Multiframe resolution-enhancement methods for compressed video

Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters Vol. 9; no. 6; pp. 170 - 174
Main Authors: Gunturk, B.K., Altunbasak, Y., Mersereau, R.M.
Format: Journal Article
Language:English
Published: New York IEEE 01-06-2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these methods uses quantization-bound information to define convex sets and then employs a technique called "projections onto convex sets" (POCS) to estimate the original image. Another uses a discrete cosine transformation (DCT)-domain Bayesian estimator to enhance resolution in the presence of both quantization and additive noise. The latter approach is also capable of incorporating known source statistics and other reconstruction constraints to impose blocking artifact reduction and edge enhancement as part of the solution. We propose a spatial-domain Bayesian estimator that has advantages over both of these approaches.
AbstractList Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these methods uses quantization-bound information to define convex sets and then employs a technique called "projections onto convex sets" (POCS) to estimate the original image. Another uses a discrete cosine transformation (DCT)-domain Bayesian estimator to enhance resolution in the presence of both quantization and additive noise. The latter approach is also capable of incorporating known source statistics and other reconstruction constraints to impose blocking artifact reduction and edge enhancement as part of the solution. We propose a spatial-domain Bayesian estimator that has advantages over both of these approaches
Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these methods uses quantization-bound information to define convex sets and then employs a technique called "projections onto convex sets" (POCS) to estimate the original image. Another uses a discrete cosine transformation (DCT)-domain Bayesian estimator to enhance resolution in the presence of both quantization and additive noise. The latter approach is also capable of incorporating known source statistics and other reconstruction constraints to impose blocking artifact reduction and edge enhancement as part of the solution. In this article we propose a spatial-domain Bayesian estimator that has advantages over both of these approaches.
Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these methods uses quantization-bound information to define convex sets and then employs a technique called "projections onto convex sets" (POCS) to estimate the original image. Another uses a discrete cosine transformation (DCT)-domain Bayesian estimator to enhance resolution in the presence of both quantization and additive noise. The latter approach is also capable of incorporating known source statistics and other reconstruction constraints to impose blocking artifact reduction and edge enhancement as part of the solution. We propose a spatial-domain Bayesian estimator that has advantages over both of these approaches.
Author Gunturk, B.K.
Altunbasak, Y.
Mersereau, R.M.
Author_xml – sequence: 1
  givenname: B.K.
  surname: Gunturk
  fullname: Gunturk, B.K.
  organization: Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 2
  givenname: Y.
  surname: Altunbasak
  fullname: Altunbasak, Y.
  organization: Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 3
  givenname: R.M.
  surname: Mersereau
  fullname: Mersereau, R.M.
  organization: Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA, USA
BookMark eNqF0U1LxDAQBuAgCurq2YOX4kFPXWeapkkugix-wYqCeg4lmbKVtlmTVvDfG1kP4kFPM4dnhhnefbY9-IEYO0KYI4I-Xz49zguAYq4ABPAttodCqLzgFW6nHiTkWoPaZfsxvgKAQiX22MX91I1tE-qeskDRd9PY-iGnYVUPlnoaxqynceVdzBofMuv7dWKRXPbeOvIHbKepu0iH33XGXq6vnhe3-fLh5m5xucwtVzDm6EQFHEFVklu0wMHxpiwVls5JQtG4ikqS6VZb2UI5obkkRVhpSWA15zN2ttm7Dv5tojiavo2Wuq4eyE_RaJC6Qq5Ekqd_ykJxUeh0zb9QFlgIXiV48gu--ikM6V2jVMmFTOsSOt8gG3yMgRqzDm1fhw-DYL7yMSkf85WP2eSTJo43Ey0R_dAoML3_Cfz6i5E
CODEN ISPLEM
CitedBy_id crossref_primary_10_1016_j_forsciint_2016_04_027
crossref_primary_10_5589_cjrs3306fi
crossref_primary_10_1155_2010_404137
crossref_primary_10_1109_LSP_2024_3404138
crossref_primary_10_2200_S00036ED1V01Y200606IVM007
crossref_primary_10_1016_j_image_2007_06_004
crossref_primary_10_5589_m07_052
crossref_primary_10_1117_1_3592523
crossref_primary_10_1109_LSP_2020_3013518
crossref_primary_10_1007_s11767_006_0032_6
crossref_primary_10_1109_LSP_2004_831674
crossref_primary_10_1109_TIP_2003_819221
crossref_primary_10_1109_MSP_2003_1203208
crossref_primary_10_1117_1_2697902
crossref_primary_10_1109_MSP_2003_1203207
crossref_primary_10_1016_j_sigpro_2011_02_001
crossref_primary_10_1016_j_neucom_2016_10_096
crossref_primary_10_1007_s00138_014_0623_4
crossref_primary_10_1109_TIP_2009_2023703
crossref_primary_10_1007_s00034_016_0470_9
crossref_primary_10_1109_TIP_2010_2042115
crossref_primary_10_3390_math9222873
crossref_primary_10_1007_s00371_020_01957_8
crossref_primary_10_1007_s11042_015_3124_1
crossref_primary_10_1364_OE_26_027787
crossref_primary_10_1109_TIP_2019_2924173
Cites_doi 10.1109/83.892456
10.1109/ICIP.2001.958419
10.1109/76.856460
10.1109/83.869177
10.1109/ICASSP.2000.859204
10.1109/76.999200
10.1109/83.605404
10.1109/ICIP.2001.958984
10.1109/ICIP.2001.958415
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
DBID RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/LSP.2002.800503
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1558-2361
EndPage 174
ExternalDocumentID 2429931281
10_1109_LSP_2002_800503
1015159
Genre orig-research
GroupedDBID -~X
.DC
0R~
0ZS
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYJJ
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c380t-1d5603108673c1c030d3f44814dd7e15fd6e4e7236c6c28d5937e8e1697e0c933
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Sat Aug 17 04:03:48 EDT 2024
Fri Aug 16 23:31:07 EDT 2024
Fri Aug 16 05:41:48 EDT 2024
Thu Oct 10 20:39:32 EDT 2024
Fri Aug 23 00:17:25 EDT 2024
Wed Jun 26 19:20:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-1d5603108673c1c030d3f44814dd7e15fd6e4e7236c6c28d5937e8e1697e0c933
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 884357296
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_28352960
crossref_primary_10_1109_LSP_2002_800503
proquest_miscellaneous_27212536
ieee_primary_1015159
proquest_journals_884357296
proquest_miscellaneous_907961385
PublicationCentury 2000
PublicationDate 2002-06-01
PublicationDateYYYYMMDD 2002-06-01
PublicationDate_xml – month: 06
  year: 2002
  text: 2002-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2002
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
ref9
ref4
ref3
ref6
ref10
ref5
ref2
ref1
tekalp (ref11) 1995
References_xml – year: 1995
  ident: ref11
  publication-title: Digital Video Processing
  contributor:
    fullname: tekalp
– ident: ref2
  doi: 10.1109/83.892456
– ident: ref3
  doi: 10.1109/ICIP.2001.958419
– ident: ref8
  doi: 10.1109/76.856460
– ident: ref9
  doi: 10.1109/83.869177
– ident: ref4
  doi: 10.1109/ICASSP.2000.859204
– ident: ref1
  doi: 10.1109/76.999200
– ident: ref6
  doi: 10.1109/83.605404
– ident: ref10
  doi: 10.1109/83.605404
– ident: ref7
  doi: 10.1109/ICIP.2001.958984
– ident: ref5
  doi: 10.1109/ICIP.2001.958415
SSID ssj0008185
Score 1.8989605
Snippet Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 170
SubjectTerms Additive noise
Bayesian analysis
Bayesian methods
Compressed
Compressing
Estimators
Image coding
Image reconstruction
Image resolution
Projection
Quantization
Spatial resolution
Standards development
Statistics
Transformations
Video compression
Title Multiframe resolution-enhancement methods for compressed video
URI https://ieeexplore.ieee.org/document/1015159
https://www.proquest.com/docview/884357296
https://search.proquest.com/docview/27212536
https://search.proquest.com/docview/28352960
https://search.proquest.com/docview/907961385
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTmXg0YII5ZGBgYFAEiexvSAhaMWAEFJBYotS-yKmFJH2_3PnpFURD4klihQrss723Xf2-fsAzjCJbaETGyRRSA8jWcg9LQIUZSoNOc2pciK2E_n4qu5GTJNzsboLg4iu-Awv-dWd5duZWfBWGa1wF3470JFaNXe1Vl6XA09TXxgG5GFVS-MThfrqYfLkahEulWM_-RKBnKTKNz_sgst4-3_d2oGtFkT6N82o78IGVn3YXKMW7EOPUWRDwjyAa3fNtuQ6LJ_S63a2BVi98Zjz3_1GSbr2CcP6XGbuOMWtz7f0ZnvwMh49394HrXBCYIQK50FkUxaPpmxFChMZWsdWlJSHRYm1EqO0tBkmKGORmczEyqaEUVBhlGmJodFC7EO3mlV4AL4umZIPpaA0JSmKZJrJqUj1tCBgh3FhPDhfGjN_b_gxcpdXhDonu7PKZZw3dvdgwLZba-bM5sFwafy8XT91rhTBOML9mQenq6808fk0o6hwtqjzmHLXOBV_tWB0SRmaB_4vLXQoNeEZlR7-3Lch9Jz6i9t1OYLu_GOBx9Cp7eLEzb5PBurXWg
link.rule.ids 315,782,786,798,27933,27934,54768
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSDj1WxPnvw4MFq2zRNchFEd1FcRVgFb6WbTPHUFdf9_86kdVF8gJdSaChhksx8k0y-D-AQs9SVJnNRlsT0sIqF3GUZoaiksuQ0h9qL2A7U3ZO-7DJNzvH0Lgwi-uIzPOFXf5bvRnbCW2W0wn34nYV5mRFMbm5rTf0uh56mwjCOyMfqlsgnic1pf3DvqxFOtOc_-RKDvKjKN0_sw0tv5X8dW4XlFkaG5824r8EM1h1Y-kQu2IFFxpENDfM6nPmLthVXYoWUYLfzLcL6mUed_x42WtLjkFBsyIXmnlXchXxPb7QBj73uw8VV1EonRFbo-C1KnGT5aMpXlLCJpZXsREWZWJI5pzCRlcsxQ5WK3OY21U4SSkGNSW4UxtYIsQlz9ajGLQhNxaR8qAQlKllZZsNcDYU0w5KgHaalDeDow5jFS8OQUfjMIjYF2Z11LtOisXsA62y7T8282QLY-TB-0a6gcaE1ATlC_nkAB9OvNPX5PKOscTQZFyllr6kUf7VgfEk5WgDhLy1MrAwhGi23f-7bASxcPdz2i_713c0OLHotGL8Hswtzb68T3IPZsZvs-5n4DoS-2qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiframe+resolution-enhancement+methods+for+compressed+video&rft.jtitle=IEEE+signal+processing+letters&rft.au=Gunturk%2C+B.K.&rft.au=Altunbasak%2C+Y.&rft.au=Mersereau%2C+R.M.&rft.date=2002-06-01&rft.pub=IEEE&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=9&rft.issue=6&rft.spage=170&rft.epage=174&rft_id=info:doi/10.1109%2FLSP.2002.800503&rft.externalDocID=1015159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon