Feature extraction algorithm of anti-jamming cyclic frequency of electronic communication signal
Anti-jamming cyclic frequency feature extraction is an important link in identifying communication interference signals, which is of great significance for eliminating electronic communication interference factors and improving the security of electronic communication environment. However, when the...
Saved in:
Published in: | Journal of intelligent systems Vol. 32; no. 1; pp. 9122 - 35 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Berlin
De Gruyter
12-10-2023
Walter de Gruyter GmbH |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Anti-jamming cyclic frequency feature extraction is an important link in identifying communication interference signals, which is of great significance for eliminating electronic communication interference factors and improving the security of electronic communication environment. However, when the traditional feature extraction technology faces a large number of data samples, the processing capacity is low, and it cannot solve the multi-classification problems. For this type of problem, a method of electronic communication signal anti-jamming cyclic frequency feature extraction based on particle swarm optimization-support vector machines (PSO-SVM) algorithm is proposed. First, the SVM signal feature extraction model is proposed, and then the particle swarm optimization (PSO) algorithm is used. Optimize the kernel function parameter settings of SVM to raise the classifying quality of the SVM model. Finally, the function of the PSO-SVM signal feature extraction model is tested. The results verify that the PSO-SVM model begins to converge after 60 iterations, and the loss value remains at about 0.2, which is 0.2 lower than that of the SVM technique. The exactitude of signal feature extraction is 90.4%, and the recognition effect of binary phase shift keying signal is the best. The complete rate of signal feature extraction is 85%. This shows that the PSO-SVM model enhances the sensitivity of the anti-jamming cyclic frequency feature, improves the accuracy of the anti-jamming cyclic frequency feature recognition, reduces the running process, reduces the time cost, and greatly increases the performance of the SVM method. The good model performance also improves the application value of the method in the field of electronic communication. |
---|---|
AbstractList | Anti-jamming cyclic frequency feature extraction is an important link in identifying communication interference signals, which is of great significance for eliminating electronic communication interference factors and improving the security of electronic communication environment. However, when the traditional feature extraction technology faces a large number of data samples, the processing capacity is low, and it cannot solve the multi-classification problems. For this type of problem, a method of electronic communication signal anti-jamming cyclic frequency feature extraction based on particle swarm optimization-support vector machines (PSO-SVM) algorithm is proposed. First, the SVM signal feature extraction model is proposed, and then the particle swarm optimization (PSO) algorithm is used. Optimize the kernel function parameter settings of SVM to raise the classifying quality of the SVM model. Finally, the function of the PSO-SVM signal feature extraction model is tested. The results verify that the PSO-SVM model begins to converge after 60 iterations, and the loss value remains at about 0.2, which is 0.2 lower than that of the SVM technique. The exactitude of signal feature extraction is 90.4%, and the recognition effect of binary phase shift keying signal is the best. The complete rate of signal feature extraction is 85%. This shows that the PSO-SVM model enhances the sensitivity of the anti-jamming cyclic frequency feature, improves the accuracy of the anti-jamming cyclic frequency feature recognition, reduces the running process, reduces the time cost, and greatly increases the performance of the SVM method. The good model performance also improves the application value of the method in the field of electronic communication. |
Author | Yang, Xuemei |
Author_xml | – sequence: 1 givenname: Xuemei surname: Yang fullname: Yang, Xuemei email: xuemeiy688@163.com organization: School of Electrical and Electronic Information Engineering, Sichuan University Jinjiang College, Meishan 620860, China |
BookMark | eNp1kUGL1TAUhYOM4DjO2m3BdZ0madLEnQyODgy4UXAX70tuakrbjEmK9t-b956oG7PJ4XLOd7mc5-RijSsS8pJ2r6mg4mYKec8t6xhrO6bFE3LJqKZVyy8X_-hn5Drnqauv11QocUm-3iGULWGDP0sCW0JcG5jHmEL5tjTRN7CW0E6wLGEdG7vbOdjGJ_y-4Wr3owFntCXFtc5tXJatCjhhchhXmF-Qpx7mjNe__yvy-e7dp9sP7cPH9_e3bx9ayxUtreTopFOcatG7gxqcdYNXVjO0yiO3DFE7foBBC93ZzkvwYugV751jSgrJr8j9mesiTOYxhQXSbiIEcxrENBpIJdgZTUdxkCAPHGnfKye0YLJHZN6CpxSgsl6dWY8p1kNzMVPcUj0mG6YGyTuqB15dN2eXTTHnhP7PVtqZYyvm1Io5tmKOrdTEm3PiB8wFk8MxbXsVf_H_SzLKfwGeR5g9 |
Cites_doi | 10.2166/hydro.2018.028 10.1016/j.ins.2019.06.063 10.1109/JSEN.2020.3028075 10.1007/s00500-020-04884-x 10.31449/inf.v44i2.3195 10.1007/s11277-019-06780-6 10.1007/s11227-021-03660-4 10.1109/TCYB.2020.2983871 10.1108/BFJ-12-2019-0941 10.1109/TCYB.2018.2886012 10.1007/s11276-020-02408-x 10.1109/TSC.2019.2950291 10.1108/RPJ-05-2019-0121 10.1108/SR-09-2017-0203 10.1007/s11227-021-04062-2 10.1109/TR.2019.2931559 10.1109/JSAC.2019.2916486 10.1134/S1063785019090037 10.1109/TVT.2019.2927904 10.1016/j.wem.2020.11.002 10.1049/cmu2.12136 10.3233/JIFS-189061 10.1109/JLT.2021.3057609 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION JQ2 DOA |
DOI | 10.1515/jisys-2022-0295 |
DatabaseName | CrossRef ProQuest Computer Science Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2191-026X |
EndPage | 35 |
ExternalDocumentID | oai_doaj_org_article_01e76a6b3e1448d595264ee2fcaf11aa 10_1515_jisys_2022_0295 10_1515_jisys_2022_0295321 |
GroupedDBID | 0R~ 0~D 4.4 7WY AAEMA AAFPC AAFWJ AAGVJ AAPJK AAQCX AASOL AASQH AAXCG ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ABYKJ ACEFL ACGFS ACTFP ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AEQDQ AERZL AEXIE AFBAA AFCXV AFPKN AFQUK AHGBP AHGSO AIERV AIGSN AJATJ ALMA_UNASSIGNED_HOLDINGS ARCSS BAKPI BBCWN BCIFA CFGNV DBYYV EBS GROUPED_DOAJ HZ~ IY9 M0C O9- OK1 P2P QD8 RDG SA. AAYXX AKXKS CITATION M48 SLJYH JQ2 |
ID | FETCH-LOGICAL-c381t-63ed6d831954db87dcd7f8c92ec8fe3c2ee9d3ba79590c0f6af574834dd286563 |
IEDL.DBID | DOA |
ISSN | 2191-026X 0334-1860 |
IngestDate | Tue Oct 22 15:16:02 EDT 2024 Thu Oct 10 22:22:45 EDT 2024 Thu Nov 21 20:55:38 EST 2024 Sat Oct 14 02:10:26 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-63ed6d831954db87dcd7f8c92ec8fe3c2ee9d3ba79590c0f6af574834dd286563 |
OpenAccessLink | https://doaj.org/article/01e76a6b3e1448d595264ee2fcaf11aa |
PQID | 2876301973 |
PQPubID | 2031329 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_01e76a6b3e1448d595264ee2fcaf11aa proquest_journals_2876301973 crossref_primary_10_1515_jisys_2022_0295 walterdegruyter_journals_10_1515_jisys_2022_0295321 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-12 |
PublicationDateYYYYMMDD | 2023-10-12 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of intelligent systems |
PublicationYear | 2023 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023101308110477381_j_jisys-2022-0295_ref_009 2023101308110477381_j_jisys-2022-0295_ref_002 2023101308110477381_j_jisys-2022-0295_ref_013 2023101308110477381_j_jisys-2022-0295_ref_001 2023101308110477381_j_jisys-2022-0295_ref_012 2023101308110477381_j_jisys-2022-0295_ref_023 2023101308110477381_j_jisys-2022-0295_ref_004 2023101308110477381_j_jisys-2022-0295_ref_015 2023101308110477381_j_jisys-2022-0295_ref_003 2023101308110477381_j_jisys-2022-0295_ref_014 2023101308110477381_j_jisys-2022-0295_ref_006 2023101308110477381_j_jisys-2022-0295_ref_017 2023101308110477381_j_jisys-2022-0295_ref_005 2023101308110477381_j_jisys-2022-0295_ref_016 2023101308110477381_j_jisys-2022-0295_ref_008 2023101308110477381_j_jisys-2022-0295_ref_019 2023101308110477381_j_jisys-2022-0295_ref_007 2023101308110477381_j_jisys-2022-0295_ref_018 2023101308110477381_j_jisys-2022-0295_ref_020 2023101308110477381_j_jisys-2022-0295_ref_011 2023101308110477381_j_jisys-2022-0295_ref_022 2023101308110477381_j_jisys-2022-0295_ref_010 2023101308110477381_j_jisys-2022-0295_ref_021 |
References_xml | – ident: 2023101308110477381_j_jisys-2022-0295_ref_020 doi: 10.2166/hydro.2018.028 – ident: 2023101308110477381_j_jisys-2022-0295_ref_021 doi: 10.1016/j.ins.2019.06.063 – ident: 2023101308110477381_j_jisys-2022-0295_ref_003 doi: 10.1109/JSEN.2020.3028075 – ident: 2023101308110477381_j_jisys-2022-0295_ref_004 doi: 10.1007/s00500-020-04884-x – ident: 2023101308110477381_j_jisys-2022-0295_ref_010 doi: 10.31449/inf.v44i2.3195 – ident: 2023101308110477381_j_jisys-2022-0295_ref_015 doi: 10.1007/s11277-019-06780-6 – ident: 2023101308110477381_j_jisys-2022-0295_ref_009 doi: 10.1007/s11227-021-03660-4 – ident: 2023101308110477381_j_jisys-2022-0295_ref_023 doi: 10.1109/TCYB.2020.2983871 – ident: 2023101308110477381_j_jisys-2022-0295_ref_007 doi: 10.1108/BFJ-12-2019-0941 – ident: 2023101308110477381_j_jisys-2022-0295_ref_008 doi: 10.1109/TCYB.2018.2886012 – ident: 2023101308110477381_j_jisys-2022-0295_ref_018 doi: 10.1007/s11276-020-02408-x – ident: 2023101308110477381_j_jisys-2022-0295_ref_019 doi: 10.1109/TSC.2019.2950291 – ident: 2023101308110477381_j_jisys-2022-0295_ref_005 doi: 10.1108/RPJ-05-2019-0121 – ident: 2023101308110477381_j_jisys-2022-0295_ref_012 doi: 10.1108/SR-09-2017-0203 – ident: 2023101308110477381_j_jisys-2022-0295_ref_022 doi: 10.1007/s11227-021-04062-2 – ident: 2023101308110477381_j_jisys-2022-0295_ref_006 doi: 10.1109/TR.2019.2931559 – ident: 2023101308110477381_j_jisys-2022-0295_ref_017 doi: 10.1109/JSAC.2019.2916486 – ident: 2023101308110477381_j_jisys-2022-0295_ref_002 doi: 10.1134/S1063785019090037 – ident: 2023101308110477381_j_jisys-2022-0295_ref_001 doi: 10.1109/TVT.2019.2927904 – ident: 2023101308110477381_j_jisys-2022-0295_ref_014 doi: 10.1016/j.wem.2020.11.002 – ident: 2023101308110477381_j_jisys-2022-0295_ref_013 doi: 10.1049/cmu2.12136 – ident: 2023101308110477381_j_jisys-2022-0295_ref_011 doi: 10.3233/JIFS-189061 – ident: 2023101308110477381_j_jisys-2022-0295_ref_016 doi: 10.1109/JLT.2021.3057609 |
SSID | ssj0000491585 |
Score | 2.323775 |
Snippet | Anti-jamming cyclic frequency feature extraction is an important link in identifying communication interference signals, which is of great significance for... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 9122 |
SubjectTerms | Algorithms anti-jamming cycle frequency Binary phase shift keying Classification Communication electronic communication signal Feature extraction Feature recognition Interference Jamming Kernel functions Particle swarm optimization PSO Sensitivity enhancement Support vector machines SVM |
Title | Feature extraction algorithm of anti-jamming cyclic frequency of electronic communication signal |
URI | http://www.degruyter.com/doi/10.1515/jisys-2022-0295 https://www.proquest.com/docview/2876301973 https://doaj.org/article/01e76a6b3e1448d595264ee2fcaf11aa |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagE0t5i0JBHhhYoiZxYicjj1adWACJLST2ubTqA6WtUP89d3m0BQmxsEaWYn1n576Lz9_H2LWIlFFBGDtCB1igxBb3nPSM40YWiwnf-rpwnus_qcfX6KFLMjlrqy_qCSvlgUvgOq4HSqYyE4DUPzJhHGIKB_CtTq3npSU1cuVWMTUqea-HRLjS8sGc3RkN56s5rgmsvVyf3CS20lCh1v-NYjY_i8NqA4N8uVrUh6NFzukdsGZFFvltOclDtgPTI7ZfGzHwal8eszcicsscOH5p8_KmAk_HgxkW_u8TPrMc4Rs6o3QywUTF9UqPh5rbvOyiXtGAjRsO19tXRjj1d6TjE_bS6z7f953KOsHRmIIXjhRgpIkE6bmZDOOhjbKRjn3QkQWhfYDYiCwlp3FXu1amNlT0X9EYuqoqxSlrTGdTOGNcKyEAPCkhwGLMYgGCDENalQUGROhlLXZTI5l8lAoZCVUWCHpSgJ4Q6AmB3mJ3hPR6GElbFw8w4EkV8OSvgLdYu45TUu03fAUJ6yFbVaLFxI_YbUb9Mi3he-f_MbMLtkdm9E7R79JmjUW-hEu2OzfLq2J1fgHlKuvL |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+extraction+algorithm+of+anti-jamming+cyclic+frequency+of+electronic+communication+signal&rft.jtitle=Journal+of+intelligent+systems&rft.au=Yang%2C+Xuemei&rft.date=2023-10-12&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0334-1860&rft.eissn=2191-026X&rft.issue=1&rft_id=info:doi/10.1515%2Fjisys-2022-0295&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-026X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-026X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-026X&client=summon |