The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation
The auto-reduction of copper and manganese acetates has been manipulated, to tailor specific Cu/Mn/O phases for the purpose of investigating their relation to activity for CO oxidation. A range of phases were produced from Hopcalite to discrete metallic copper particles supported by manganese oxide....
Saved in:
Published in: | Journal of catalysis Vol. 281; no. 2; pp. 279 - 289 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier Inc
25-07-2011
Elsevier Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The auto-reduction of copper and manganese acetates has been manipulated, to tailor specific Cu/Mn/O phases for the purpose of investigating their relation to activity for CO oxidation. A range of phases were produced from Hopcalite to discrete metallic copper particles supported by manganese oxide. The Hopcalite spinel phase was found to be required for the activity, while copper and manganese oxides were found to be inactive.
[Display omitted]
► The use of supercritical anti-solvent precipitation allows for the formation of well-mixed metal acetates. ► The auto-reduction of Cu and Mn acetates has been controlled to tailor specific phase formation for synthesising catalysts. ► MnO
x
-supported Cu nanoparticles or CuMnO
x
spinel structures were formed, depending on the heat treatment conditions. ► The ability to tune oxidation state and phase composition of catalysts is a key preparation parameter for controlling the activity.
The auto-reduction of copper and manganese acetates has been investigated using
in situ X-ray diffraction and thermogravimetric analysis, with the intention of manipulating the phenomena to tailor specific phase formation for synthesising catalysts. Subsequently catalysts prepared in this controlled manner were evaluated for ambient temperature CO oxidation. The decomposition of mixed copper and manganese acetate systems was controlled to form MnO
x
-supported Cu or CuMnO
x
spinel structures, depending on the oxygen concentration and flow conditions during the heat treatment. Catalyst precursors were prepared by physical grinding and by a supercritical CO
2 anti-solvent precipitation process. The use of supercritical anti-solvent precipitation allows for the formation of well-mixed metal acetates that decompose to form active spinel CO-oxidation catalysts or small copper nano-particles supported on MnO
x
, depending on the oxygen content of the heat treatment atmosphere. The ability to tune oxidation state and phase composition of catalysts is a key preparation parameter for controlling the activity and provides insight into the active sites for CO oxidation. |
---|---|
AbstractList | The auto-reduction of copper and manganese acetates has been manipulated, to tailor specific Cu/Mn/O phases for the purpose of investigating their relation to activity for CO oxidation. A range of phases were produced from Hopcalite to discrete metallic copper particles supported by manganese oxide. The Hopcalite spinel phase was found to be required for the activity, while copper and manganese oxides were found to be inactive. Display Omitted Highlights The use of supercritical anti-solvent precipitation allows for the formation of well-mixed metal acetates. The auto-reduction of Cu and Mn acetates has been controlled to tailor specific phase formation for synthesising catalysts. MnO x -supported Cu nanoparticles or CuMnO x spinel structures were formed, depending on the heat treatment conditions. The ability to tune oxidation state and phase composition of catalysts is a key preparation parameter for controlling the activity. The auto-reduction of copper and manganese acetates has been investigated using in situ X-ray diffraction and thermogravimetric analysis, with the intention of manipulating the phenomena to tailor specific phase formation for synthesising catalysts. Subsequently catalysts prepared in this controlled manner were evaluated for ambient temperature CO oxidation. The decomposition of mixed copper and manganese acetate systems was controlled to form MnO x -supported Cu or CuMnO x spinel structures, depending on the oxygen concentration and flow conditions during the heat treatment. Catalyst precursors were prepared by physical grinding and by a supercritical CO2 anti-solvent precipitation process. The use of supercritical anti-solvent precipitation allows for the formation of well-mixed metal acetates that decompose to form active spinel CO-oxidation catalysts or small copper nano-particles supported on MnO x , depending on the oxygen content of the heat treatment atmosphere. The ability to tune oxidation state and phase composition of catalysts is a key preparation parameter for controlling the activity and provides insight into the active sites for CO oxidation. [PUBLICATION ABSTRACT] The auto-reduction of copper and manganese acetates has been manipulated, to tailor specific Cu/Mn/O phases for the purpose of investigating their relation to activity for CO oxidation. A range of phases were produced from Hopcalite to discrete metallic copper particles supported by manganese oxide. The Hopcalite spinel phase was found to be required for the activity, while copper and manganese oxides were found to be inactive. [Display omitted] ► The use of supercritical anti-solvent precipitation allows for the formation of well-mixed metal acetates. ► The auto-reduction of Cu and Mn acetates has been controlled to tailor specific phase formation for synthesising catalysts. ► MnO x -supported Cu nanoparticles or CuMnO x spinel structures were formed, depending on the heat treatment conditions. ► The ability to tune oxidation state and phase composition of catalysts is a key preparation parameter for controlling the activity. The auto-reduction of copper and manganese acetates has been investigated using in situ X-ray diffraction and thermogravimetric analysis, with the intention of manipulating the phenomena to tailor specific phase formation for synthesising catalysts. Subsequently catalysts prepared in this controlled manner were evaluated for ambient temperature CO oxidation. The decomposition of mixed copper and manganese acetate systems was controlled to form MnO x -supported Cu or CuMnO x spinel structures, depending on the oxygen concentration and flow conditions during the heat treatment. Catalyst precursors were prepared by physical grinding and by a supercritical CO 2 anti-solvent precipitation process. The use of supercritical anti-solvent precipitation allows for the formation of well-mixed metal acetates that decompose to form active spinel CO-oxidation catalysts or small copper nano-particles supported on MnO x , depending on the oxygen content of the heat treatment atmosphere. The ability to tune oxidation state and phase composition of catalysts is a key preparation parameter for controlling the activity and provides insight into the active sites for CO oxidation. The auto-reduction of copper and manganese acetates has been investigated using in situ X-ray diffraction and thermogravimetric analysis, with the intention of manipulating the phenomena to tailor specific phase formation for synthesising catalysts. Subsequently catalysts prepared in this controlled manner were evaluated for ambient temperature CO oxidation. The decomposition of mixed copper and manganese acetate systems was controlled to form MnOₓ-supported Cu or CuMnOₓ spinel structures, depending on the oxygen concentration and flow conditions during the heat treatment. Catalyst precursors were prepared by physical grinding and by a supercritical CO₂ anti-solvent precipitation process. The use of supercritical anti-solvent precipitation allows for the formation of well-mixed metal acetates that decompose to form active spinel CO-oxidation catalysts or small copper nano-particles supported on MnOₓ, depending on the oxygen content of the heat treatment atmosphere. The ability to tune oxidation state and phase composition of catalysts is a key preparation parameter for controlling the activity and provides insight into the active sites for CO oxidation. |
Author | Taylor, Stuart H. Boldrin, Paul Kondrat, Simon A. Carley, Albert F. Bartley, Jonathan K. Rosseinsky, Matthew J. Davies, Thomas E. Zu, Zhongling Hutchings, Graham J. |
Author_xml | – sequence: 1 givenname: Simon A. surname: Kondrat fullname: Kondrat, Simon A. organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK – sequence: 2 givenname: Thomas E. surname: Davies fullname: Davies, Thomas E. organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK – sequence: 3 givenname: Zhongling surname: Zu fullname: Zu, Zhongling organization: Department of Chemistry, Crown Street, University of Liverpool, Liverpool L69 7ZD, UK – sequence: 4 givenname: Paul surname: Boldrin fullname: Boldrin, Paul organization: Department of Chemistry, Crown Street, University of Liverpool, Liverpool L69 7ZD, UK – sequence: 5 givenname: Jonathan K. surname: Bartley fullname: Bartley, Jonathan K. organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK – sequence: 6 givenname: Albert F. surname: Carley fullname: Carley, Albert F. organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK – sequence: 7 givenname: Stuart H. surname: Taylor fullname: Taylor, Stuart H. organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK – sequence: 8 givenname: Matthew J. surname: Rosseinsky fullname: Rosseinsky, Matthew J. organization: Department of Chemistry, Crown Street, University of Liverpool, Liverpool L69 7ZD, UK – sequence: 9 givenname: Graham J. surname: Hutchings fullname: Hutchings, Graham J. email: hutch@cardiff.ac.uk organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24349982$$DView record in Pascal Francis |
BookMark | eNp9kc9u3CAQh1GVSN2kfYFeiir1aBds_Ieqlypqk0iRekhyRhgPWaw1uMBG2Xfpw3a8G_XYCwj45psRvwty5oMHQj5wVnLG2y9TORmdy4pxXrKmZLx6QzacSVZUrRRnZMNYxQvZ8O4tuUhpYgg2Tb8hfx62QMFaMJkGS7egM80R1xk83ni6bHUCakOcdXZ4RsiEZYFIZ-2ftAd8DS9uhK_01tvdHryBtQ7H0btDdoZqk92zy4dVQvU8uNWcYUaHzvsIiMYBK-bgj6Kj7tjsHTm3epfg_et-SR5__ni4uinufl3fXn2_K0zd81w0LZO86UQHRogWRCOGahzB2MpY3va1aA10ZuhHsHXfjhJgMIa1teSi0yMT9SX5dPIuMfzeQ8pqCvvosaXqu6ZjXS9XqDpBJoaUIli1RDfreFCcqTUENak1BLWGoFijMAQs-vxq1snonY3aG5f-VVaiFlL2K_fxxFkdlH6KyDzeo6hlGFzXC4nEtxMB-BHPDqJKxq2fPbqI4akxuP8N8hclJavG |
CODEN | JCTLA5 |
CitedBy_id | crossref_primary_10_1007_s42114_019_00108_5 crossref_primary_10_1016_j_md_2017_08_001 crossref_primary_10_1007_s11144_014_0805_0 crossref_primary_10_1016_j_surfin_2024_103887 crossref_primary_10_1007_s41810_019_00046_1 crossref_primary_10_1007_s11244_016_0723_7 crossref_primary_10_1016_j_supflu_2016_03_003 crossref_primary_10_1016_j_resenv_2020_100006 crossref_primary_10_1016_j_tca_2014_12_016 crossref_primary_10_1016_j_apsusc_2021_151733 crossref_primary_10_1016_j_cattod_2020_09_006 crossref_primary_10_1016_j_cplett_2018_11_041 crossref_primary_10_1016_j_mset_2020_02_005 crossref_primary_10_1016_j_cattod_2023_114085 crossref_primary_10_1016_j_md_2017_09_001 crossref_primary_10_1016_j_apcata_2023_119244 crossref_primary_10_1021_acscatal_0c00698 crossref_primary_10_1016_j_apcatb_2014_06_030 crossref_primary_10_1039_C9CC07669G crossref_primary_10_1021_jp4049742 crossref_primary_10_1016_j_jiec_2020_05_005 crossref_primary_10_1016_j_supflu_2019_03_014 crossref_primary_10_1134_S0022476623060124 crossref_primary_10_1016_j_apr_2018_01_020 crossref_primary_10_1039_C4CY00660G crossref_primary_10_1016_j_carbon_2014_10_071 crossref_primary_10_1002_ejic_201801374 crossref_primary_10_1039_C8TA06459H crossref_primary_10_1070_RCR4932 crossref_primary_10_1007_s10971_019_05137_6 crossref_primary_10_1007_s11144_016_0974_0 crossref_primary_10_1039_C5RA01118C crossref_primary_10_1016_j_apcatb_2014_09_070 crossref_primary_10_1021_cs4000359 crossref_primary_10_1002_cctc_201601603 crossref_primary_10_1016_j_md_2018_11_002 crossref_primary_10_3390_catal8110563 crossref_primary_10_1016_j_inoche_2019_107614 crossref_primary_10_1016_j_jsamd_2019_01_008 crossref_primary_10_1016_j_supflu_2017_08_002 crossref_primary_10_1016_j_renene_2021_10_029 crossref_primary_10_1039_C4CY00044G crossref_primary_10_1039_D3NJ03074A crossref_primary_10_5572_KOSAE_2019_35_5_625 crossref_primary_10_1039_C6RA21221B crossref_primary_10_1016_j_apsusc_2013_10_153 crossref_primary_10_1021_acs_jpcc_4c02494 crossref_primary_10_1016_j_apsusc_2017_01_136 crossref_primary_10_1016_j_cej_2018_04_055 crossref_primary_10_1016_S1872_2067_17_62860_2 crossref_primary_10_1021_acscatal_1c00569 crossref_primary_10_1016_j_mtchem_2019_07_002 crossref_primary_10_1016_j_jtte_2019_06_002 crossref_primary_10_1039_c2sc20450a crossref_primary_10_3390_catal9080652 crossref_primary_10_1016_j_molcata_2016_08_024 crossref_primary_10_1016_j_cattod_2012_04_004 |
Cites_doi | 10.1116/1.2885212 10.1016/j.apcata.2009.09.017 10.1016/j.molcata.2004.09.065 10.2478/s11696-007-0042-3 10.1016/j.jcat.2010.08.013 10.1007/BF01911560 10.1016/j.molcata.2008.10.027 10.1023/A:1010179532267 10.1524/zpch.1977.107.1.109 10.1007/s10562-010-0392-2 10.1002/jctb.5010120804 10.1016/0021-9517(86)90090-4 10.1021/nn8009097 10.1016/j.apsusc.2004.05.274 10.1016/S0255-2701(99)00053-7 10.1002/cctc.200900195 10.1016/0926-860X(92)80096-U 10.1016/j.ijhydene.2006.10.050 10.1016/j.apcata.2004.10.013 10.1016/S0926-860X(97)00248-2 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. 2015 INIST-CNRS Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | FBQ IQODW AAYXX CITATION |
DOI | 10.1016/j.jcat.2011.05.012 |
DatabaseName | AGRIS Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1090-2694 |
EndPage | 289 |
ExternalDocumentID | 2395480361 10_1016_j_jcat_2011_05_012 24349982 US201600027849 S0021951711001503 |
Genre | Feature |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- ABPIF ABPTK FBQ 08R IQODW AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c381t-560915747ec446e454b2ddecf2cf168346ce7cb8def386d9eebcc0639147ad043 |
ISSN | 0021-9517 |
IngestDate | Thu Oct 10 18:43:13 EDT 2024 Thu Sep 26 17:21:03 EDT 2024 Sun Oct 22 16:04:36 EDT 2023 Wed Dec 27 19:07:21 EST 2023 Fri Feb 23 02:27:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Copper manganese oxide Acetate decomposition Hopcalite CO oxidation Heat treatment Support In situ Decomposition Precursor Grinding Particle Chemical reduction Precipitation Oxidation Carbon monoxide Copper Structure Oxygen Catalytic reaction Phase composition Transition element compounds Thermogravimetry Acetate X ray diffraction Heterogeneous catalysis Manganese oxides Spinel Spinels Atmosphere Preparation Supercritical solvent Copper oxide Catalyst Manganese |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-560915747ec446e454b2ddecf2cf168346ce7cb8def386d9eebcc0639147ad043 |
Notes | http://dx.doi.org/10.1016/j.jcat.2011.05.012 |
PQID | 875707894 |
PQPubID | 32080 |
PageCount | 11 |
ParticipantIDs | proquest_journals_875707894 crossref_primary_10_1016_j_jcat_2011_05_012 pascalfrancis_primary_24349982 fao_agris_US201600027849 elsevier_sciencedirect_doi_10_1016_j_jcat_2011_05_012 |
PublicationCentury | 2000 |
PublicationDate | 2011-07-25 |
PublicationDateYYYYMMDD | 2011-07-25 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: San Diego |
PublicationTitle | Journal of catalysis |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier BV |
References | Cole, Carley, Crudace, Clarke, Taylor, Hutchings (b0100) 2010; 138 Hutchings, Mirzaei, Joyner, Siddiqui, Taylor (b0025) 1998; 166 Chen, Tong, Li (b0015) 2009; 370 Morgan, Cole, Goguet, Hardacre, Hutchings, Maguire, Shekhtman, Taylor (b0105) 2010; 276 Buciuman, Patcas, Hahn (b0030) 1999; 38 Judd, Plunkett, Pope (b0040) 1974; 6 Agarwal, Spivey, Butt (b0020) 1992; 81 Tanaka, Takeguchi, Kikuchi, Eguchi (b0110) 2005; 279 Jones, Cole, Taylor, Crudace, Hutchings (b0085) 2009; 305 Lin, Watson, Fallbach, Ghose, Smith, Delozier, Cao, Crooks, Connell (b0070) 2009; 3 Leicester, Redman (b0065) 1962; 12 Veprek, Cocke, Kehl, Oswald (b0090) 1986; 100 Schwab, Kanungo (b0095) 1977; 107 De Jesus, González, Quevedo, Puerta (b0115) 2005; 228 Mirzaei, Shaterian, Kaykhaii (b0005) 2005; 239 Pol, Pol, Felner, Gedanken (b0060) 2007; 14 De Jesus (b0075) 2008; 26 Tang, Jones, Aldridge, Davies, Bartley, Carley, Taylor, Allix, Dickinson, Rosseinsky, Claridge, Xu, Crudace, Hutchings (b0035) 2009; 1 Wanjun, Donghua (b0055) 2007; 61 Obaid, Alyoubi, Samarkandy (b0045) 2000; 64 Gadhe (b0080) 2007; 32 Mirzaei (10.1016/j.jcat.2011.05.012_b0005) 2005; 239 Agarwal (10.1016/j.jcat.2011.05.012_b0020) 1992; 81 Hutchings (10.1016/j.jcat.2011.05.012_b0025) 1998; 166 Cole (10.1016/j.jcat.2011.05.012_b0100) 2010; 138 Tanaka (10.1016/j.jcat.2011.05.012_b0110) 2005; 279 Judd (10.1016/j.jcat.2011.05.012_b0040) 1974; 6 Gadhe (10.1016/j.jcat.2011.05.012_b0080) 2007; 32 De Jesus (10.1016/j.jcat.2011.05.012_b0115) 2005; 228 Lin (10.1016/j.jcat.2011.05.012_b0070) 2009; 3 Chen (10.1016/j.jcat.2011.05.012_b0015) 2009; 370 De Jesus (10.1016/j.jcat.2011.05.012_b0075) 2008; 26 Veprek (10.1016/j.jcat.2011.05.012_b0090) 1986; 100 Tang (10.1016/j.jcat.2011.05.012_b0035) 2009; 1 Wanjun (10.1016/j.jcat.2011.05.012_b0055) 2007; 61 Jones (10.1016/j.jcat.2011.05.012_b0085) 2009; 305 Buciuman (10.1016/j.jcat.2011.05.012_b0030) 1999; 38 Morgan (10.1016/j.jcat.2011.05.012_b0105) 2010; 276 Schwab (10.1016/j.jcat.2011.05.012_b0095) 1977; 107 Obaid (10.1016/j.jcat.2011.05.012_b0045) 2000; 64 Pol (10.1016/j.jcat.2011.05.012_b0060) 2007; 14 Leicester (10.1016/j.jcat.2011.05.012_b0065) 1962; 12 |
References_xml | – volume: 100 start-page: 250 year: 1986 ident: b0090 publication-title: J. Catal. contributor: fullname: Oswald – volume: 107 start-page: 109 year: 1977 ident: b0095 publication-title: Z. Phys. Chem. Neue Fol. contributor: fullname: Kanungo – volume: 370 start-page: 59 year: 2009 ident: b0015 publication-title: Appl. Catal. A contributor: fullname: Li – volume: 138 start-page: 143 year: 2010 ident: b0100 publication-title: Catal. Lett. contributor: fullname: Hutchings – volume: 276 start-page: 38 year: 2010 ident: b0105 publication-title: J. Catal. contributor: fullname: Taylor – volume: 166 start-page: 143 year: 1998 ident: b0025 publication-title: Appl. Catal. A contributor: fullname: Taylor – volume: 6 start-page: 555 year: 1974 ident: b0040 publication-title: J. Therm. Anal. contributor: fullname: Pope – volume: 26 start-page: 913 year: 2008 ident: b0075 publication-title: J. Vac. Sci. Technol. A contributor: fullname: De Jesus – volume: 279 start-page: 59 year: 2005 ident: b0110 publication-title: Appl. Catal. A contributor: fullname: Eguchi – volume: 32 start-page: 2374 year: 2007 ident: b0080 publication-title: Int. J. Hydrogen Energy contributor: fullname: Gadhe – volume: 305 start-page: 121 year: 2009 ident: b0085 publication-title: J. Mol. Catal. A contributor: fullname: Hutchings – volume: 38 start-page: 563 year: 1999 ident: b0030 publication-title: Chem. Eng. Process. contributor: fullname: Hahn – volume: 3 start-page: 871 year: 2009 ident: b0070 publication-title: ACS Nano contributor: fullname: Connell – volume: 239 start-page: 246 year: 2005 ident: b0005 publication-title: Appl. Surf. Sci. contributor: fullname: Kaykhaii – volume: 14 start-page: 2089 year: 2007 ident: b0060 publication-title: J. Inorg. Chem. contributor: fullname: Gedanken – volume: 12 start-page: 357 year: 1962 ident: b0065 publication-title: J. Appl. Chem. contributor: fullname: Redman – volume: 228 start-page: 283 year: 2005 ident: b0115 publication-title: J. Mol. Catal. A contributor: fullname: Puerta – volume: 61 start-page: 329 year: 2007 ident: b0055 publication-title: Chem. Paper contributor: fullname: Donghua – volume: 81 start-page: 239 year: 1992 ident: b0020 publication-title: Appl. Catal. A contributor: fullname: Butt – volume: 1 start-page: 247 year: 2009 ident: b0035 publication-title: Chemcatchem contributor: fullname: Hutchings – volume: 64 start-page: 985 year: 2000 ident: b0045 publication-title: J. Therm. Anal. Calorim. contributor: fullname: Samarkandy – volume: 26 start-page: 913 year: 2008 ident: 10.1016/j.jcat.2011.05.012_b0075 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.2885212 contributor: fullname: De Jesus – volume: 370 start-page: 59 year: 2009 ident: 10.1016/j.jcat.2011.05.012_b0015 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2009.09.017 contributor: fullname: Chen – volume: 228 start-page: 283 year: 2005 ident: 10.1016/j.jcat.2011.05.012_b0115 publication-title: J. Mol. Catal. A doi: 10.1016/j.molcata.2004.09.065 contributor: fullname: De Jesus – volume: 61 start-page: 329 year: 2007 ident: 10.1016/j.jcat.2011.05.012_b0055 publication-title: Chem. Paper doi: 10.2478/s11696-007-0042-3 contributor: fullname: Wanjun – volume: 276 start-page: 38 year: 2010 ident: 10.1016/j.jcat.2011.05.012_b0105 publication-title: J. Catal. doi: 10.1016/j.jcat.2010.08.013 contributor: fullname: Morgan – volume: 6 start-page: 555 year: 1974 ident: 10.1016/j.jcat.2011.05.012_b0040 publication-title: J. Therm. Anal. doi: 10.1007/BF01911560 contributor: fullname: Judd – volume: 305 start-page: 121 year: 2009 ident: 10.1016/j.jcat.2011.05.012_b0085 publication-title: J. Mol. Catal. A doi: 10.1016/j.molcata.2008.10.027 contributor: fullname: Jones – volume: 64 start-page: 985 year: 2000 ident: 10.1016/j.jcat.2011.05.012_b0045 publication-title: J. Therm. Anal. Calorim. doi: 10.1023/A:1010179532267 contributor: fullname: Obaid – volume: 107 start-page: 109 year: 1977 ident: 10.1016/j.jcat.2011.05.012_b0095 publication-title: Z. Phys. Chem. Neue Fol. doi: 10.1524/zpch.1977.107.1.109 contributor: fullname: Schwab – volume: 138 start-page: 143 year: 2010 ident: 10.1016/j.jcat.2011.05.012_b0100 publication-title: Catal. Lett. doi: 10.1007/s10562-010-0392-2 contributor: fullname: Cole – volume: 12 start-page: 357 year: 1962 ident: 10.1016/j.jcat.2011.05.012_b0065 publication-title: J. Appl. Chem. doi: 10.1002/jctb.5010120804 contributor: fullname: Leicester – volume: 100 start-page: 250 year: 1986 ident: 10.1016/j.jcat.2011.05.012_b0090 publication-title: J. Catal. doi: 10.1016/0021-9517(86)90090-4 contributor: fullname: Veprek – volume: 3 start-page: 871 year: 2009 ident: 10.1016/j.jcat.2011.05.012_b0070 publication-title: ACS Nano doi: 10.1021/nn8009097 contributor: fullname: Lin – volume: 239 start-page: 246 year: 2005 ident: 10.1016/j.jcat.2011.05.012_b0005 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.05.274 contributor: fullname: Mirzaei – volume: 14 start-page: 2089 year: 2007 ident: 10.1016/j.jcat.2011.05.012_b0060 publication-title: J. Inorg. Chem. contributor: fullname: Pol – volume: 38 start-page: 563 year: 1999 ident: 10.1016/j.jcat.2011.05.012_b0030 publication-title: Chem. Eng. Process. doi: 10.1016/S0255-2701(99)00053-7 contributor: fullname: Buciuman – volume: 1 start-page: 247 year: 2009 ident: 10.1016/j.jcat.2011.05.012_b0035 publication-title: Chemcatchem doi: 10.1002/cctc.200900195 contributor: fullname: Tang – volume: 81 start-page: 239 year: 1992 ident: 10.1016/j.jcat.2011.05.012_b0020 publication-title: Appl. Catal. A doi: 10.1016/0926-860X(92)80096-U contributor: fullname: Agarwal – volume: 32 start-page: 2374 year: 2007 ident: 10.1016/j.jcat.2011.05.012_b0080 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.10.050 contributor: fullname: Gadhe – volume: 279 start-page: 59 year: 2005 ident: 10.1016/j.jcat.2011.05.012_b0110 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2004.10.013 contributor: fullname: Tanaka – volume: 166 start-page: 143 year: 1998 ident: 10.1016/j.jcat.2011.05.012_b0025 publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(97)00248-2 contributor: fullname: Hutchings |
SSID | ssj0011558 |
Score | 2.3201625 |
Snippet | The auto-reduction of copper and manganese acetates has been manipulated, to tailor specific Cu/Mn/O phases for the purpose of investigating their relation to... The auto-reduction of copper and manganese acetates has been investigated using in situ X-ray diffraction and thermogravimetric analysis, with the intention of... |
SourceID | proquest crossref pascalfrancis fao elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 279 |
SubjectTerms | Acetate decomposition acetates active sites ambient temperature carbon dioxide Carbon monoxide Catalysis Catalysts catalytic activity Catalytic oxidation Chemistry CO oxidation Copper Copper manganese oxide Exact sciences and technology General and physical chemistry grinding Heat treating heat treatment Hopcalite manganese Manganese compounds manganese oxides nanoparticles oxidation oxygen Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry thermogravimetry X-ray diffraction |
Title | The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation |
URI | https://dx.doi.org/10.1016/j.jcat.2011.05.012 https://www.proquest.com/docview/875707894 |
Volume | 281 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELV22wNwQFBALYXKB26rrDaJ82FuqxJEOXBpK1VcrMR22q5KstoPCf4LP5YZ23FSViBA4hKtkrXj6L14JvabGULehDpTWZnzQIVViR8oMA_GOgw0r9FfTnSdmiK259mnq_xdwYrRqMuy2J_7r0jDOcAaI2f_Am3fKZyA34A5HAF1OP4x7lak4fzAzUBMDlAvb8Bu9TGLVla-XOoVClmvSyxIOWm_3ioTs37WlTDBlmal55tJ8CpdzQkjwfxSYUzlBJNcuQzNmO-6ghbw0KYr02FPgV1f2Ha9vu13ltpGQV9mbRbY1Ezm035NHUz5QNw0Kfylz1uz13LTYmyyM8lGCnmnVjZXghdCqn7l1uaQ6FbfugicewJRKzFJbPznVNtJfMZnAUboDmf5yFaGcXSOhnO2rWbjzH9kKxrtWBa7yLGYLnBB2GZ-xYSvUW9HvboRN8BDHBOm4wOHOx6TfbhJDNPw_vysuProt7nAmbOugnsIF9VlBYg_3-lXntO4LluU9JZreKtrW45lx7Mw7tLFE_LYYUvnlqBPyUg3B-TBaVde8IA8GmTCfEa-A22ppS1ta4q0pZ62tG2ooS31tMU_WdpST1tquPaWetJiO09a2pEWO6GOtHRAWmpJSzvSUk_a5-TyfXFx-iFwhUMCCQ7oJgAvnocJfChryViqWcKqCMy4rCNZh2kes1TqTFa50nWcp4prXUmJvnrIslLNWPyC7DVtow8J1TLJVKp0pHLGeCh5XsMHi-KchTJTFT8ikw4UsbT5YUQnnFwIhFAghGKWCIDwiCQdbsJ5uNZzFUCz37Y7BJBFeQ2GX1yeR5gW0moGYAAn95D3o4hYzDjPoe1xRwXh5qm1wDIWWGiCvfzHER2Th_07-orsbVZb_ZqM12p74kj-AxGc66U |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+heat+treatment+on+phase+formation+of+copper+manganese+oxide%3A+Influence+on+catalytic+activity+for+ambient+temperature+carbon+monoxide+oxidation&rft.jtitle=Journal+of+catalysis&rft.au=Kondrat%2C+Simon+A.&rft.au=Davies%2C+Thomas+E.&rft.au=Zu%2C+Zhongling&rft.au=Boldrin%2C+Paul&rft.date=2011-07-25&rft.pub=Elsevier+Inc&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=281&rft.issue=2&rft.spage=279&rft.epage=289&rft_id=info:doi/10.1016%2Fj.jcat.2011.05.012&rft.externalDocID=S0021951711001503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |