Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling

TCR-pMHC interactions initiate adaptive immune responses, but the mechanism of how such interactions under force induce T cell signaling is unclear. We show that force prolongs lifetimes of single TCR-pMHC bonds for agonists (catch bonds) but shortens those for antagonists (slip bonds). Both magnitu...

Full description

Saved in:
Bibliographic Details
Published in:Cell Vol. 157; no. 2; pp. 357 - 368
Main Authors: Liu, Baoyu, Chen, Wei, Evavold, Brian D, Zhu, Cheng
Format: Journal Article
Language:English
Published: United States 10-04-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TCR-pMHC interactions initiate adaptive immune responses, but the mechanism of how such interactions under force induce T cell signaling is unclear. We show that force prolongs lifetimes of single TCR-pMHC bonds for agonists (catch bonds) but shortens those for antagonists (slip bonds). Both magnitude and duration of force are important, as the highest Ca(2+) responses were induced by 10 pN via both pMHC catch bonds whose lifetime peaks at this force and anti-TCR slip bonds whose maximum lifetime occurs at 0 pN. High Ca(2+) levels require early and rapid accumulation of bond lifetimes, whereas short-lived bonds that slow early accumulation of lifetimes correspond to low Ca(2+) responses. Our data support a model in which force on the TCR induces signaling events depending on its magnitude, duration, frequency, and timing, such that agonists form catch bonds that trigger the T cell digitally, whereas antagonists form slip bonds that fail to activate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2014.02.053