Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy

Iodine-125 ((125)I) and Caesium-131 ((131)Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, (169)Yb and (103)Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachythera...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology Vol. 58; no. 20; p. 7061
Main Authors: Sutherland, J G H, Furutani, K M, Thomson, R M
Format: Journal Article
Language:English
Published: England 21-10-2013
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iodine-125 ((125)I) and Caesium-131 ((131)Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, (169)Yb and (103)Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for (103)Pd, (125)I, (131)Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.
ISSN:1361-6560
DOI:10.1088/0031-9155/58/20/7061