Calmodulin, and various ways to regulate its activity

Calmodulin (CaM), the ubiquitous calcium sensor protein, is involved in almost all intracellular events. In higher vertebrates, a single protein is encoded by multiple, co-expressed genes, and the number of discrete CaM transcripts produced by a single cell is further increased by intense alternativ...

Full description

Saved in:
Bibliographic Details
Published in:Life sciences (1973) Vol. 74; no. 9; pp. 1065 - 1070
Main Authors: Kortvely, Elod, Gulya, Karoly
Format: Journal Article
Language:English
Published: Netherlands Elsevier Inc 16-01-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Calmodulin (CaM), the ubiquitous calcium sensor protein, is involved in almost all intracellular events. In higher vertebrates, a single protein is encoded by multiple, co-expressed genes, and the number of discrete CaM transcripts produced by a single cell is further increased by intense alternative polyadenylation signal usage. It appears most likely that the individual transcripts possess unique intracellular fates, so that this apparent redundancy multiplies the number of challenges which the cell is able to respond to. The promoter regions of the different CaM genes have been analyzed. Several putative transcription factor binding sites have been identified; however, the elements responsible for their generally strong co-expression, and even those providing different spatial and temporal control, remain to be elucidated. Moreover, a powerful posttranscriptional control mechanism is responsible for the establishment of local intracellular CaM mRNA pools. This is mainly achieved by the selective targeting of mRNAs to various cellular domains, although regulation via mRNA stability cannot be ruled out. Finally, tailoring of the CaM protein itself offers the fastest way whereby the properties of this Ca 2+-receptor protein can be changed. Indeed, several posttranslational modifications of CaM were described earlier, but their functions are not yet understood. Here, we briefly review the regulatory levels from the gene transcription to the covalent modifications of the synthesized protein.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Feature-3
ObjectType-Review-1
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2003.07.026