Multimode precoding for MIMO wireless systems
Multiple-input multiple-output (MIMO) wireless systems obtain large diversity and capacity gains by employing multielement antenna arrays at both the transmitter and receiver. The theoretical performance benefits of MIMO systems, however, are irrelevant unless low error rate, spectrally efficient si...
Saved in:
Published in: | IEEE transactions on signal processing Vol. 53; no. 10; pp. 3674 - 3687 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-10-2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiple-input multiple-output (MIMO) wireless systems obtain large diversity and capacity gains by employing multielement antenna arrays at both the transmitter and receiver. The theoretical performance benefits of MIMO systems, however, are irrelevant unless low error rate, spectrally efficient signaling techniques are found. This paper proposes a new method for designing high data-rate spatial signals with low error rates. The basic idea is to use transmitter channel information to adaptively vary the transmission scheme for a fixed data rate. This adaptation is done by varying the number of substreams and the rate of each substream in a precoded spatial multiplexing system. We show that these substreams can be designed to obtain full diversity and full rate gain using feedback from the receiver to transmitter. We model the feedback using a limited feedback scenario where only finite sets, or codebooks, of possible precoding configurations are known to both the transmitter and receiver. Monte Carlo simulations show substantial performance gains over beamforming and spatial multiplexing. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2005.855107 |