Kalman filtering in extended noise environments

This note introduces an extended environment for Kalman filtering that considers also the presence of additive noise on input observations in order to solve the problem of optimal (minimal variance) estimation of noise-corrupted input and output sequences. This environment includes as subcases both...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 50; no. 9; pp. 1396 - 1402
Main Authors: Diversi, R., Guidorzi, R., Soverini, U.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-09-2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This note introduces an extended environment for Kalman filtering that considers also the presence of additive noise on input observations in order to solve the problem of optimal (minimal variance) estimation of noise-corrupted input and output sequences. This environment includes as subcases both errors-in-variables filtering (optimal estimate of inputs and outputs from noisy observations) and traditional Kalman filtering (optimal estimate of state and output in presence of state and output noise). A Monte Carlo simulation shows that the performance of this extended filtering technique leads to the expected minimal variance estimates.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2005.854627