Molecularly imprinted polymers as analyte sequesters and selective surfaces for easy ambient sonic-spray ionization

The use of a molecularly imprinted polymer (MIP) as a selective surface for ambient mass spectrometry is demonstrated. The MIP is used to sequester target analytes from urine and easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to be able to efficiently desorb the analytes fr...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) Vol. 135; no. 4; p. 726
Main Authors: Figueiredo, Eduardo Costa, Sanvido, Gustavo Braga, Arruda, Marco Aurélio Zezzi, Eberlin, Marcos Nogueira
Format: Journal Article
Language:English
Published: England 01-01-2010
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of a molecularly imprinted polymer (MIP) as a selective surface for ambient mass spectrometry is demonstrated. The MIP is used to sequester target analytes from urine and easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to be able to efficiently desorb the analytes from the MIP surface and then transfer them in protonated forms to the gas phase for MS analysis. A set of five phenothiazines (chlorpromazine, perphenazine, triflupromazine, thioridazine and prochlorperazine) were chosen from a proof-of-principle class of drug samples. A chlorpromazine-imprinted methacrylic polymer was synthesized and used to prepare a MIP probe. The MIP-EASI-MS technique using acidified methanol as solvent has been shown to allow quantification of all five drugs in urine with LOQ of ca. 1 micromol L(-1).
ISSN:1364-5528
DOI:10.1039/b923289c