Feature extraction algorithm of anti-jamming cyclic frequency of electronic communication signal

Anti-jamming cyclic frequency feature extraction is an important link in identifying communication interference signals, which is of great significance for eliminating electronic communication interference factors and improving the security of electronic communication environment. However, when the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent systems Vol. 32; no. 1; pp. 9122 - 35
Main Author: Yang, Xuemei
Format: Journal Article
Language:English
Published: Berlin De Gruyter 12-10-2023
Walter de Gruyter GmbH
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Anti-jamming cyclic frequency feature extraction is an important link in identifying communication interference signals, which is of great significance for eliminating electronic communication interference factors and improving the security of electronic communication environment. However, when the traditional feature extraction technology faces a large number of data samples, the processing capacity is low, and it cannot solve the multi-classification problems. For this type of problem, a method of electronic communication signal anti-jamming cyclic frequency feature extraction based on particle swarm optimization-support vector machines (PSO-SVM) algorithm is proposed. First, the SVM signal feature extraction model is proposed, and then the particle swarm optimization (PSO) algorithm is used. Optimize the kernel function parameter settings of SVM to raise the classifying quality of the SVM model. Finally, the function of the PSO-SVM signal feature extraction model is tested. The results verify that the PSO-SVM model begins to converge after 60 iterations, and the loss value remains at about 0.2, which is 0.2 lower than that of the SVM technique. The exactitude of signal feature extraction is 90.4%, and the recognition effect of binary phase shift keying signal is the best. The complete rate of signal feature extraction is 85%. This shows that the PSO-SVM model enhances the sensitivity of the anti-jamming cyclic frequency feature, improves the accuracy of the anti-jamming cyclic frequency feature recognition, reduces the running process, reduces the time cost, and greatly increases the performance of the SVM method. The good model performance also improves the application value of the method in the field of electronic communication.
AbstractList Anti-jamming cyclic frequency feature extraction is an important link in identifying communication interference signals, which is of great significance for eliminating electronic communication interference factors and improving the security of electronic communication environment. However, when the traditional feature extraction technology faces a large number of data samples, the processing capacity is low, and it cannot solve the multi-classification problems. For this type of problem, a method of electronic communication signal anti-jamming cyclic frequency feature extraction based on particle swarm optimization-support vector machines (PSO-SVM) algorithm is proposed. First, the SVM signal feature extraction model is proposed, and then the particle swarm optimization (PSO) algorithm is used. Optimize the kernel function parameter settings of SVM to raise the classifying quality of the SVM model. Finally, the function of the PSO-SVM signal feature extraction model is tested. The results verify that the PSO-SVM model begins to converge after 60 iterations, and the loss value remains at about 0.2, which is 0.2 lower than that of the SVM technique. The exactitude of signal feature extraction is 90.4%, and the recognition effect of binary phase shift keying signal is the best. The complete rate of signal feature extraction is 85%. This shows that the PSO-SVM model enhances the sensitivity of the anti-jamming cyclic frequency feature, improves the accuracy of the anti-jamming cyclic frequency feature recognition, reduces the running process, reduces the time cost, and greatly increases the performance of the SVM method. The good model performance also improves the application value of the method in the field of electronic communication.
Author Yang, Xuemei
Author_xml – sequence: 1
  givenname: Xuemei
  surname: Yang
  fullname: Yang, Xuemei
  email: xuemeiy688@163.com
  organization: School of Electrical and Electronic Information Engineering, Sichuan University Jinjiang College, Meishan 620860, China
BookMark eNp1kUGL1TAUhYOM4DjO2m3BdZ0madLEnQyODgy4UXAX70tuakrbjEmK9t-b956oG7PJ4XLOd7mc5-RijSsS8pJ2r6mg4mYKec8t6xhrO6bFE3LJqKZVyy8X_-hn5Drnqauv11QocUm-3iGULWGDP0sCW0JcG5jHmEL5tjTRN7CW0E6wLGEdG7vbOdjGJ_y-4Wr3owFntCXFtc5tXJatCjhhchhXmF-Qpx7mjNe__yvy-e7dp9sP7cPH9_e3bx9ayxUtreTopFOcatG7gxqcdYNXVjO0yiO3DFE7foBBC93ZzkvwYugV751jSgrJr8j9mesiTOYxhQXSbiIEcxrENBpIJdgZTUdxkCAPHGnfKye0YLJHZN6CpxSgsl6dWY8p1kNzMVPcUj0mG6YGyTuqB15dN2eXTTHnhP7PVtqZYyvm1Io5tmKOrdTEm3PiB8wFk8MxbXsVf_H_SzLKfwGeR5g9
Cites_doi 10.2166/hydro.2018.028
10.1016/j.ins.2019.06.063
10.1109/JSEN.2020.3028075
10.1007/s00500-020-04884-x
10.31449/inf.v44i2.3195
10.1007/s11277-019-06780-6
10.1007/s11227-021-03660-4
10.1109/TCYB.2020.2983871
10.1108/BFJ-12-2019-0941
10.1109/TCYB.2018.2886012
10.1007/s11276-020-02408-x
10.1109/TSC.2019.2950291
10.1108/RPJ-05-2019-0121
10.1108/SR-09-2017-0203
10.1007/s11227-021-04062-2
10.1109/TR.2019.2931559
10.1109/JSAC.2019.2916486
10.1134/S1063785019090037
10.1109/TVT.2019.2927904
10.1016/j.wem.2020.11.002
10.1049/cmu2.12136
10.3233/JIFS-189061
10.1109/JLT.2021.3057609
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
JQ2
DOA
DOI 10.1515/jisys-2022-0295
DatabaseName CrossRef
ProQuest Computer Science Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2191-026X
EndPage 35
ExternalDocumentID oai_doaj_org_article_01e76a6b3e1448d595264ee2fcaf11aa
10_1515_jisys_2022_0295
10_1515_jisys_2022_0295321
GroupedDBID 0R~
0~D
4.4
7WY
AAEMA
AAFPC
AAFWJ
AAGVJ
AAPJK
AAQCX
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACGFS
ACTFP
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AEQDQ
AERZL
AEXIE
AFBAA
AFCXV
AFPKN
AFQUK
AHGBP
AHGSO
AIERV
AIGSN
AJATJ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BAKPI
BBCWN
BCIFA
CFGNV
DBYYV
EBS
GROUPED_DOAJ
HZ~
IY9
M0C
O9-
OK1
P2P
QD8
RDG
SA.
AAYXX
AKXKS
CITATION
M48
SLJYH
JQ2
ID FETCH-LOGICAL-c381t-63ed6d831954db87dcd7f8c92ec8fe3c2ee9d3ba79590c0f6af574834dd286563
IEDL.DBID DOA
ISSN 2191-026X
0334-1860
IngestDate Tue Oct 22 15:16:02 EDT 2024
Thu Oct 10 22:22:45 EDT 2024
Thu Nov 21 20:55:38 EST 2024
Sat Oct 14 02:10:26 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-63ed6d831954db87dcd7f8c92ec8fe3c2ee9d3ba79590c0f6af574834dd286563
OpenAccessLink https://doaj.org/article/01e76a6b3e1448d595264ee2fcaf11aa
PQID 2876301973
PQPubID 2031329
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_01e76a6b3e1448d595264ee2fcaf11aa
proquest_journals_2876301973
crossref_primary_10_1515_jisys_2022_0295
walterdegruyter_journals_10_1515_jisys_2022_0295321
PublicationCentury 2000
PublicationDate 2023-10-12
PublicationDateYYYYMMDD 2023-10-12
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-12
  day: 12
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of intelligent systems
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023101308110477381_j_jisys-2022-0295_ref_009
2023101308110477381_j_jisys-2022-0295_ref_002
2023101308110477381_j_jisys-2022-0295_ref_013
2023101308110477381_j_jisys-2022-0295_ref_001
2023101308110477381_j_jisys-2022-0295_ref_012
2023101308110477381_j_jisys-2022-0295_ref_023
2023101308110477381_j_jisys-2022-0295_ref_004
2023101308110477381_j_jisys-2022-0295_ref_015
2023101308110477381_j_jisys-2022-0295_ref_003
2023101308110477381_j_jisys-2022-0295_ref_014
2023101308110477381_j_jisys-2022-0295_ref_006
2023101308110477381_j_jisys-2022-0295_ref_017
2023101308110477381_j_jisys-2022-0295_ref_005
2023101308110477381_j_jisys-2022-0295_ref_016
2023101308110477381_j_jisys-2022-0295_ref_008
2023101308110477381_j_jisys-2022-0295_ref_019
2023101308110477381_j_jisys-2022-0295_ref_007
2023101308110477381_j_jisys-2022-0295_ref_018
2023101308110477381_j_jisys-2022-0295_ref_020
2023101308110477381_j_jisys-2022-0295_ref_011
2023101308110477381_j_jisys-2022-0295_ref_022
2023101308110477381_j_jisys-2022-0295_ref_010
2023101308110477381_j_jisys-2022-0295_ref_021
References_xml – ident: 2023101308110477381_j_jisys-2022-0295_ref_020
  doi: 10.2166/hydro.2018.028
– ident: 2023101308110477381_j_jisys-2022-0295_ref_021
  doi: 10.1016/j.ins.2019.06.063
– ident: 2023101308110477381_j_jisys-2022-0295_ref_003
  doi: 10.1109/JSEN.2020.3028075
– ident: 2023101308110477381_j_jisys-2022-0295_ref_004
  doi: 10.1007/s00500-020-04884-x
– ident: 2023101308110477381_j_jisys-2022-0295_ref_010
  doi: 10.31449/inf.v44i2.3195
– ident: 2023101308110477381_j_jisys-2022-0295_ref_015
  doi: 10.1007/s11277-019-06780-6
– ident: 2023101308110477381_j_jisys-2022-0295_ref_009
  doi: 10.1007/s11227-021-03660-4
– ident: 2023101308110477381_j_jisys-2022-0295_ref_023
  doi: 10.1109/TCYB.2020.2983871
– ident: 2023101308110477381_j_jisys-2022-0295_ref_007
  doi: 10.1108/BFJ-12-2019-0941
– ident: 2023101308110477381_j_jisys-2022-0295_ref_008
  doi: 10.1109/TCYB.2018.2886012
– ident: 2023101308110477381_j_jisys-2022-0295_ref_018
  doi: 10.1007/s11276-020-02408-x
– ident: 2023101308110477381_j_jisys-2022-0295_ref_019
  doi: 10.1109/TSC.2019.2950291
– ident: 2023101308110477381_j_jisys-2022-0295_ref_005
  doi: 10.1108/RPJ-05-2019-0121
– ident: 2023101308110477381_j_jisys-2022-0295_ref_012
  doi: 10.1108/SR-09-2017-0203
– ident: 2023101308110477381_j_jisys-2022-0295_ref_022
  doi: 10.1007/s11227-021-04062-2
– ident: 2023101308110477381_j_jisys-2022-0295_ref_006
  doi: 10.1109/TR.2019.2931559
– ident: 2023101308110477381_j_jisys-2022-0295_ref_017
  doi: 10.1109/JSAC.2019.2916486
– ident: 2023101308110477381_j_jisys-2022-0295_ref_002
  doi: 10.1134/S1063785019090037
– ident: 2023101308110477381_j_jisys-2022-0295_ref_001
  doi: 10.1109/TVT.2019.2927904
– ident: 2023101308110477381_j_jisys-2022-0295_ref_014
  doi: 10.1016/j.wem.2020.11.002
– ident: 2023101308110477381_j_jisys-2022-0295_ref_013
  doi: 10.1049/cmu2.12136
– ident: 2023101308110477381_j_jisys-2022-0295_ref_011
  doi: 10.3233/JIFS-189061
– ident: 2023101308110477381_j_jisys-2022-0295_ref_016
  doi: 10.1109/JLT.2021.3057609
SSID ssj0000491585
Score 2.323775
Snippet Anti-jamming cyclic frequency feature extraction is an important link in identifying communication interference signals, which is of great significance for...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 9122
SubjectTerms Algorithms
anti-jamming cycle frequency
Binary phase shift keying
Classification
Communication
electronic communication signal
Feature extraction
Feature recognition
Interference
Jamming
Kernel functions
Particle swarm optimization
PSO
Sensitivity enhancement
Support vector machines
SVM
Title Feature extraction algorithm of anti-jamming cyclic frequency of electronic communication signal
URI http://www.degruyter.com/doi/10.1515/jisys-2022-0295
https://www.proquest.com/docview/2876301973
https://doaj.org/article/01e76a6b3e1448d595264ee2fcaf11aa
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagE0t5i0JBHhhYoiZxYicjj1adWACJLST2ubTqA6WtUP89d3m0BQmxsEaWYn1n576Lz9_H2LWIlFFBGDtCB1igxBb3nPSM40YWiwnf-rpwnus_qcfX6KFLMjlrqy_qCSvlgUvgOq4HSqYyE4DUPzJhHGIKB_CtTq3npSU1cuVWMTUqea-HRLjS8sGc3RkN56s5rgmsvVyf3CS20lCh1v-NYjY_i8NqA4N8uVrUh6NFzukdsGZFFvltOclDtgPTI7ZfGzHwal8eszcicsscOH5p8_KmAk_HgxkW_u8TPrMc4Rs6o3QywUTF9UqPh5rbvOyiXtGAjRsO19tXRjj1d6TjE_bS6z7f953KOsHRmIIXjhRgpIkE6bmZDOOhjbKRjn3QkQWhfYDYiCwlp3FXu1amNlT0X9EYuqoqxSlrTGdTOGNcKyEAPCkhwGLMYgGCDENalQUGROhlLXZTI5l8lAoZCVUWCHpSgJ4Q6AmB3mJ3hPR6GElbFw8w4EkV8OSvgLdYu45TUu03fAUJ6yFbVaLFxI_YbUb9Mi3he-f_MbMLtkdm9E7R79JmjUW-hEu2OzfLq2J1fgHlKuvL
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+extraction+algorithm+of+anti-jamming+cyclic+frequency+of+electronic+communication+signal&rft.jtitle=Journal+of+intelligent+systems&rft.au=Yang%2C+Xuemei&rft.date=2023-10-12&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0334-1860&rft.eissn=2191-026X&rft.issue=1&rft_id=info:doi/10.1515%2Fjisys-2022-0295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-026X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-026X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-026X&client=summon