Prediction models of the nutritional quality of fresh and dry Brachiaria brizantha cv. Piatã grass by near infrared spectroscopy

This study aimed to generate prediction models to estimate the chemical composition of fresh and dry Brachiaria brizantha cv. Piatã grass using near infrared spectroscopy (NIRS). Chemical analyses of 249 samples were performed to determine oven-dried sample (ODS), dry matter (DM), crude protein (CP)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Animal Research Vol. 51; no. 1; pp. 193 - 203
Main Authors: Andrade Ribeiro, Mariellen Cristine, Loures Guerra, Geisi, Cano Serafim, Camila, Nóbrega de Carvalho, Larissa, Galbeiro, Sandra, Vendrame, Pedro Rodolfo Siqueira, Monteiro do Carmo, João Pedro, Rodrigues Franconere, Erica Regina, Ferracini, Jéssica Geralda, do Prado, Ivanor Nunes, Prado Calixto, Odimári Pricila, Mizubuti, Ivone Yurika
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 31-12-2023
Taylor & Francis Ltd
Taylor & Francis Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study aimed to generate prediction models to estimate the chemical composition of fresh and dry Brachiaria brizantha cv. Piatã grass using near infrared spectroscopy (NIRS). Chemical analyses of 249 samples were performed to determine oven-dried sample (ODS), dry matter (DM), crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose (CEL) and total digestible nutrients (TDN). The samples were scanned in an NIRS spectrometer and different percentages were used to compose and develop the models (100% fresh; 100% dry; 25% fresh:75% dry; 50% fresh:50% dry and 75% fresh:25% dry). The purpose of these mixed models is to know if it is possible to obtain reliable predictions from fresh samples in a database that contains dry samples. The calibration models were developed using modified partial least squares (MPLS) and evaluated by statistical parameters, including coefficient of determination (R²) and residual predictive deviation (RPD). The model with 100% dry samples obtained the best results in R² and RPD validations, for CP (0.94; 3.98), NDF (0.92; 3,49) and TDN (0.90; 3.12). The 100% fresh samples produced the best R² results in ODS (0.83), CP (0.85), ADF (0.84) and ADL (0.83). A screening model was validated to predict the characteristics and components of the fresh samples. The model using 100% dry grass was suitable for predicting all the variables, except ODS, DM and CEL. Highlights Prediction models can be used for assessment of fresh forage, allowing producers to make quicker decisions, thereby saving time and money.
AbstractList This study aimed to generate prediction models to estimate the chemical composition of fresh and dry Brachiaria brizantha cv. Piatã grass using near infrared spectroscopy (NIRS). Chemical analyses of 249 samples were performed to determine oven-dried sample (ODS), dry matter (DM), crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose (CEL) and total digestible nutrients (TDN). The samples were scanned in an NIRS spectrometer and different percentages were used to compose and develop the models (100% fresh; 100% dry; 25% fresh:75% dry; 50% fresh:50% dry and 75% fresh:25% dry). The purpose of these mixed models is to know if it is possible to obtain reliable predictions from fresh samples in a database that contains dry samples. The calibration models were developed using modified partial least squares (MPLS) and evaluated by statistical parameters, including coefficient of determination (R²) and residual predictive deviation (RPD). The model with 100% dry samples obtained the best results in R² and RPD validations, for CP (0.94; 3.98), NDF (0.92; 3,49) and TDN (0.90; 3.12). The 100% fresh samples produced the best R² results in ODS (0.83), CP (0.85), ADF (0.84) and ADL (0.83). A screening model was validated to predict the characteristics and components of the fresh samples. The model using 100% dry grass was suitable for predicting all the variables, except ODS, DM and CEL.HighlightsPrediction models can be used for assessment of fresh forage, allowing producers to make quicker decisions, thereby saving time and money.
This study aimed to generate prediction models to estimate the chemical composition of fresh and dry Brachiaria brizantha cv. Piatã grass using near infrared spectroscopy (NIRS). Chemical analyses of 249 samples were performed to determine oven-dried sample (ODS), dry matter (DM), crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose (CEL) and total digestible nutrients (TDN). The samples were scanned in an NIRS spectrometer and different percentages were used to compose and develop the models (100% fresh; 100% dry; 25% fresh:75% dry; 50% fresh:50% dry and 75% fresh:25% dry). The purpose of these mixed models is to know if it is possible to obtain reliable predictions from fresh samples in a database that contains dry samples. The calibration models were developed using modified partial least squares (MPLS) and evaluated by statistical parameters, including coefficient of determination (R²) and residual predictive deviation (RPD). The model with 100% dry samples obtained the best results in R² and RPD validations, for CP (0.94; 3.98), NDF (0.92; 3,49) and TDN (0.90; 3.12). The 100% fresh samples produced the best R² results in ODS (0.83), CP (0.85), ADF (0.84) and ADL (0.83). A screening model was validated to predict the characteristics and components of the fresh samples. The model using 100% dry grass was suitable for predicting all the variables, except ODS, DM and CEL. Highlights Prediction models can be used for assessment of fresh forage, allowing producers to make quicker decisions, thereby saving time and money.
Author Galbeiro, Sandra
Prado Calixto, Odimári Pricila
Nóbrega de Carvalho, Larissa
do Prado, Ivanor Nunes
Loures Guerra, Geisi
Vendrame, Pedro Rodolfo Siqueira
Rodrigues Franconere, Erica Regina
Monteiro do Carmo, João Pedro
Andrade Ribeiro, Mariellen Cristine
Cano Serafim, Camila
Ferracini, Jéssica Geralda
Mizubuti, Ivone Yurika
Author_xml – sequence: 1
  givenname: Mariellen Cristine
  surname: Andrade Ribeiro
  fullname: Andrade Ribeiro, Mariellen Cristine
  organization: State University of Londrina-UEL
– sequence: 2
  givenname: Geisi
  surname: Loures Guerra
  fullname: Loures Guerra, Geisi
  organization: State University of Londrina-UEL
– sequence: 3
  givenname: Camila
  surname: Cano Serafim
  fullname: Cano Serafim, Camila
  organization: State University of Londrina-UEL
– sequence: 4
  givenname: Larissa
  surname: Nóbrega de Carvalho
  fullname: Nóbrega de Carvalho, Larissa
  organization: State University of Londrina-UEL
– sequence: 5
  givenname: Sandra
  surname: Galbeiro
  fullname: Galbeiro, Sandra
  organization: State University of Londrina-UEL
– sequence: 6
  givenname: Pedro Rodolfo Siqueira
  surname: Vendrame
  fullname: Vendrame, Pedro Rodolfo Siqueira
  organization: State University of Londrina-UEL
– sequence: 7
  givenname: João Pedro
  surname: Monteiro do Carmo
  fullname: Monteiro do Carmo, João Pedro
  organization: State University of Londrina-UEL
– sequence: 8
  givenname: Erica Regina
  surname: Rodrigues Franconere
  fullname: Rodrigues Franconere, Erica Regina
  organization: State University of Londrina-UEL
– sequence: 9
  givenname: Jéssica Geralda
  surname: Ferracini
  fullname: Ferracini, Jéssica Geralda
  organization: State University of Maringá-UEM
– sequence: 10
  givenname: Ivanor Nunes
  surname: do Prado
  fullname: do Prado, Ivanor Nunes
  organization: State University of Maringá-UEM
– sequence: 11
  givenname: Odimári Pricila
  surname: Prado Calixto
  fullname: Prado Calixto, Odimári Pricila
  email: odimari@uel.br
  organization: State University of Londrina-UEL
– sequence: 12
  givenname: Ivone Yurika
  surname: Mizubuti
  fullname: Mizubuti, Ivone Yurika
  organization: State University of Londrina-UEL
BookMark eNp9UUtuFDEUtFCQCEOOgGSJ9Qy2291t74CIT6RIZAFr67U_GY962pNnD6jZcRaOkovFnQks8eZZ5XpVctVLcjalyRPymrMNZ4q9ZbrngnO9EUw0G8H7OsUzcl5xueZKyrPHO18vpBfkIucdq0fqRnT8nPy-Qe-iLTFNdJ-cHzNNgZatp9OxYFxwGOndEcZY5uUpoM9bCpOjDmf6AcFuI2AEOmD8BVPZArU_NvQmQrn_Q28RcqbDTCcPSOMUEKofzQdvC6Zs02F-RZ4HGLO_eJor8v3Tx2-XX9bXXz9fXb6_XttG8bLuB25tz70NvQqO9YNmsuFyCEypYKW2um21ajrHZFA6tM5rAbxj3ooOfK-aFbk66boEO3PAuAecTYJoHoGEtwawRDt6Y8MQVFcXh47LduBD01YnxVyQlovquyJvTloHTHdHn4vZpSPWpLIRSresa5VoKqs9sWz9akYf_rlyZpbyzN_yzFKeeSqv7r077dW8Eu7hZ8LRmQLzmLAGONmYTfN_iQfHraPU
CitedBy_id crossref_primary_10_3390_agronomy13102525
Cites_doi 10.1080/1828051X.2017.1345659
10.1590/S0100-40422012000900007
10.5433/1679-0359.2021v42n3p1287
10.4067/S0718-58392009000200009
10.1201/9781420007374
10.21577/1984-6835.20180031
10.3390/rs70608045
10.1002/jsfa.2691
10.1590/S1516-35982001000700022
10.1590/1807-1929/agriambi.v19n4p330-335
10.3168/jds.S0022-0302(91)78551-2
10.4067/S0717-97072017000200010
10.1080/01431161.2013.793859
10.1255/jnirs.3
10.4081/ijas.2014.3034
10.1080/00401706.1969.10490666
10.5251/abjna.2010.1.5.919.922
10.2135/cropsci1991.0011183X003100020049x
10.1080/09712119.2019.1675669
10.1080/05704928.2013.878720
10.3168/jds.2008-1893
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023
2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7QG
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1080/09712119.2023.2172022
DatabaseName Taylor & Francis_OA刊
CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Animal Behavior Abstracts
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList

Research Library Prep
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 0974-1844
EndPage 203
ExternalDocumentID oai_doaj_org_article_cfbf86c26b6145b1b3514b80df4c1204
10_1080_09712119_2023_2172022
2172022
Genre Research Article
GroupedDBID .7F
.QJ
0YH
4.4
5GY
8G5
AAAVI
ABDBF
ABPEM
ABUWG
ACGFS
ADBBV
ADCVX
AENEX
AFKRA
AGMYJ
AHDLD
ALMA_UNASSIGNED_HOLDINGS
AVBZW
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CE4
DGEBU
DWQXO
EBS
ECGQY
EYRJQ
E~A
E~B
GNUQQ
GROUPED_DOAJ
GTTXZ
GUQSH
HF~
HZ~
H~P
J.P
M2O
M4Z
NA5
NX0
O9-
OK1
P2P
PQQKQ
PROAC
RDKPK
RIG
S-T
TEI
TFL
TFMNY
TFW
UT5
UU3
~S~
AAHBH
AAYXX
CITATION
H13
TDBHL
3V.
7QG
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c381t-7b1cc71ecf78fd07b904314bf088fc49c9559836d04f89f5de92a160ec26ae783
IEDL.DBID TFW
ISSN 0971-2119
IngestDate Tue Oct 22 14:49:03 EDT 2024
Thu Oct 10 16:27:01 EDT 2024
Thu Nov 21 21:39:51 EST 2024
Sat Jun 08 02:40:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-7b1cc71ecf78fd07b904314bf088fc49c9559836d04f89f5de92a160ec26ae783
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/09712119.2023.2172022
PQID 2895065823
PQPubID 3933148
PageCount 11
ParticipantIDs crossref_primary_10_1080_09712119_2023_2172022
informaworld_taylorfrancis_310_1080_09712119_2023_2172022
proquest_journals_2895065823
doaj_primary_oai_doaj_org_article_cfbf86c26b6145b1b3514b80df4c1204
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of Applied Animal Research
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_3_30_1
Windham WR (e_1_3_3_34_1) 1989
Arzani H (e_1_3_3_5_1) 2015; 5
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_13_1
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_33_1
e_1_3_3_12_1
Kragten SA (e_1_3_3_17_1) 2014; 5
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
AOAC (e_1_3_3_4_1) 2005
AOAC (e_1_3_3_3_1) 2003
Detmann E (e_1_3_3_10_1) 2012
Deepa K (e_1_3_3_9_1) 2016; 5
e_1_3_3_7_1
Lobos I (e_1_3_3_18_1) 2013; 13
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
Yang Z (e_1_3_3_35_1) 2017; 5
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_23_1
e_1_3_3_22_1
References_xml – volume-title: Official methods of analysis. 17th ed., 2nd revision
  year: 2003
  ident: e_1_3_3_3_1
  contributor:
    fullname: AOAC
– ident: e_1_3_3_25_1
– ident: e_1_3_3_24_1
  doi: 10.1080/1828051X.2017.1345659
– volume-title: Métodos para Análise de Alimentos [Methods for food analysis]
  year: 2012
  ident: e_1_3_3_10_1
  contributor:
    fullname: Detmann E
– ident: e_1_3_3_30_1
  doi: 10.1590/S0100-40422012000900007
– volume: 5
  start-page: 605
  issue: 2
  year: 2016
  ident: e_1_3_3_9_1
  article-title: NIRS in animal sciences
  publication-title: Int J Sci Environ Technol
  contributor:
    fullname: Deepa K
– ident: e_1_3_3_28_1
  doi: 10.5433/1679-0359.2021v42n3p1287
– volume: 5
  start-page: 1
  issue: 10
  year: 2017
  ident: e_1_3_3_35_1
  article-title: Development and validation of near-infrared spectroscopy for the prediction of forage quality parameters in Lolium multiforum
  publication-title: PeerJ Comput Sci
  contributor:
    fullname: Yang Z
– ident: e_1_3_3_2_1
  doi: 10.4067/S0718-58392009000200009
– ident: e_1_3_3_13_1
– ident: e_1_3_3_6_1
  doi: 10.1201/9781420007374
– volume: 5
  start-page: 204
  issue: 5
  year: 2014
  ident: e_1_3_3_17_1
  article-title: Les fourrages à la lumière du proche infrarouge (NIRS) [Forages in the light of NIRS]
  publication-title: Rech Agron em Suisse
  contributor:
    fullname: Kragten SA
– ident: e_1_3_3_26_1
  doi: 10.21577/1984-6835.20180031
– ident: e_1_3_3_19_1
  doi: 10.3390/rs70608045
– ident: e_1_3_3_22_1
  doi: 10.1002/jsfa.2691
– ident: e_1_3_3_7_1
  doi: 10.1590/S1516-35982001000700022
– ident: e_1_3_3_11_1
  doi: 10.1590/1807-1929/agriambi.v19n4p330-335
– ident: e_1_3_3_32_1
  doi: 10.3168/jds.S0022-0302(91)78551-2
– ident: e_1_3_3_21_1
  doi: 10.4067/S0717-97072017000200010
– ident: e_1_3_3_15_1
  doi: 10.1080/01431161.2013.793859
– ident: e_1_3_3_20_1
– start-page: 96
  volume-title: Near infrared reflectance spectroscopy (NIRS): analysis of forage quality
  year: 1989
  ident: e_1_3_3_34_1
  contributor:
    fullname: Windham WR
– ident: e_1_3_3_33_1
  doi: 10.1255/jnirs.3
– volume: 5
  start-page: 260
  issue: 4
  year: 2015
  ident: e_1_3_3_5_1
  article-title: Estimating nitrogen and acid detergent fiber contents of grass species using Near Infrared Reflectance Spectroscopy (NIRS)
  publication-title: J Rangel Sci
  contributor:
    fullname: Arzani H
– ident: e_1_3_3_27_1
  doi: 10.4081/ijas.2014.3034
– ident: e_1_3_3_16_1
  doi: 10.1080/00401706.1969.10490666
– ident: e_1_3_3_12_1
  doi: 10.5251/abjna.2010.1.5.919.922
– ident: e_1_3_3_29_1
  doi: 10.2135/cropsci1991.0011183X003100020049x
– ident: e_1_3_3_23_1
  doi: 10.1080/09712119.2019.1675669
– volume: 13
  start-page: 463
  issue: 2
  year: 2013
  ident: e_1_3_3_18_1
  article-title: Evaluation of potencial NIRS to predict pastures nutritive value
  publication-title: J Soil Sci Plant Nutr
  contributor:
    fullname: Lobos I
– ident: e_1_3_3_8_1
  doi: 10.1080/05704928.2013.878720
– ident: e_1_3_3_14_1
– ident: e_1_3_3_31_1
  doi: 10.3168/jds.2008-1893
– volume-title: Official methods of analysis. 18th ed
  year: 2005
  ident: e_1_3_3_4_1
  contributor:
    fullname: AOAC
SSID ssj0000493261
Score 2.3417401
Snippet This study aimed to generate prediction models to estimate the chemical composition of fresh and dry Brachiaria brizantha cv. Piatã grass using near infrared...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Publisher
StartPage 193
SubjectTerms Brachiaria brizantha
Bromatological estimates
Cellulose
Dry matter
Infrared spectroscopy
NIRS
Nutritional composition
Particle size
Prediction models
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT9wwEMetllN7qICC2PLQHHrNNnGcOD7yFCeEVJB6s_yEcsii7IK0vfFZ-Ch8MWacBFF64NKrEyUj_23PTGL_hrHvspLRSm-yWGL4JgwXmcHcNlMihNpwa5oE0zn9Kc9-NUfHhMl5KfVFe8J6PHDfcT9ctLGpHa8tOpLKFpa2ntsm91G4gg8k0Lx-lUzd9HEvxiWpXJ6SRUYYs_H4DoG1sY2aplQ7fEolmnLO_3JMid__hl76z2qdXNDJKvsyxI6w39u8xj6Edp193r_qBn5G-Moezjv680K9DanIzRxmETDIg3bE7uMT-pOUS7oUMd2-BtN68N0SDjraW4npswHb_f6DvX5twN1P4RwVfHqEqw5jbbBLaHGCAJrd0f51SMc1CYs5u11usMuT44vD02yospA59NaLTNrCOVkEF2UTfS6tIt6OsBHXn-iEcsSoa8ra5yI2KlY-KG6KOg-oiQmyKTfZSjtrwxYDhdIKaUtJYVaMQuVc1b42pXdWmspN2HTsYn3bwzR0MTJKB000aaIHTSbsgIR4uZlY2KkBR4geRoh-b4RMmHoto16kTyGxr1uiy3cM2Bk118PknmvMUSuK3Hj57X_Yt80-0St7euQOW1l0d2GXfZz7u700qJ8BSsL3Vw
  priority: 102
  providerName: Directory of Open Access Journals
Title Prediction models of the nutritional quality of fresh and dry Brachiaria brizantha cv. Piatã grass by near infrared spectroscopy
URI https://www.tandfonline.com/doi/abs/10.1080/09712119.2023.2172022
https://www.proquest.com/docview/2895065823
https://doaj.org/article/cfbf86c26b6145b1b3514b80df4c1204
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxRBEO4gJzj4QIwLSOrgddZ59ExPHxdkw8mQCMFbp5-Ll1nSu5isN36LP8U_ZlXPDEGN8aDHeXX6UY-verq-YuytqEUwwuksVAjfuC55pjG2zST3vtGl0W0i0zn_KD58at-fEU3ObMyFoWOVFEOHnigi2WpSbm1W44m4d0R7RMRkUyr9PaUKS-iI0AoT5zZK9OX8-mGXBfEv4pNUNg8_yuirMY3nTw395KASj_8vLKa_We3kiubP_sMgnrOnAw6FWS84L9iW7_bY7mwRBy4O_5LdX0T6i0MrB6lgzgqWARAwQjdS-GMLfVbmhh4FDN1vAHsELm7gJNI5TQzFNZj4-Suu4I0G-2UKFygN37_BIiJuB7OBDpUNcOiRzsJDSv0kis3l7WafXc3PLk_Ps6FiQ2bR868zYQprReFtEG1wuTCSuHu4CWjLguXSEt9dWzUu56GVoXZelrpocm_LRnvRVq_Ydrfs_GsGEsWEC1MJgmwhcJmXsnGNrpw1Qtd2wqbjMqnbnphDFSPf6TC3iuZWDXM7YSe0mA8vE692urGMCzWoqbLBhLbB3hiELbUpDCU6mDZ3gduizPmEyceioNZpWyX0NVBU9ZcOHI1yowZDsVIY79aEAsvq4B-aPmQ7dNkTUB6x7XW882_Yk5W7O06bDMdJK34AK90IhA
link.rule.ids 315,782,786,866,1455,1509,2106,27933,27934,58021,59734,60523
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT9wwEMctHoe2B0pf6lIKPvSabR5OHB-hZbUIipC6VXuz_Fy4ZJF3qbTc-Cx8FL5YZ5xk1YdQD-01D8uxx_Z_HM9vCHnHS-41tyrxBcg3pnKWKPBtE8Gcq1SuVR1hOuPP_Oxb_fEIMTmrWBg8Vok-tG9BEXGuxsGNm9H9kbj3yD1CMtkQc38PMcUSrETrZBPEcYH8_Mno62qfBRQwKJSYOA_eSvC1PpDnoZJ-WaIiyf83jukf83ZcjEZP_8dnbJOtTorSg9Z2npE11zwnTw6mocNxuBfk9jzgjxzsPBpz5szpzFPQjLTpKf5QQhuYucRbHrz3CwpVojYs6WHAo5rgjSuqw-UNdOKFoub7kJ6DQdzf0WkA6U71kjYw3ih8e8Dj8DRGfyJlc3a1fEm-jI4mH8ZJl7QhMbD4LxKuM2N45ozntbcp1wLxPUx7mM68YcIg8q4uKpsyXwtfWidylVWpM3mlHK-LV2SjmTXuNaECLIVxXXBUbd4zkeaispUqrNFclWZAhn0_yauWzSGzHnnata3EtpVd2w7IIfbm6mFEa8cLszCV3UiVxmtfV1AbDcql1JnGWAddp9Yzk-UpGxDxsy3IRdxZ8W0aFFn8pQK7veHIbq6YS3B5SxSCebHzD0Xvk0fjyadTeXp8dvKGPMZbLY9yl2wswrV7S9bn9novDo4fmQkLsw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZokRAceCMWCvjANUseTuwct7SrIlC1EkVws_yaLZfsyrtFWm78Fn4Kf4wZJ6l4CHGAaxxbjj2e-caZ-Yax57KWYKU3GVQI34QpRWbQt81aEUJjSmtUItM5eStPP6ijY6LJmY25MBRWST409EQRSVfT4V57GCPiXhDtERGTTan095QqLKEh2mNXa4UGC0X6bP7-8poFATAClFQ3D3tl1G3M4_nTSD9ZqETk_wuN6W9qO9mi-a3_8BW32c0BiPJZLzl32JXQ3WU3Zss4kHGEe-zLItJvHNo6nirmbPgKOCJG3o0c_jhCn5a5oyZA3_2c44y4jzt-GClQE31xw238-Bm38Nxw92nKFygO377yZUTgzu2Od3jaOH56pGB4nnI_iWNztd7dZ-_mx2cvT7KhZEPm0PRvM2kL52QRHEgFPpe2JfIeYQGVGTjROiK8U1XjcwGqhdqHtjRFkwdXNiZIVT1g-92qCw8Zb1FOhLSVJMwGINq8bBvfmMo7K03tJmw6bpNe98wcuhgJT4e11bS2eljbCTukzbx8mYi104NVXOrhnGoHFlSDs7GIW2pbWMp0sCr3IFxR5mLC2h9FQW_TvQr0RVB09ZcJHIxyowdNsdHo8NYEA8vq0T8M_YxdWxzN9ZtXp68fs-vU0pNRHrD9bbwIT9jexl88TUfjOzwsClc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+models+of+the+nutritional+quality+of+fresh+and+dry+Brachiaria+brizantha+cv.+Piat%C3%A3+grass+by+near+infrared+spectroscopy&rft.jtitle=Journal+of+Applied+Animal+Research&rft.au=Andrade+Ribeiro%2C+Mariellen+Cristine&rft.au=Loures+Guerra%2C+Geisi&rft.au=Cano+Serafim%2C+Camila&rft.au=N%C3%B3brega+de+Carvalho%2C+Larissa&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis&rft.issn=0971-2119&rft.eissn=0974-1844&rft.volume=51&rft.issue=1&rft.spage=193&rft.epage=203&rft_id=info:doi/10.1080%2F09712119.2023.2172022&rft.externalDBID=0YH&rft.externalDocID=2172022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0971-2119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0971-2119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0971-2119&client=summon