Automatic Assessment of Ultrasound Curvature Angle for Scoliosis Detection Using 3-D Ultrasound Volume Projection Imaging
Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to...
Saved in:
Published in: | Ultrasound in medicine & biology Vol. 50; no. 5; pp. 647 - 660 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Inc
01-05-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to be less ionising than traditional radiographic modalities. For posterior ultrasound scanning, alternate indices of the spinous process angle (SPA) and ultrasound curve angle (UCA) were developed and have proven comparable to those of the traditional Cobb angle. In SPA, the measurements are made using the spinous processes as an anatomical reference, leading to an underestimation of the traditionally used Cobb angles. Alternatively, in UCA, more lateral features of the spine are employed for measurement of the main thoracic and thoracolumbar angles; however, clear identification of bony features is required. The current practice of UCA angle measurement is manual. This research attempts to automate the process so that the errors related to human intervention can be avoided and the scalability of ultrasound scoliosis diagnosis can be improved. The key objective is to develop an automatic scoliosis diagnosis system using 3-D ultrasound imaging.
The novel diagnosis system is a three-step process: (i) finding the ultrasound spine image with the most visible lateral features using the convolutional RankNet algorithm; (ii) segmenting the bony features from the noisy ultrasound images using joint spine segmentation and noise removal; and (iii) calculating the UCA automatically using a newly developed centroid pairing and inscribed rectangle slope method.
The proposed method was evaluated on 109 patients with scoliosis of different severity. The results obtained had a good correlation with manually measured UCAs (R2=0.9784 for the main thoracic angle andR2=0.9671 for the thoracolumbar angle) and a clinically acceptable mean absolute difference of the main thoracic angle (2.82 ± 2.67°) and thoracolumbar angle (3.34 ± 2.83°).
The proposed method establishes a very promising approach for enabling the applications of economic 3-D ultrasound volume projection imaging for mass screening of scoliosis. |
---|---|
AbstractList | Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to be less ionising than traditional radiographic modalities. For posterior ultrasound scanning, alternate indices of the spinous process angle (SPA) and ultrasound curve angle (UCA) were developed and have proven comparable to those of the traditional Cobb angle. In SPA, the measurements are made using the spinous processes as an anatomical reference, leading to an underestimation of the traditionally used Cobb angles. Alternatively, in UCA, more lateral features of the spine are employed for measurement of the main thoracic and thoracolumbar angles; however, clear identification of bony features is required. The current practice of UCA angle measurement is manual. This research attempts to automate the process so that the errors related to human intervention can be avoided and the scalability of ultrasound scoliosis diagnosis can be improved. The key objective is to develop an automatic scoliosis diagnosis system using 3-D ultrasound imaging.
The novel diagnosis system is a three-step process: (i) finding the ultrasound spine image with the most visible lateral features using the convolutional RankNet algorithm; (ii) segmenting the bony features from the noisy ultrasound images using joint spine segmentation and noise removal; and (iii) calculating the UCA automatically using a newly developed centroid pairing and inscribed rectangle slope method.
The proposed method was evaluated on 109 patients with scoliosis of different severity. The results obtained had a good correlation with manually measured UCAs (R
=0.9784 for the main thoracic angle andR
=0.9671 for the thoracolumbar angle) and a clinically acceptable mean absolute difference of the main thoracic angle (2.82 ± 2.67°) and thoracolumbar angle (3.34 ± 2.83°).
The proposed method establishes a very promising approach for enabling the applications of economic 3-D ultrasound volume projection imaging for mass screening of scoliosis. OBJECTIVEScoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to be less ionising than traditional radiographic modalities. For posterior ultrasound scanning, alternate indices of the spinous process angle (SPA) and ultrasound curve angle (UCA) were developed and have proven comparable to those of the traditional Cobb angle. In SPA, the measurements are made using the spinous processes as an anatomical reference, leading to an underestimation of the traditionally used Cobb angles. Alternatively, in UCA, more lateral features of the spine are employed for measurement of the main thoracic and thoracolumbar angles; however, clear identification of bony features is required. The current practice of UCA angle measurement is manual. This research attempts to automate the process so that the errors related to human intervention can be avoided and the scalability of ultrasound scoliosis diagnosis can be improved. The key objective is to develop an automatic scoliosis diagnosis system using 3-D ultrasound imaging.METHODSThe novel diagnosis system is a three-step process: (i) finding the ultrasound spine image with the most visible lateral features using the convolutional RankNet algorithm; (ii) segmenting the bony features from the noisy ultrasound images using joint spine segmentation and noise removal; and (iii) calculating the UCA automatically using a newly developed centroid pairing and inscribed rectangle slope method.RESULTSThe proposed method was evaluated on 109 patients with scoliosis of different severity. The results obtained had a good correlation with manually measured UCAs (R2=0.9784 for the main thoracic angle andR2=0.9671 for the thoracolumbar angle) and a clinically acceptable mean absolute difference of the main thoracic angle (2.82 ± 2.67°) and thoracolumbar angle (3.34 ± 2.83°).CONCLUSIONThe proposed method establishes a very promising approach for enabling the applications of economic 3-D ultrasound volume projection imaging for mass screening of scoliosis. Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to be less ionising than traditional radiographic modalities. For posterior ultrasound scanning, alternate indices of the spinous process angle (SPA) and ultrasound curve angle (UCA) were developed and have proven comparable to those of the traditional Cobb angle. In SPA, the measurements are made using the spinous processes as an anatomical reference, leading to an underestimation of the traditionally used Cobb angles. Alternatively, in UCA, more lateral features of the spine are employed for measurement of the main thoracic and thoracolumbar angles; however, clear identification of bony features is required. The current practice of UCA angle measurement is manual. This research attempts to automate the process so that the errors related to human intervention can be avoided and the scalability of ultrasound scoliosis diagnosis can be improved. The key objective is to develop an automatic scoliosis diagnosis system using 3-D ultrasound imaging. The novel diagnosis system is a three-step process: (i) finding the ultrasound spine image with the most visible lateral features using the convolutional RankNet algorithm; (ii) segmenting the bony features from the noisy ultrasound images using joint spine segmentation and noise removal; and (iii) calculating the UCA automatically using a newly developed centroid pairing and inscribed rectangle slope method. The proposed method was evaluated on 109 patients with scoliosis of different severity. The results obtained had a good correlation with manually measured UCAs (R2=0.9784 for the main thoracic angle andR2=0.9671 for the thoracolumbar angle) and a clinically acceptable mean absolute difference of the main thoracic angle (2.82 ± 2.67°) and thoracolumbar angle (3.34 ± 2.83°). The proposed method establishes a very promising approach for enabling the applications of economic 3-D ultrasound volume projection imaging for mass screening of scoliosis. |
Author | Ling, Sai Ho Huang, Zixun Zheng, Yongping Lyu, Juan Leung, Frank H.F. Lee, Timothy McAviney, Jeb Yang, De Banerjee, Sunetra |
Author_xml | – sequence: 1 givenname: Sunetra surname: Banerjee fullname: Banerjee, Sunetra organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia – sequence: 2 givenname: Zixun surname: Huang fullname: Huang, Zixun organization: Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong, China – sequence: 3 givenname: Juan surname: Lyu fullname: Lyu, Juan organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 4 givenname: Frank H.F. surname: Leung fullname: Leung, Frank H.F. organization: Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong, China – sequence: 5 givenname: Timothy surname: Lee fullname: Lee, Timothy organization: Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China – sequence: 6 givenname: De surname: Yang fullname: Yang, De organization: Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China – sequence: 7 givenname: Yongping surname: Zheng fullname: Zheng, Yongping organization: Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China – sequence: 8 givenname: Jeb surname: McAviney fullname: McAviney, Jeb organization: ScoliCare Clinic Sydney (South), Kogarah, NSW 2217, Australia – sequence: 9 givenname: Sai Ho surname: Ling fullname: Ling, Sai Ho email: steve.ling@uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38355361$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkE1vEzEQhi1URNPCX0AWJy672OPsF7co4aNSJZAgiJvltWcjR7t28Uel_ntcElCPnOYwzzuv5rkiF847JOQNZzVnvH13rPOcgooLmtH6GhiImkPNePOMrHjfDRUM_OcFWTHBeNW0MFySqxiPjLGuFd0Lcil60TSi5SvysMnJLypZTTcxYixHXaJ-ovs_FT47Q7c53KuUA9KNO8xIJx_oN-1n66ONdIcJdbLe0X207kBFtXsa_uHnvCD9GvzxjN0s6lDAl-T5pOaIr87zmuw_fvi-_Vzdfvl0s93cVlr0LFVci2aaRg0aNWeibTvshW4m6IwyuBbIoBWjGYwYFe_XAIzrrjegewBk4yCuydvT3bvgf2WMSS42apxn5dDnKGGADvi6yCno-xOqg48x4CTvgl1UeJCcyUf18iifqpeP6iUHWdSX8OtzTx7L-l_0r-sC7E4Alm_vLQYZtUWn0dhQ1Ejj7f_0_AaDI6A2 |
CitedBy_id | crossref_primary_10_3390_jcm13082163 |
Cites_doi | 10.1016/j.bbe.2022.02.011 10.1109/SMC42975.2020.9283335 10.1016/j.neucom.2023.126790 10.1097/00007632-198610000-00003 10.1186/s13013-016-0074-y 10.1109/TMI.2015.2390233 10.1007/s00586-015-3855-8 10.1002/rcs.2468 10.1007/s43390-021-00421-4 10.1016/j.compmedimag.2020.101847 10.1016/j.spinee.2015.01.019 10.3390/app112110180 10.1038/nrdp.2015.30 10.1007/s00586-019-06280-y 10.1016/j.spinee.2017.10.012 10.1007/s10439-022-02925-0 10.1016/j.neucom.2022.05.033 10.1007/978-3-030-00889-5_1 10.1093/ptj/71.12.897 10.1109/TMI.2022.3143953 10.1016/j.compmedimag.2021.101896 10.1097/BRS.0000000000001244 10.1109/TIP.2003.819861 10.1007/s11832-012-0457-4 10.1109/TIM.2021.3126366 10.2106/00004623-200303000-00001 10.3389/fped.2020.00548 10.1097/BSD.0b013e318057529b 10.1038/s41592-020-01008-z 10.1109/TBME.2020.2980540 10.1016/S0140-6736(86)90837-8 10.1007/s00586-020-06652-9 10.1109/TMI.2017.2674681 |
ContentType | Journal Article |
Copyright | 2023 World Federation for Ultrasound in Medicine & Biology Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 World Federation for Ultrasound in Medicine & Biology – notice: Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.ultrasmedbio.2023.12.015 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Physics |
EISSN | 1879-291X |
EndPage | 660 |
ExternalDocumentID | 10_1016_j_ultrasmedbio_2023_12_015 38355361 S030156292300409X |
Genre | Journal Article |
GroupedDBID | --- --K -DZ .1- .55 .FO .GJ 0R~ 123 1B1 1P~ 1RT 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 AACTN AAEDT AAEDW AAIAV AALRI AAQFI AAQXK AAWTL AAXUO ABJNI ABLJU ABMAC ABNEU ABOCM ABTAH ACGFS ACIUM ADBBV ADMUD ADPAM AENEX AEVXI AFCTW AFRHN AFTJW AGZHU AHHHB AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS ALXNB AMRAJ AQVPL ASPBG AVWKF AZFZN BELOY C5W CS3 DU5 EBS EFJIC EJD F5P FDB FEDTE FGOYB FIRID G-2 G8K GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B M29 M41 MO0 NQ- O9- OI~ OU0 P2P R2- RIG ROL RPZ SAE SDG SEL SES SEW SSZ WUQ X7M XH2 Z5R ZA5 ZGI ZXP ZY4 ~S- ABDPE AFJKZ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c380t-1c35ffbc2cec103667e83c5f27dade43e0263bd9d3ba1842201c78d2c822e0b93 |
ISSN | 0301-5629 |
IngestDate | Sat Oct 26 05:50:00 EDT 2024 Fri Nov 22 02:15:21 EST 2024 Sat Nov 02 12:20:07 EDT 2024 Sat Apr 06 16:24:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Ultrasound curvature angle Bony feature Segmentation Scoliosis Cobb angle |
Language | English |
License | Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c380t-1c35ffbc2cec103667e83c5f27dade43e0263bd9d3ba1842201c78d2c822e0b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38355361 |
PQID | 2927214000 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2927214000 crossref_primary_10_1016_j_ultrasmedbio_2023_12_015 pubmed_primary_38355361 elsevier_sciencedirect_doi_10_1016_j_ultrasmedbio_2023_12_015 |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-May 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Ultrasound in medicine & biology |
PublicationTitleAlternate | Ultrasound Med Biol |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cassella, Hall (bib0003) 1991; 71 Bland, Altman (bib0025) 1986; 327 Young, Hill, Zheng, Lou (bib0031) 2015; 24 Banerjee, Lyu, Huang, Leung, Lee, Yang (bib0049) 2022; 42 Huang, Zhao, Leung, Banerjee, Lee, Yang (bib0019) 2022; 41 Ronneberger, Fischer, Brox (bib0021) 2015 Huang Z, Wang LW, Leung FHF, Banerjee S, Yang D, Lee T, et al. Bone feature segmentation in ultrasound spine image with robustness to speckle and regular occlusion noise. arXiv preprint arXiv:2010.03740, 2020. Zhou, Siddiquee, Tajbakhsh, Liang (bib0028) 2018; 11045 Yang, Lee, Lai, Lam, Chu, Castelein (bib0026) 2022; 10 Yang, Jiang, Chen, Fu, Li, Huang (bib0042) 2021; 70 Schulte, Hierholzer, Boerke, Lerner, Liljenqvist, Bullmann (bib0009) 2008; 21 Cheng, Castelein, Chu, Danielsson, Dobbs, Grivas (bib0005) 2015; 1 Wu, Liu, Wong (bib0040) 2020; 29 Lee, Lai, Cheng, Castelein, Lam, Zheng (bib0017) 2021; 29 Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0023) 2017 Fong, Cheung, Wong, Wan, Lee, Lam (bib0004) 2015; 15 Zhou, Jiang, Lai, Zheng (bib0034) 2017; 36 Cobb (bib0011) 1948; 5 Zhou, Zheng (bib0014) 2015 de Reuver, Brink, Lee, Zheng, Beek (bib0037) 2021; 30 Huang, Zhou, Li (bib0044) 2023; 559 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib0027) 2021; 18 Wang, Bovik, Sheikh, Simoncelli (bib0022) 2004; 13 Konieczny, Senyurt, Krauspe (bib0007) 2013; 7 Cheung, Zhou, Law, Mak, Lai, Zheng (bib0015) 2015; 34 Banerjee, Ling, Lyu, Su, Zheng (bib0038) 2020 Zhao, Huang, Liu, Leung, Ling, De (bib0020) 2021 Dawson, Trapp (bib0024) 2004 Horng, Kuok, Fu, Lin, Sun (bib0012) 2019; 2019 Ungi, Greer, Sunderland, Wu, Baum, Schlenger (bib0039) 2020; 67 Campbell, Smith, Mayes, Mangos, Willey-Courand, Kose (bib0008) 2003; 85 Wong, Reformat, Parent, Lou (bib0033) 2022; 50 Zeng, Zheng, Le, Ta (bib0035) 2019 Banerjee, Lyu, Huang, Leung, Lee, Yang (bib0048) 2021; 11 Zheng, Lee, Lai, Yip, Zhou, Jiang (bib0013) 2016; 11 Lyu, Bi, Banerjee, Huang, Leung, Lee, Yang (bib0047) 2021; 89 Lyu, Ling, Banerjee, Zheng, Lai, Yang (bib0018) 2021; 89 Bunnell (bib0001) 1986; 11 Yan, Lu, Qiu, Nie, Huang (bib0010) 2020; 8 Huang, Zhao, Leung, Lam, Ling, Lyu (bib0029) 2021 Horne, Flannery, Usman (bib0006) 2014; 89 Zheng, Young, Hill, Le, Hedden, Moreau (bib0030) 2016; 41 Brink, Wijdicks, Tromp, Schlősser, Kruyt, Beek (bib0016) 2018; 18 Huang, Luo, Yang, Li, Deng, Liu (bib0041) 2022; 500 Zeng HY, Ge SH, Gao YC, Zhou DS, Zhou K, He XM, et al. Automatic segmentation of vertebral features on ultrasound spine images using Stacked Hourglass Network. arXiv preprint arXiv:2105.03847, 2021. Victorova, Lau, Lee, Navarro-Alarcon, Zheng (bib0043) 2023; 19 Reamy, Slakey (bib0002) 2001; 64 Liu, Qian, Jing, Zhou, He, Lou (bib0032) 2021 Huang, Wang, Luo, Li (bib0045) 2023; 43 Isensee (10.1016/j.ultrasmedbio.2023.12.015_bib0027) 2021; 18 Lyu (10.1016/j.ultrasmedbio.2023.12.015_bib0047) 2021; 89 Banerjee (10.1016/j.ultrasmedbio.2023.12.015_bib0049) 2022; 42 Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0029) 2021 Dawson (10.1016/j.ultrasmedbio.2023.12.015_bib0024) 2004 10.1016/j.ultrasmedbio.2023.12.015_bib0036 Ungi (10.1016/j.ultrasmedbio.2023.12.015_bib0039) 2020; 67 Fong (10.1016/j.ultrasmedbio.2023.12.015_bib0004) 2015; 15 Yang (10.1016/j.ultrasmedbio.2023.12.015_bib0026) 2022; 10 Reamy (10.1016/j.ultrasmedbio.2023.12.015_bib0002) 2001; 64 Campbell (10.1016/j.ultrasmedbio.2023.12.015_bib0008) 2003; 85 Cheung (10.1016/j.ultrasmedbio.2023.12.015_bib0015) 2015; 34 Cobb (10.1016/j.ultrasmedbio.2023.12.015_bib0011) 1948; 5 Cheng (10.1016/j.ultrasmedbio.2023.12.015_bib0005) 2015; 1 Young (10.1016/j.ultrasmedbio.2023.12.015_bib0031) 2015; 24 de Reuver (10.1016/j.ultrasmedbio.2023.12.015_bib0037) 2021; 30 Bunnell (10.1016/j.ultrasmedbio.2023.12.015_bib0001) 1986; 11 Brink (10.1016/j.ultrasmedbio.2023.12.015_bib0016) 2018; 18 Wang (10.1016/j.ultrasmedbio.2023.12.015_bib0022) 2004; 13 Konieczny (10.1016/j.ultrasmedbio.2023.12.015_bib0007) 2013; 7 Yan (10.1016/j.ultrasmedbio.2023.12.015_bib0010) 2020; 8 Wu (10.1016/j.ultrasmedbio.2023.12.015_bib0040) 2020; 29 Victorova (10.1016/j.ultrasmedbio.2023.12.015_bib0043) 2023; 19 Bland (10.1016/j.ultrasmedbio.2023.12.015_bib0025) 1986; 327 Lee (10.1016/j.ultrasmedbio.2023.12.015_bib0017) 2021; 29 Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0041) 2022; 500 Lin (10.1016/j.ultrasmedbio.2023.12.015_bib0023) 2017 Zhou (10.1016/j.ultrasmedbio.2023.12.015_bib0034) 2017; 36 Zeng (10.1016/j.ultrasmedbio.2023.12.015_bib0035) 2019 Zheng (10.1016/j.ultrasmedbio.2023.12.015_bib0030) 2016; 41 Banerjee (10.1016/j.ultrasmedbio.2023.12.015_bib0048) 2021; 11 Zhou (10.1016/j.ultrasmedbio.2023.12.015_bib0028) 2018; 11045 Horne (10.1016/j.ultrasmedbio.2023.12.015_bib0006) 2014; 89 Lyu (10.1016/j.ultrasmedbio.2023.12.015_bib0018) 2021; 89 Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0019) 2022; 41 Cassella (10.1016/j.ultrasmedbio.2023.12.015_bib0003) 1991; 71 Zheng (10.1016/j.ultrasmedbio.2023.12.015_bib0013) 2016; 11 Yang (10.1016/j.ultrasmedbio.2023.12.015_bib0042) 2021; 70 Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0045) 2023; 43 Ronneberger (10.1016/j.ultrasmedbio.2023.12.015_bib0021) 2015 Zhou (10.1016/j.ultrasmedbio.2023.12.015_bib0014) 2015 Horng (10.1016/j.ultrasmedbio.2023.12.015_bib0012) 2019; 2019 Wong (10.1016/j.ultrasmedbio.2023.12.015_bib0033) 2022; 50 Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0044) 2023; 559 10.1016/j.ultrasmedbio.2023.12.015_bib0046 Schulte (10.1016/j.ultrasmedbio.2023.12.015_bib0009) 2008; 21 Zhao (10.1016/j.ultrasmedbio.2023.12.015_bib0020) 2021 Banerjee (10.1016/j.ultrasmedbio.2023.12.015_bib0038) 2020 Liu (10.1016/j.ultrasmedbio.2023.12.015_bib0032) 2021 |
References_xml | – volume: 71 start-page: 897 year: 1991 end-page: 909 ident: bib0003 article-title: Current treatment approaches in the nonoperative and operative management of adolescent idiopathic scoliosis publication-title: Phys Ther contributor: fullname: Hall – volume: 2019 year: 2019 ident: bib0012 article-title: Cobb Angle measurement of spine from X-ray images using convolutional neural network publication-title: Computat Math Methods Med contributor: fullname: Sun – start-page: 1477 year: 2019 end-page: 1480 ident: bib0035 article-title: Measuring spinous process angle on ultrasound spine images using the GVF segmentation method publication-title: Proc IEEE Int Ultrason Symp contributor: fullname: Ta – volume: 5 start-page: 261 year: 1948 end-page: 275 ident: bib0011 article-title: Outline for the study of scoliosis publication-title: Instruct Course Lect contributor: fullname: Cobb – volume: 29 start-page: 717 year: 2020 end-page: 725 ident: bib0040 article-title: Reliability and validity of lateral curvature assessments using clinical ultrasound for the patients with scoliosis: a systematic review publication-title: Eur Spine J contributor: fullname: Wong – volume: 11 start-page: 10180 year: 2021 ident: bib0048 article-title: Light-convolution dense selection U-Net (LDS U-Net) for ultrasound lateral bony feature segmentation publication-title: Appl Sci contributor: fullname: Yang – volume: 11 start-page: 773 year: 1986 end-page: 776 ident: bib0001 article-title: The natural history of idiopathic scoliosis before skeletal maturity publication-title: Spine contributor: fullname: Bunnell – volume: 15 start-page: 825 year: 2015 end-page: 833 ident: bib0004 article-title: A population-based cohort study of 394,401 children followed for 10 years exhibits sustained effectiveness of scoliosis screening publication-title: Spine J contributor: fullname: Lam – start-page: 2117 year: 2017 end-page: 2125 ident: bib0023 article-title: Feature pyramid networks for object detection publication-title: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA contributor: fullname: Belongie – start-page: 234 year: 2015 end-page: 241 ident: bib0021 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 contributor: fullname: Brox – volume: 8 start-page: 548 year: 2020 ident: bib0010 article-title: Association between incorrect posture and adolescent idiopathic scoliosis among Chinese adolescents: findings from a large-scale population-based study publication-title: Front Pediatr contributor: fullname: Huang – volume: 10 start-page: 351 year: 2022 end-page: 359 ident: bib0026 article-title: Semi-automatic ultrasound curve angle measurement for adolescent idiopathic scoliosis publication-title: Spine Deform contributor: fullname: Castelein – volume: 64 start-page: 111 year: 2001 ident: bib0002 article-title: Adolescent idiopathic scoliosis: review and current concepts publication-title: Am Fam Phys contributor: fullname: Slakey – volume: 24 start-page: 1427 year: 2015 end-page: 1433 ident: bib0031 article-title: Reliability and accuracy of ultrasound measurements with and without the aid of previous radiographs in adolescent idiopathic scoliosis (AIS) publication-title: Eur Spine J contributor: fullname: Lou – volume: 29 start-page: 51 year: 2021 end-page: 59 ident: bib0017 article-title: 3D ultrasound imaging provides reliable angle measurement with validity comparable to X-ray in patients with adolescent idiopathic scoliosis publication-title: J Orthop Transl contributor: fullname: Zheng – volume: 11045 start-page: 3 year: 2018 end-page: 11 ident: bib0028 article-title: Unet++: a nested U-net architecture for medical image segmentation publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support contributor: fullname: Liang – volume: 67 start-page: 3234 year: 2020 end-page: 3241 ident: bib0039 article-title: Automatic spine ultrasound segmentation for scoliosis visualization and measurement publication-title: IEEE Trans Biomed Eng contributor: fullname: Schlenger – volume: 559 year: 2023 ident: bib0044 article-title: Review of robot-assisted medical ultrasound imaging systems: technology and clinical applications publication-title: Neurocomputing contributor: fullname: Li – volume: 30 start-page: 628 year: 2021 end-page: 633 ident: bib0037 article-title: Castelein RM. Cross-validation of ultrasound imaging in adolescent idiopathic scoliosis publication-title: Eur Spine J contributor: fullname: Beek – volume: 85 start-page: 399 year: 2003 end-page: 408 ident: bib0008 article-title: The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis publication-title: J Bone Joint Surg contributor: fullname: Kose – volume: 7 start-page: 3 year: 2013 end-page: 9 ident: bib0007 article-title: Epidemiology of adolescent idiopathic scoliosis publication-title: J Child Orthop contributor: fullname: Krauspe – volume: 50 start-page: 401 year: 2022 end-page: 412 ident: bib0033 article-title: Convolutional neural network to segment laminae on 3D ultrasound spinal images to assist Cobb angle measurement publication-title: Ann Biomed Eng contributor: fullname: Lou – volume: 41 start-page: 1610 year: 2022 end-page: 1624 ident: bib0019 article-title: Joint spine segmentation and noise removal from ultrasound volume projection images with selective feature sharing publication-title: IEEE Trans Med Imaging contributor: fullname: Yang – volume: 34 start-page: 1760 year: 2015 end-page: 1768 ident: bib0015 article-title: Ultrasound volume projection imaging for assessment of scoliosis publication-title: IEEE Trans Med Imaging contributor: fullname: Zheng – volume: 89 year: 2021 ident: bib0018 article-title: Ultrasound volume projection image quality selection by ranking from convolutional RankNet publication-title: Comput Med Imaging Graph contributor: fullname: Yang – volume: 327 start-page: 307 year: 1986 end-page: 310 ident: bib0025 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet contributor: fullname: Altman – volume: 70 start-page: 1 year: 2021 end-page: 13 ident: bib0042 article-title: Automatic 3-D imaging and measurement of human spines with a robotic ultrasound system publication-title: IEEE Trans Instrum Measure contributor: fullname: Huang – start-page: 1 year: 2015 end-page: 4 ident: bib0014 article-title: Assessment of scoliosis using 3-D ultrasound volume projection imaging with automatic spine curvature detection publication-title: Proc IEEE Int Ultrason Symp contributor: fullname: Zheng – volume: 500 start-page: 750 year: 2022 end-page: 760 ident: bib0041 article-title: Anatomical prior based vertebra modelling for reappearance of human spines publication-title: Neurocomputing contributor: fullname: Liu – start-page: 1195 year: 2021 end-page: 1199 ident: bib0020 article-title: Structure-enhanced attentive learning for spine segmentation from ultrasound volume projection images publication-title: Proceedings, 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021) contributor: fullname: De – volume: 43 start-page: 373 year: 2023 end-page: 381 ident: bib0045 article-title: On mimicking human's manipulation for robot-assisted spine ultrasound imaging publication-title: Robot Intell Autom contributor: fullname: Li – start-page: 1 year: 2021 end-page: 4 ident: bib0032 article-title: Automatic spinal curvature measurement on ultrasound spine images using Faster R-CNN publication-title: Proc IEEE Int Ultrason Symp contributor: fullname: Lou – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0022 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process contributor: fullname: Simoncelli – start-page: 2039 year: 2020 ident: bib0038 article-title: Automatic segmentation of 3D ultrasound spine curvature using convolutional neural network publication-title: Proceedings, 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) contributor: fullname: Zheng – start-page: 190 year: 2004 end-page: 220 ident: bib0024 article-title: Research questions about relationships among variables publication-title: Basic & Clinical Biostatistics contributor: fullname: Trapp – volume: 42 start-page: 341 year: 2022 end-page: 361 ident: bib0049 article-title: Ultrasound spine image segmentation using multi-scale feature fusion skip-inception U-Net (SIU-Net) publication-title: Biocybernet Biomed Eng contributor: fullname: Yang – volume: 89 year: 2021 ident: bib0047 article-title: Dual-task ultrasound spine transverse vertebrae segmentation network with contour regularization publication-title: Comput Med Imaging Graph contributor: fullname: Yang – volume: 89 start-page: 193 year: 2014 end-page: 198 ident: bib0006 article-title: Adolescent idiopathic scoliosis: diagnosis and management publication-title: Am Fam Phys contributor: fullname: Usman – volume: 36 start-page: 1250 year: 2017 end-page: 1262 ident: bib0034 article-title: Automatic measurement of spine curvature on 3-D ultrasound volume projection image with phase features publication-title: IEEE Trans Med Imaging contributor: fullname: Zheng – volume: 19 start-page: e2468 year: 2023 ident: bib0043 article-title: Comparison of ultrasound scanning for scoliosis assessment: robotic versus manual publication-title: Int J Med Robotics Comput Assist Surg contributor: fullname: Zheng – volume: 11 start-page: 13 year: 2016 ident: bib0013 article-title: A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging publication-title: Scoliosis Spinal Disord contributor: fullname: Jiang – volume: 21 start-page: 23 year: 2008 end-page: 28 ident: bib0009 article-title: Raster stereography versus radiography in the long-term follow-up of idiopathic scoliosis publication-title: J Spinal Disord Tech contributor: fullname: Bullmann – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: bib0027 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat Methods contributor: fullname: Maier-Hein – volume: 41 start-page: 404 year: 2016 end-page: 411 ident: bib0030 article-title: Improvement on the accuracy and reliability of ultrasound coronal curvature measurement on adolescent idiopathic scoliosis with the aid of previous radiographs publication-title: Spine (Phila Pa 1976) contributor: fullname: Moreau – volume: 18 start-page: 979 year: 2018 end-page: 985 ident: bib0016 article-title: A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis publication-title: Spine J contributor: fullname: Beek – start-page: 770 year: 2021 end-page: 774 ident: bib0029 article-title: DA-GAN: learning structured noise removal in ultrasound volume projection imaging for enhanced spine segmentation publication-title: Proceedings, 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) contributor: fullname: Lyu – volume: 1 start-page: 15030 year: 2015 ident: bib0005 article-title: Adolescent idiopathic scoliosis publication-title: Nat Rev Dis Primers contributor: fullname: Grivas – volume: 5 start-page: 261 year: 1948 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0011 article-title: Outline for the study of scoliosis publication-title: Instruct Course Lect contributor: fullname: Cobb – volume: 42 start-page: 341 year: 2022 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0049 article-title: Ultrasound spine image segmentation using multi-scale feature fusion skip-inception U-Net (SIU-Net) publication-title: Biocybernet Biomed Eng doi: 10.1016/j.bbe.2022.02.011 contributor: fullname: Banerjee – ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0046 doi: 10.1109/SMC42975.2020.9283335 – start-page: 1 year: 2015 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0014 article-title: Assessment of scoliosis using 3-D ultrasound volume projection imaging with automatic spine curvature detection publication-title: Proc IEEE Int Ultrason Symp contributor: fullname: Zhou – start-page: 234 year: 2015 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0021 article-title: U-net: convolutional networks for biomedical image segmentation contributor: fullname: Ronneberger – volume: 559 year: 2023 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0044 article-title: Review of robot-assisted medical ultrasound imaging systems: technology and clinical applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126790 contributor: fullname: Huang – volume: 11 start-page: 773 year: 1986 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0001 article-title: The natural history of idiopathic scoliosis before skeletal maturity publication-title: Spine doi: 10.1097/00007632-198610000-00003 contributor: fullname: Bunnell – volume: 64 start-page: 111 year: 2001 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0002 article-title: Adolescent idiopathic scoliosis: review and current concepts publication-title: Am Fam Phys contributor: fullname: Reamy – volume: 11 start-page: 13 year: 2016 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0013 article-title: A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging publication-title: Scoliosis Spinal Disord doi: 10.1186/s13013-016-0074-y contributor: fullname: Zheng – volume: 34 start-page: 1760 year: 2015 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0015 article-title: Ultrasound volume projection imaging for assessment of scoliosis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2390233 contributor: fullname: Cheung – volume: 24 start-page: 1427 year: 2015 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0031 article-title: Reliability and accuracy of ultrasound measurements with and without the aid of previous radiographs in adolescent idiopathic scoliosis (AIS) publication-title: Eur Spine J doi: 10.1007/s00586-015-3855-8 contributor: fullname: Young – volume: 19 start-page: e2468 year: 2023 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0043 article-title: Comparison of ultrasound scanning for scoliosis assessment: robotic versus manual publication-title: Int J Med Robotics Comput Assist Surg doi: 10.1002/rcs.2468 contributor: fullname: Victorova – start-page: 1195 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0020 article-title: Structure-enhanced attentive learning for spine segmentation from ultrasound volume projection images contributor: fullname: Zhao – volume: 10 start-page: 351 year: 2022 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0026 article-title: Semi-automatic ultrasound curve angle measurement for adolescent idiopathic scoliosis publication-title: Spine Deform doi: 10.1007/s43390-021-00421-4 contributor: fullname: Yang – start-page: 190 year: 2004 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0024 article-title: Research questions about relationships among variables contributor: fullname: Dawson – volume: 89 start-page: 193 year: 2014 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0006 article-title: Adolescent idiopathic scoliosis: diagnosis and management publication-title: Am Fam Phys contributor: fullname: Horne – volume: 89 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0018 article-title: Ultrasound volume projection image quality selection by ranking from convolutional RankNet publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2020.101847 contributor: fullname: Lyu – start-page: 2039 year: 2020 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0038 article-title: Automatic segmentation of 3D ultrasound spine curvature using convolutional neural network contributor: fullname: Banerjee – volume: 15 start-page: 825 year: 2015 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0004 article-title: A population-based cohort study of 394,401 children followed for 10 years exhibits sustained effectiveness of scoliosis screening publication-title: Spine J doi: 10.1016/j.spinee.2015.01.019 contributor: fullname: Fong – volume: 11 start-page: 10180 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0048 article-title: Light-convolution dense selection U-Net (LDS U-Net) for ultrasound lateral bony feature segmentation publication-title: Appl Sci doi: 10.3390/app112110180 contributor: fullname: Banerjee – volume: 1 start-page: 15030 year: 2015 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0005 article-title: Adolescent idiopathic scoliosis publication-title: Nat Rev Dis Primers doi: 10.1038/nrdp.2015.30 contributor: fullname: Cheng – volume: 29 start-page: 717 year: 2020 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0040 article-title: Reliability and validity of lateral curvature assessments using clinical ultrasound for the patients with scoliosis: a systematic review publication-title: Eur Spine J doi: 10.1007/s00586-019-06280-y contributor: fullname: Wu – volume: 18 start-page: 979 year: 2018 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0016 article-title: A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis publication-title: Spine J doi: 10.1016/j.spinee.2017.10.012 contributor: fullname: Brink – volume: 50 start-page: 401 year: 2022 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0033 article-title: Convolutional neural network to segment laminae on 3D ultrasound spinal images to assist Cobb angle measurement publication-title: Ann Biomed Eng doi: 10.1007/s10439-022-02925-0 contributor: fullname: Wong – volume: 500 start-page: 750 year: 2022 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0041 article-title: Anatomical prior based vertebra modelling for reappearance of human spines publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.033 contributor: fullname: Huang – start-page: 1477 year: 2019 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0035 article-title: Measuring spinous process angle on ultrasound spine images using the GVF segmentation method publication-title: Proc IEEE Int Ultrason Symp contributor: fullname: Zeng – volume: 29 start-page: 51 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0017 article-title: 3D ultrasound imaging provides reliable angle measurement with validity comparable to X-ray in patients with adolescent idiopathic scoliosis publication-title: J Orthop Transl contributor: fullname: Lee – volume: 11045 start-page: 3 year: 2018 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0028 article-title: Unet++: a nested U-net architecture for medical image segmentation publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support doi: 10.1007/978-3-030-00889-5_1 contributor: fullname: Zhou – start-page: 770 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0029 article-title: DA-GAN: learning structured noise removal in ultrasound volume projection imaging for enhanced spine segmentation contributor: fullname: Huang – volume: 71 start-page: 897 year: 1991 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0003 article-title: Current treatment approaches in the nonoperative and operative management of adolescent idiopathic scoliosis publication-title: Phys Ther doi: 10.1093/ptj/71.12.897 contributor: fullname: Cassella – volume: 41 start-page: 1610 year: 2022 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0019 article-title: Joint spine segmentation and noise removal from ultrasound volume projection images with selective feature sharing publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2022.3143953 contributor: fullname: Huang – volume: 43 start-page: 373 year: 2023 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0045 article-title: On mimicking human's manipulation for robot-assisted spine ultrasound imaging publication-title: Robot Intell Autom contributor: fullname: Huang – volume: 89 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0047 article-title: Dual-task ultrasound spine transverse vertebrae segmentation network with contour regularization publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2021.101896 contributor: fullname: Lyu – volume: 41 start-page: 404 year: 2016 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0030 article-title: Improvement on the accuracy and reliability of ultrasound coronal curvature measurement on adolescent idiopathic scoliosis with the aid of previous radiographs publication-title: Spine (Phila Pa 1976) doi: 10.1097/BRS.0000000000001244 contributor: fullname: Zheng – ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0036 – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0022 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 contributor: fullname: Wang – volume: 7 start-page: 3 year: 2013 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0007 article-title: Epidemiology of adolescent idiopathic scoliosis publication-title: J Child Orthop doi: 10.1007/s11832-012-0457-4 contributor: fullname: Konieczny – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0042 article-title: Automatic 3-D imaging and measurement of human spines with a robotic ultrasound system publication-title: IEEE Trans Instrum Measure doi: 10.1109/TIM.2021.3126366 contributor: fullname: Yang – volume: 85 start-page: 399 year: 2003 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0008 article-title: The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis publication-title: J Bone Joint Surg doi: 10.2106/00004623-200303000-00001 contributor: fullname: Campbell – volume: 2019 year: 2019 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0012 article-title: Cobb Angle measurement of spine from X-ray images using convolutional neural network publication-title: Computat Math Methods Med contributor: fullname: Horng – volume: 8 start-page: 548 year: 2020 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0010 article-title: Association between incorrect posture and adolescent idiopathic scoliosis among Chinese adolescents: findings from a large-scale population-based study publication-title: Front Pediatr doi: 10.3389/fped.2020.00548 contributor: fullname: Yan – volume: 21 start-page: 23 year: 2008 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0009 article-title: Raster stereography versus radiography in the long-term follow-up of idiopathic scoliosis publication-title: J Spinal Disord Tech doi: 10.1097/BSD.0b013e318057529b contributor: fullname: Schulte – volume: 18 start-page: 203 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0027 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat Methods doi: 10.1038/s41592-020-01008-z contributor: fullname: Isensee – start-page: 2117 year: 2017 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0023 article-title: Feature pyramid networks for object detection contributor: fullname: Lin – volume: 67 start-page: 3234 year: 2020 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0039 article-title: Automatic spine ultrasound segmentation for scoliosis visualization and measurement publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2020.2980540 contributor: fullname: Ungi – volume: 327 start-page: 307 year: 1986 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0025 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet doi: 10.1016/S0140-6736(86)90837-8 contributor: fullname: Bland – volume: 30 start-page: 628 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0037 article-title: Castelein RM. Cross-validation of ultrasound imaging in adolescent idiopathic scoliosis publication-title: Eur Spine J doi: 10.1007/s00586-020-06652-9 contributor: fullname: de Reuver – volume: 36 start-page: 1250 year: 2017 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0034 article-title: Automatic measurement of spine curvature on 3-D ultrasound volume projection image with phase features publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2674681 contributor: fullname: Zhou – start-page: 1 year: 2021 ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0032 article-title: Automatic spinal curvature measurement on ultrasound spine images using Faster R-CNN publication-title: Proc IEEE Int Ultrason Symp contributor: fullname: Liu |
SSID | ssj0007637 |
Score | 2.4760985 |
Snippet | Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting... OBJECTIVEScoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 647 |
SubjectTerms | Bony feature Cobb angle Humans Imaging, Three-Dimensional Radiography Scoliosis Scoliosis - diagnostic imaging Segmentation Spine - diagnostic imaging Ultrasonography - methods Ultrasound curvature angle |
Title | Automatic Assessment of Ultrasound Curvature Angle for Scoliosis Detection Using 3-D Ultrasound Volume Projection Imaging |
URI | https://dx.doi.org/10.1016/j.ultrasmedbio.2023.12.015 https://www.ncbi.nlm.nih.gov/pubmed/38355361 https://search.proquest.com/docview/2927214000 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6i0BcECyv8pKRuK1cNXaeBw7VtqtygAPdRau9RIntoFZLgtpEov-escd5AKq0CHGJKstuHH-fx-PxeIaQd7mvwkCJnMEsFMyHXS3LRKGZgicscJnIInPfebmKPl3F84W_GI3a7K592X9FGsoAa3Nz9i_Q7v4UCuA3YA5PQB2et8J91tQVhmGddUE3jUZ4eVNvs51JonR61hhDrDk5mJVfbzDq9woIsa5MdJK5rjXmD0d3AsHmw8ZfrDgzFww2rtqHbzbT0VDNHdRfl935vaWZi_rUW1BLvd24aP1Nqett1jPN2bKv1z-a3nNo3-BtkqEzkZNYNgP96XJyPhkaM7jfuw6iha29ZfOLE6jZtTHQ01C0ahTUcZQwnth0O50kxxC2jrHBQCyHGNXTrfAhZjD4Y_FAO8Zm0tgxgrGBEZmY9PLWYIy3Tn8Lzr0yfTNd4yZy2TS5OiJ3OIg8I3Gvg8-dTgBSPMLzLPySNvyt9TQ89L5DqtKhrZBViS4ekgduL0NnSMJHZKTLE3IXs5vuT8i9jw53KLSOxnL3mOw7ftKen7QqaE8Z2vGTWn5S4Cft-Ek7flLLTwr8HDZGftKen9Tx8wm5PF9cnC2ZS__BpIinNfOkCIoil1xq6YGiFUY6FjIoeKQypX2hpzwUuUpA0mRe7HNQZWUUKy5B59XTPBFPyXFZlfo5oTxPZC4zqAjLj_JlDJuiQinQroXMsiIZE9GOdPodo7ykrfvjJh3ikxp8Uo-ngM-YvG9BSZ2-inpoCoy6Vfu3LZIpCHVzUgdzrmp2KfAp4h4sr9MxeYYQd_0SsGcKROi9-Me3vyT3-xn4ihzX20a_Jkc71byx3P0J3zrXig |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Assessment+of+Ultrasound+Curvature+Angle+for+Scoliosis+Detection+Using+3-D+Ultrasound+Volume+Projection+Imaging&rft.jtitle=Ultrasound+in+medicine+%26+biology&rft.au=Banerjee%2C+Sunetra&rft.au=Huang%2C+Zixun&rft.au=Lyu%2C+Juan&rft.au=Leung%2C+Frank+H.F.&rft.date=2024-05-01&rft.pub=Elsevier+Inc&rft.issn=0301-5629&rft.eissn=1879-291X&rft.volume=50&rft.issue=5&rft.spage=647&rft.epage=660&rft_id=info:doi/10.1016%2Fj.ultrasmedbio.2023.12.015&rft.externalDocID=S030156292300409X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-5629&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-5629&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-5629&client=summon |