b0070
  article-title: Micro–macro fracture relationships and acoustic emissions in concrete
  publication-title: Constr. Build. Mater.
  contributor:
    fullname: Landis
– volume: 27
  start-page: 097001
  year: 2018
  ident: b0075
  article-title: Crack monitoring in shape memory alloy/cement composite materials using water-dispersed quantum dots
  publication-title: Smart Mater. Struct.
  contributor:
    fullname: Hwang
– volume: 34
  start-page: 789
  year: 2004
  end-page: 797
  ident: b0090
  article-title: Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures
  publication-title: Cem. Concr. Res.
  contributor:
    fullname: Lin
– volume: 106
  start-page: 15274
  year: 2009
  end-page: 15278
  ident: b0175
  article-title: Inferring friendship network structure by using mobile phone data
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Lazer
– volume: 18
  start-page: 134
  year: 2017
  end-page: 146
  ident: b0150
  article-title: Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations
  publication-title: Sci. Technol. Adv. Mat.
  contributor:
    fullname: Liu
– volume: 25
  start-page: 018212
  year: 2016
  ident: b9000
  article-title: Multi-scale computation methods: Their applications in lithium-ion battery research and development
  publication-title: Chin. Phys. B.
  contributor:
    fullname: Ju
– volume: 15
  start-page: 302
  year: 2006
  end-page: 308
  ident: b0060
  article-title: Structural health monitoring of concrete cylinders using protected fibre optic sensors
  publication-title: Smart Mater. Struct.
  contributor:
    fullname: Fernando
– volume: 64
  start-page: 84
  year: 2017
  end-page: 90
  ident: b0115
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Comm. ACM
  contributor:
    fullname: Hinton
– start-page: 740
  year: 2014
  end-page: 755
  ident: b0245
  article-title: Microsoft COCO: Common Objects in Context, European conference on computer vision
  contributor:
    fullname: Hays
– year: 2016
  ident: b0165
  article-title: Network science
  contributor:
    fullname: Pósfai
– volume: 8
  start-page: 243
  year: 2009
  end-page: 249
  ident: b0055
  article-title: Vertical displacement measurements for bridges using optical fiber sensors and CCD cameras — a preliminary study
  publication-title: Struct. Health Monit.
  contributor:
    fullname: Lee
– volume: 5
  start-page: 101
  year: 2004
  end-page: 113
  ident: b0190
  article-title: Network biology: Understanding the cell’s functional organization
  publication-title: Nat. Rev. Genet.
  contributor:
    fullname: Oltvai
– volume: 76
  start-page: 898
  year: 2009
  end-page: 910
  ident: b0035
  article-title: Replica-based crack inspection
  publication-title: Eng. Fract. Mech.
  contributor:
    fullname: Piascik
– volume: 32
  start-page: 361
  year: 2016
  end-page: 378
  ident: b0200
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  contributor:
    fullname: Büyüköztürk
– volume: 38
  start-page: 142
  year: 2015
  end-page: 158
  ident: b0125
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Malik
– start-page: 4392
  year: 2017
  end-page: 4400
  ident: b0210
  article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion
  publication-title: IEEE Trans. Indust. Electron.
  contributor:
    fullname: Jahanshahi
– volume: 42
  start-page: 376
  year: 1959
  end-page: 387
  ident: b0015
  article-title: Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size
  publication-title: J. Am. Ceram. Soc.
  contributor:
    fullname: Knudsen
– year: 2008
  ident: b0250
  article-title: Learning OpenCV: Computer vision with the OpenCV library
  contributor:
    fullname: Kaehler
– year: 2013
  ident: b0010
  article-title: Mechanical behavior of materials
  contributor:
    fullname: Kampe
– volume: 24
  start-page: 279
  year: 1984
  end-page: 285
  ident: b0050
  article-title: Stress corrosion cracking of 304L stainless steel in molten salts media
  publication-title: Corrosion Sci.
  contributor:
    fullname: Rameau
– volume: 71
  start-page: 181
  year: 2016
  end-page: 188
  ident: b0275
  article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines
  publication-title: Autom. Constr.
  contributor:
    fullname: Choi
– volume: 29
  start-page: 3
  year: 1996
  end-page: 8
  ident: b0030
  article-title: Chatterji, State of the art report on micro-cracking and lifetime of concrete—Part 1
  publication-title: Mater. Struct.
  contributor:
    fullname: Jensen
– volume: 81
  start-page: 149
  year: 2017
  end-page: 160
  ident: b0280
  article-title: Machine vision-based model for spalling detection and quantification in subway networks
  publication-title: Autom. Constr.
  contributor:
    fullname: Zayed
– volume: 559
  start-page: 547
  year: 2018
  end-page: 555
  ident: b0160
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  contributor:
    fullname: Walsh
– volume: 20
  start-page: 30
  year: 2012
  end-page: 42
  ident: b0100
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  contributor:
    fullname: Acero
– volume: 140
  start-page: 315
  year: 2017
  end-page: 321
  ident: b0155
  article-title: The onset temperature (Tg) of As
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Shi
– volume: 9
  start-page: 832
  year: 2000
  end-page: 838
  ident: b0045
  article-title: Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors
  publication-title: Smart Mater. Struct.
  contributor:
    fullname: Takeda
– volume: 3
  start-page: 159
  year: 2017
  end-page: 177
  ident: b0145
  article-title: Materials discovery and design using machine learning
  publication-title: J. Materiomics
  contributor:
    fullname: Shi
– volume: 44
  start-page: 63
  year: 2006
  end-page: 86
  ident: b0185
  article-title: Contact network epidemiology: Bond percolation applied to infectious disease prediction and control
  publication-title: Bull. Amer. Math. Soc.
  contributor:
    fullname: Meyers
– volume: 13
  start-page: 712
  year: 2004
  end-page: 718
  ident: b0040
  article-title: The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors
  publication-title: Smart Mater. Struct.
  contributor:
    fullname: Wang
– volume: 323
  start-page: 721
  year: 2009
  end-page: 723
  ident: b0170
  article-title: Computational social science
  publication-title: Science
  contributor:
    fullname: Alstyne
– volume: 345
  start-page: 58
  year: 2015
  end-page: 71
  ident: b0270
  article-title: Modal identification of simple structures with high-speed video using motion magnification
  publication-title: J. Sound Vibr.
  contributor:
    fullname: Buyukozturk
– volume: 325
  start-page: 422
  year: 2009
  end-page: 425
  ident: b0195
  article-title: Economic networks: The new challenges
  publication-title: Science
  contributor:
    fullname: White
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: b0235
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  contributor:
    fullname: Gao
– volume: 33
  start-page: 124
  year: 1988
  end-page: 145
  ident: b0080
  article-title: Cracks and crack control in concrete structures
  publication-title: PCI J.
  contributor:
    fullname: Leonhardt
– volume: 39
  start-page: 1137
  year: 2016
  end-page: 1149
  ident: b0140
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Sun
– ident: 10.1016/j.commatsci.2019.04.014_b0110
  doi: 10.1145/2647868.2654948
– volume: 24
  start-page: 279
  year: 1984
  ident: 10.1016/j.commatsci.2019.04.014_b0050
  article-title: Stress corrosion cracking of 304L stainless steel in molten salts media
  publication-title: Corrosion Sci.
  doi: 10.1016/0010-938X(84)90014-3
  contributor:
    fullname: Atmani
– volume: 5
  start-page: 101
  year: 2004
  ident: 10.1016/j.commatsci.2019.04.014_b0190
  article-title: Network biology: Understanding the cell’s functional organization
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1272
  contributor:
    fullname: Barabási
– ident: 10.1016/j.commatsci.2019.04.014_b0220
– volume: 3
  start-page: 159
  year: 2017
  ident: 10.1016/j.commatsci.2019.04.014_b0145
  article-title: Materials discovery and design using machine learning
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2017.08.002
  contributor:
    fullname: Liu
– year: 2013
  ident: 10.1016/j.commatsci.2019.04.014_b0010
  contributor:
    fullname: Dowling
– volume: 8
  start-page: 243
  year: 2009
  ident: 10.1016/j.commatsci.2019.04.014_b0055
  article-title: Vertical displacement measurements for bridges using optical fiber sensors and CCD cameras — a preliminary study
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921708102108
  contributor:
    fullname: Chan
– volume: 559
  start-page: 547
  year: 2018
  ident: 10.1016/j.commatsci.2019.04.014_b0160
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
  contributor:
    fullname: Butler
– volume: 76
  start-page: 898
  year: 2009
  ident: 10.1016/j.commatsci.2019.04.014_b0035
  article-title: Replica-based crack inspection
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2008.12.012
  contributor:
    fullname: Newman
– volume: 44
  start-page: 63
  year: 2006
  ident: 10.1016/j.commatsci.2019.04.014_b0185
  article-title: Contact network epidemiology: Bond percolation applied to infectious disease prediction and control
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0273-0979-06-01148-7
  contributor:
    fullname: Meyers
– volume: 18
  start-page: 134
  year: 2017
  ident: 10.1016/j.commatsci.2019.04.014_b0150
  article-title: Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations
  publication-title: Sci. Technol. Adv. Mat.
  doi: 10.1080/14686996.2016.1277503
  contributor:
    fullname: Wang
– volume: 33
  start-page: 124
  year: 1988
  ident: 10.1016/j.commatsci.2019.04.014_b0080
  article-title: Cracks and crack control in concrete structures
  publication-title: PCI J.
  doi: 10.15554/pcij.07011988.124.145
  contributor:
    fullname: Leonhardt
– start-page: 740
  year: 2014
  ident: 10.1016/j.commatsci.2019.04.014_b0245
  contributor:
    fullname: Lin
– ident: 10.1016/j.commatsci.2019.04.014_b0120
  doi: 10.1109/CVPR.2015.7298789
– ident: 10.1016/j.commatsci.2019.04.014_b0225
– year: 1973
  ident: 10.1016/j.commatsci.2019.04.014_b0005
  contributor:
    fullname: Barrett
– ident: 10.1016/j.commatsci.2019.04.014_b0215
– volume: 64
  start-page: 84
  year: 2017
  ident: 10.1016/j.commatsci.2019.04.014_b0115
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Comm. ACM
  doi: 10.1145/3065386
  contributor:
    fullname: Krizhevsky
– volume: 35
  start-page: 1285
  year: 2016
  ident: 10.1016/j.commatsci.2019.04.014_b0235
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
  contributor:
    fullname: Shin
– volume: 32
  start-page: 361
  year: 2016
  ident: 10.1016/j.commatsci.2019.04.014_b0200
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12263
  contributor:
    fullname: Cha
– volume: 27
  start-page: 097001
  year: 2018
  ident: 10.1016/j.commatsci.2019.04.014_b0075
  article-title: Crack monitoring in shape memory alloy/cement composite materials using water-dispersed quantum dots
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aad5f6
  contributor:
    fullname: Kim
– volume: 345
  start-page: 58
  year: 2015
  ident: 10.1016/j.commatsci.2019.04.014_b0270
  article-title: Modal identification of simple structures with high-speed video using motion magnification
  publication-title: J. Sound Vibr.
  doi: 10.1016/j.jsv.2015.01.024
  contributor:
    fullname: Chen
– ident: 10.1016/j.commatsci.2019.04.014_b0260
  doi: 10.1007/11744023_34
– volume: 13
  start-page: 712
  year: 2004
  ident: 10.1016/j.commatsci.2019.04.014_b0040
  article-title: The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/13/4/008
  contributor:
    fullname: Lin
– volume: 325
  start-page: 422
  year: 2009
  ident: 10.1016/j.commatsci.2019.04.014_b0195
  article-title: Economic networks: The new challenges
  publication-title: Science
  doi: 10.1126/science.1173644
  contributor:
    fullname: Schweitzer
– ident: 10.1016/j.commatsci.2019.04.014_b0135
  doi: 10.1109/CVPR.2014.81
– volume: 14
  start-page: 99
  year: 2013
  ident: 10.1016/j.commatsci.2019.04.014_b0085
  article-title: Design for SLS according to fib Model Code 2010
  publication-title: Struct. Concr.
  doi: 10.1002/suco.201200060
  contributor:
    fullname: Balázs
– volume: 81
  start-page: 149
  year: 2017
  ident: 10.1016/j.commatsci.2019.04.014_b0280
  article-title: Machine vision-based model for spalling detection and quantification in subway networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.06.008
  contributor:
    fullname: Dawood
– ident: 10.1016/j.commatsci.2019.04.014_b0240
  doi: 10.1016/S0893-6080(98)00116-6
– ident: 10.1016/j.commatsci.2019.04.014_b0255
– start-page: 2672
  year: 2014
  ident: 10.1016/j.commatsci.2019.04.014_b0265
  publication-title: Generat. Adversarial Net.
  contributor:
    fullname: Goodfellow
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.commatsci.2019.04.014_b0095
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– volume: 34
  start-page: 789
  year: 2004
  ident: 10.1016/j.commatsci.2019.04.014_b0090
  article-title: Experimental study of micro/macro crack development and stress–strain relations of cement-based composite materials at elevated temperatures
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2003.08.029
  contributor:
    fullname: Fu
– year: 2004
  ident: 10.1016/j.commatsci.2019.04.014_b0025
  contributor:
    fullname: Walker
– volume: 104
  start-page: 7332
  year: 2007
  ident: 10.1016/j.commatsci.2019.04.014_b0180
  article-title: Structure and tie strengths in mobile communication networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610245104
  contributor:
    fullname: Onnela
– ident: 10.1016/j.commatsci.2019.04.014_b0130
  doi: 10.1109/CVPR.2016.91
– volume: 20
  start-page: 30
  year: 2012
  ident: 10.1016/j.commatsci.2019.04.014_b0100
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2011.2134090
  contributor:
    fullname: Dahl
– ident: 10.1016/j.commatsci.2019.04.014_b0105
  doi: 10.1145/1390156.1390177
– volume: 9
  start-page: 832
  year: 2000
  ident: 10.1016/j.commatsci.2019.04.014_b0045
  article-title: Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/9/6/313
  contributor:
    fullname: Okabe
– volume: 38
  start-page: 142
  year: 2015
  ident: 10.1016/j.commatsci.2019.04.014_b0125
  article-title: Region-based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2437384
  contributor:
    fullname: Girshick
– start-page: 829
  year: 2018
  ident: 10.1016/j.commatsci.2019.04.014_b0205
  article-title: Deep learning and image processing for automated crack detection and defect measurement in underground structures, ISPRS – International Archives of the Photogrammetry
  publication-title: Remote Sens. Spat. Informat. Sci.
  contributor:
    fullname: Panella
– volume: 25
  start-page: 018212
  year: 2016
  ident: 10.1016/j.commatsci.2019.04.014_b9000
  article-title: Multi-scale computation methods: Their applications in lithium-ion battery research and development
  publication-title: Chin. Phys. B.
  doi: 10.1088/1674-1056/25/1/018212
  contributor:
    fullname: Shi
– volume: 42
  start-page: 376
  year: 1959
  ident: 10.1016/j.commatsci.2019.04.014_b0015
  article-title: Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1959.tb13596.x
  contributor:
    fullname: Knudsen
– year: 2008
  ident: 10.1016/j.commatsci.2019.04.014_b0250
  contributor:
    fullname: Bradski
– start-page: 4392
  year: 2017
  ident: 10.1016/j.commatsci.2019.04.014_b0210
  article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion
  publication-title: IEEE Trans. Indust. Electron.
  contributor:
    fullname: Chen
– volume: 106
  start-page: 15274
  issue: 36
  year: 2009
  ident: 10.1016/j.commatsci.2019.04.014_b0175
  article-title: Inferring friendship network structure by using mobile phone data
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0900282106
  contributor:
    fullname: Eagle
– volume: 29
  start-page: 3
  year: 1996
  ident: 10.1016/j.commatsci.2019.04.014_b0030
  article-title: Chatterji, State of the art report on micro-cracking and lifetime of concrete—Part 1
  publication-title: Mater. Struct.
  doi: 10.1007/BF02486001
  contributor:
    fullname: Jensen
– volume: 140
  start-page: 315
  year: 2017
  ident: 10.1016/j.commatsci.2019.04.014_b0155
  article-title: The onset temperature (Tg) of AsxSe1−x glasses transition prediction: a comparison of topological and regression analysis methods
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.09.008
  contributor:
    fullname: Liu
– volume: 13
  start-page: 65
  year: 1999
  ident: 10.1016/j.commatsci.2019.04.014_b0070
  article-title: Micro–macro fracture relationships and acoustic emissions in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/S0950-0618(99)00009-4
  contributor:
    fullname: Landis
– year: 2016
  ident: 10.1016/j.commatsci.2019.04.014_b0165
  contributor:
    fullname: Barabási
– volume: 24
  start-page: 2339
  year: 2010
  ident: 10.1016/j.commatsci.2019.04.014_b0020
  article-title: Crack classification in concrete based on acoustic emission
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.05.004
  contributor:
    fullname: Ohno
– volume: 323
  start-page: 721
  year: 2009
  ident: 10.1016/j.commatsci.2019.04.014_b0170
  article-title: Computational social science
  publication-title: Science
  doi: 10.1126/science.1167742
  contributor:
    fullname: Lazer
– volume: 71
  start-page: 181
  year: 2016
  ident: 10.1016/j.commatsci.2019.04.014_b0275
  article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.06.008
  contributor:
    fullname: Cha
– ident: 10.1016/j.commatsci.2019.04.014_b0230
– volume: 15
  start-page: 302
  year: 2006
  ident: 10.1016/j.commatsci.2019.04.014_b0060
  article-title: Structural health monitoring of concrete cylinders using protected fibre optic sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/2/009
  contributor:
    fullname: Leng
– volume: 23
  start-page: 675
  year: 1993
  ident: 10.1016/j.commatsci.2019.04.014_b0065
  article-title: An a.c. impedance spectroscopy study of micro-cracking in cement-based composites during compressive loading
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(93)90018-5
  contributor:
    fullname: Gu
– volume: 39
  start-page: 1137
  year: 2016
  ident: 10.1016/j.commatsci.2019.04.014_b0140
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
  contributor:
    fullname: Ren
SSID ssj0016982
Score 2.3561606
Snippet [Display omitted] •Deep learning and network science are synergistically applied to the crack networks.•Network science is employed to quantify the...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 240
SubjectTerms Complex networks
Convolutional neural networks
Crack detection
Deep learning
Title Synergistic approach to quantifying information on a crack-based network in loess/water material composites using deep learning and network science
URI https://dx.doi.org/10.1016/j.commatsci.2019.04.014
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdp-rI9jH2y7gs97C2IOYpn2XsrXUqWwV7SQd_M2ZKg3Wp3TULo37F_eHf6cJy2sI0xCCIInyz7ftadTvfB2FsopKqsLPATryYite-lqFDOiURZqOokVVlKwcmzhfpymn-cptPBICZ43Pb9V05jH_KaImf_gtvdoNiB_5Hn2CLXsf0jvi-uKZrPpV_uEoaTgvljDeQXdO1jWLqYRTosgFF9BfU3QRJNjxrvGE6GkO-toZrqxxugVIoX1J65fCIXztfLLEdrZ2rQxlzG-hM-5DEOEgRsXwX2dSSiDTIOuty5lHC2CZbsmQnFWZwt2FmB5meb9qYr0WfTNmJmOvojf5I1x8VM0Fh98wZFVOV988btuBtvvJRKkLbmpZhfunNFxIE2ru3ZzursM0MFQS99xttbMsSbM84JA_gO8OHJAbBwCXF9vOuNBN0Lmg1NBnVhpxHtsX2Jy146ZPuHn6an8-5UKytc8bJu9jv-hnfe7m5tqacBnTxkD8LWhR96zD1iA9M8Zvd7CS2fsJ899PGIPr5qeQ99vIc-jj_gPfTxABy8iDv0vXPY4xEmfIs97rDHCXs8Yo8j9rohAqCesq_H05OjmQhlP0SN6uNKFBOQhrby4zrXqkg01JlMpLFGysqkmQGY6FRqyuObWWe0KHKAGsZWAu6XJ8_YsGkb85xxWRWgVFEbZcepNhogt4nVGRKOQVlzwJL4estLn92ljG6P52XHkZI4UiZpiRw5YB8iG8rwHF75LBE_vyN-8S_EL9m97Qfyig1XV2vzmu0t9fpNANovihfBjA
link.rule.ids 315,782,786,27934,27935
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+approach+to+quantifying+information+on+a+crack-based+network+in+loess%2Fwater+material+composites+using+deep+learning+and+network+science&rft.jtitle=Computational+materials+science&rft.au=Hwang%2C+Heesu&rft.au=Oh%2C+Jiwon&rft.au=Lee%2C+Keon-Hee&rft.au=Cha%2C+Jung-Hwan&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=166&rft.spage=240&rft.epage=250&rft_id=info:doi/10.1016%2Fj.commatsci.2019.04.014&rft.externalDocID=S0927025619302241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon