Multiframe resolution-enhancement methods for compressed video
Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these m...
Saved in:
Published in: | IEEE signal processing letters Vol. 9; no. 6; pp. 170 - 174 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-06-2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these methods uses quantization-bound information to define convex sets and then employs a technique called "projections onto convex sets" (POCS) to estimate the original image. Another uses a discrete cosine transformation (DCT)-domain Bayesian estimator to enhance resolution in the presence of both quantization and additive noise. The latter approach is also capable of incorporating known source statistics and other reconstruction constraints to impose blocking artifact reduction and edge enhancement as part of the solution. We propose a spatial-domain Bayesian estimator that has advantages over both of these approaches. |
---|---|
AbstractList | Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these methods uses quantization-bound information to define convex sets and then employs a technique called "projections onto convex sets" (POCS) to estimate the original image. Another uses a discrete cosine transformation (DCT)-domain Bayesian estimator to enhance resolution in the presence of both quantization and additive noise. The latter approach is also capable of incorporating known source statistics and other reconstruction constraints to impose blocking artifact reduction and edge enhancement as part of the solution. We propose a spatial-domain Bayesian estimator that has advantages over both of these approaches Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these methods uses quantization-bound information to define convex sets and then employs a technique called "projections onto convex sets" (POCS) to estimate the original image. Another uses a discrete cosine transformation (DCT)-domain Bayesian estimator to enhance resolution in the presence of both quantization and additive noise. The latter approach is also capable of incorporating known source statistics and other reconstruction constraints to impose blocking artifact reduction and edge enhancement as part of the solution. In this article we propose a spatial-domain Bayesian estimator that has advantages over both of these approaches. Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with compressed video, despite the fact that compression is a standard component of most image- and video-processing applications. One of these methods uses quantization-bound information to define convex sets and then employs a technique called "projections onto convex sets" (POCS) to estimate the original image. Another uses a discrete cosine transformation (DCT)-domain Bayesian estimator to enhance resolution in the presence of both quantization and additive noise. The latter approach is also capable of incorporating known source statistics and other reconstruction constraints to impose blocking artifact reduction and edge enhancement as part of the solution. We propose a spatial-domain Bayesian estimator that has advantages over both of these approaches. |
Author | Gunturk, B.K. Altunbasak, Y. Mersereau, R.M. |
Author_xml | – sequence: 1 givenname: B.K. surname: Gunturk fullname: Gunturk, B.K. organization: Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 2 givenname: Y. surname: Altunbasak fullname: Altunbasak, Y. organization: Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 3 givenname: R.M. surname: Mersereau fullname: Mersereau, R.M. organization: Center for Signal & Image Process., Georgia Inst. of Technol., Atlanta, GA, USA |
BookMark | eNqF0U1LxDAQBuAgCurq2YOX4kFPXWeapkkugix-wYqCeg4lmbKVtlmTVvDfG1kP4kFPM4dnhhnefbY9-IEYO0KYI4I-Xz49zguAYq4ABPAttodCqLzgFW6nHiTkWoPaZfsxvgKAQiX22MX91I1tE-qeskDRd9PY-iGnYVUPlnoaxqynceVdzBofMuv7dWKRXPbeOvIHbKepu0iH33XGXq6vnhe3-fLh5m5xucwtVzDm6EQFHEFVklu0wMHxpiwVls5JQtG4ikqS6VZb2UI5obkkRVhpSWA15zN2ttm7Dv5tojiavo2Wuq4eyE_RaJC6Qq5Ekqd_ykJxUeh0zb9QFlgIXiV48gu--ikM6V2jVMmFTOsSOt8gG3yMgRqzDm1fhw-DYL7yMSkf85WP2eSTJo43Ey0R_dAoML3_Cfz6i5E |
CODEN | ISPLEM |
CitedBy_id | crossref_primary_10_1016_j_forsciint_2016_04_027 crossref_primary_10_5589_cjrs3306fi crossref_primary_10_1155_2010_404137 crossref_primary_10_1109_LSP_2024_3404138 crossref_primary_10_2200_S00036ED1V01Y200606IVM007 crossref_primary_10_1016_j_image_2007_06_004 crossref_primary_10_5589_m07_052 crossref_primary_10_1117_1_3592523 crossref_primary_10_1109_LSP_2020_3013518 crossref_primary_10_1007_s11767_006_0032_6 crossref_primary_10_1109_LSP_2004_831674 crossref_primary_10_1109_TIP_2003_819221 crossref_primary_10_1109_MSP_2003_1203208 crossref_primary_10_1117_1_2697902 crossref_primary_10_1109_MSP_2003_1203207 crossref_primary_10_1016_j_sigpro_2011_02_001 crossref_primary_10_1016_j_neucom_2016_10_096 crossref_primary_10_1007_s00138_014_0623_4 crossref_primary_10_1109_TIP_2009_2023703 crossref_primary_10_1007_s00034_016_0470_9 crossref_primary_10_1109_TIP_2010_2042115 crossref_primary_10_3390_math9222873 crossref_primary_10_1007_s00371_020_01957_8 crossref_primary_10_1007_s11042_015_3124_1 crossref_primary_10_1364_OE_26_027787 crossref_primary_10_1109_TIP_2019_2924173 |
Cites_doi | 10.1109/83.892456 10.1109/ICIP.2001.958419 10.1109/76.856460 10.1109/83.869177 10.1109/ICASSP.2000.859204 10.1109/76.999200 10.1109/83.605404 10.1109/ICIP.2001.958984 10.1109/ICIP.2001.958415 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002 |
DBID | RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/LSP.2002.800503 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISSN | 1558-2361 |
EndPage | 174 |
ExternalDocumentID | 2429931281 10_1109_LSP_2002_800503 1015159 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 0ZS 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAYJJ ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 XFK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c380t-1d5603108673c1c030d3f44814dd7e15fd6e4e7236c6c28d5937e8e1697e0c933 |
IEDL.DBID | RIE |
ISSN | 1070-9908 |
IngestDate | Sat Aug 17 04:03:48 EDT 2024 Fri Aug 16 23:31:07 EDT 2024 Fri Aug 16 05:41:48 EDT 2024 Thu Oct 10 20:39:32 EDT 2024 Fri Aug 23 00:17:25 EDT 2024 Wed Jun 26 19:20:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-1d5603108673c1c030d3f44814dd7e15fd6e4e7236c6c28d5937e8e1697e0c933 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 884357296 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_28352960 crossref_primary_10_1109_LSP_2002_800503 proquest_miscellaneous_27212536 ieee_primary_1015159 proquest_journals_884357296 proquest_miscellaneous_907961385 |
PublicationCentury | 2000 |
PublicationDate | 2002-06-01 |
PublicationDateYYYYMMDD | 2002-06-01 |
PublicationDate_xml | – month: 06 year: 2002 text: 2002-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE signal processing letters |
PublicationTitleAbbrev | LSP |
PublicationYear | 2002 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref8 ref7 ref9 ref4 ref3 ref6 ref10 ref5 ref2 ref1 tekalp (ref11) 1995 |
References_xml | – year: 1995 ident: ref11 publication-title: Digital Video Processing contributor: fullname: tekalp – ident: ref2 doi: 10.1109/83.892456 – ident: ref3 doi: 10.1109/ICIP.2001.958419 – ident: ref8 doi: 10.1109/76.856460 – ident: ref9 doi: 10.1109/83.869177 – ident: ref4 doi: 10.1109/ICASSP.2000.859204 – ident: ref1 doi: 10.1109/76.999200 – ident: ref6 doi: 10.1109/83.605404 – ident: ref10 doi: 10.1109/83.605404 – ident: ref7 doi: 10.1109/ICIP.2001.958984 – ident: ref5 doi: 10.1109/ICIP.2001.958415 |
SSID | ssj0008185 |
Score | 1.8989605 |
Snippet | Multiframe resolution enhancement ("superresolution") methods are becoming widely studied, but only a few procedures have been developed to work with... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 170 |
SubjectTerms | Additive noise Bayesian analysis Bayesian methods Compressed Compressing Estimators Image coding Image reconstruction Image resolution Projection Quantization Spatial resolution Standards development Statistics Transformations Video compression |
Title | Multiframe resolution-enhancement methods for compressed video |
URI | https://ieeexplore.ieee.org/document/1015159 https://www.proquest.com/docview/884357296 https://search.proquest.com/docview/27212536 https://search.proquest.com/docview/28352960 https://search.proquest.com/docview/907961385 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RTmXg0YII5ZGBgYFAEiexvSAhaMWAEFJBYotS-yKmFJH2_3PnpFURD4klihQrss723Xf2-fsAzjCJbaETGyRRSA8jWcg9LQIUZSoNOc2pciK2E_n4qu5GTJNzsboLg4iu-Awv-dWd5duZWfBWGa1wF3470JFaNXe1Vl6XA09TXxgG5GFVS-MThfrqYfLkahEulWM_-RKBnKTKNz_sgst4-3_d2oGtFkT6N82o78IGVn3YXKMW7EOPUWRDwjyAa3fNtuQ6LJ_S63a2BVi98Zjz3_1GSbr2CcP6XGbuOMWtz7f0ZnvwMh49394HrXBCYIQK50FkUxaPpmxFChMZWsdWlJSHRYm1EqO0tBkmKGORmczEyqaEUVBhlGmJodFC7EO3mlV4AL4umZIPpaA0JSmKZJrJqUj1tCBgh3FhPDhfGjN_b_gxcpdXhDonu7PKZZw3dvdgwLZba-bM5sFwafy8XT91rhTBOML9mQenq6808fk0o6hwtqjzmHLXOBV_tWB0SRmaB_4vLXQoNeEZlR7-3Lch9Jz6i9t1OYLu_GOBx9Cp7eLEzb5PBurXWg |
link.rule.ids | 315,782,786,798,27933,27934,54768 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSDj1WxPnvw4MFq2zRNchFEd1FcRVgFb6WbTPHUFdf9_86kdVF8gJdSaChhksx8k0y-D-AQs9SVJnNRlsT0sIqF3GUZoaiksuQ0h9qL2A7U3ZO-7DJNzvH0Lgwi-uIzPOFXf5bvRnbCW2W0wn34nYV5mRFMbm5rTf0uh56mwjCOyMfqlsgnic1pf3DvqxFOtOc_-RKDvKjKN0_sw0tv5X8dW4XlFkaG5824r8EM1h1Y-kQu2IFFxpENDfM6nPmLthVXYoWUYLfzLcL6mUed_x42WtLjkFBsyIXmnlXchXxPb7QBj73uw8VV1EonRFbo-C1KnGT5aMpXlLCJpZXsREWZWJI5pzCRlcsxQ5WK3OY21U4SSkGNSW4UxtYIsQlz9ajGLQhNxaR8qAQlKllZZsNcDYU0w5KgHaalDeDow5jFS8OQUfjMIjYF2Z11LtOisXsA62y7T8282QLY-TB-0a6gcaE1ATlC_nkAB9OvNPX5PKOscTQZFyllr6kUf7VgfEk5WgDhLy1MrAwhGi23f-7bASxcPdz2i_713c0OLHotGL8Hswtzb68T3IPZsZvs-5n4DoS-2qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiframe+resolution-enhancement+methods+for+compressed+video&rft.jtitle=IEEE+signal+processing+letters&rft.au=Gunturk%2C+B.K.&rft.au=Altunbasak%2C+Y.&rft.au=Mersereau%2C+R.M.&rft.date=2002-06-01&rft.pub=IEEE&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=9&rft.issue=6&rft.spage=170&rft.epage=174&rft_id=info:doi/10.1109%2FLSP.2002.800503&rft.externalDocID=1015159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |