Automatic Assessment of Ultrasound Curvature Angle for Scoliosis Detection Using 3-D Ultrasound Volume Projection Imaging

Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasound in medicine & biology Vol. 50; no. 5; pp. 647 - 660
Main Authors: Banerjee, Sunetra, Huang, Zixun, Lyu, Juan, Leung, Frank H.F., Lee, Timothy, Yang, De, Zheng, Yongping, McAviney, Jeb, Ling, Sai Ho
Format: Journal Article
Language:English
Published: England Elsevier Inc 01-05-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to be less ionising than traditional radiographic modalities. For posterior ultrasound scanning, alternate indices of the spinous process angle (SPA) and ultrasound curve angle (UCA) were developed and have proven comparable to those of the traditional Cobb angle. In SPA, the measurements are made using the spinous processes as an anatomical reference, leading to an underestimation of the traditionally used Cobb angles. Alternatively, in UCA, more lateral features of the spine are employed for measurement of the main thoracic and thoracolumbar angles; however, clear identification of bony features is required. The current practice of UCA angle measurement is manual. This research attempts to automate the process so that the errors related to human intervention can be avoided and the scalability of ultrasound scoliosis diagnosis can be improved. The key objective is to develop an automatic scoliosis diagnosis system using 3-D ultrasound imaging. The novel diagnosis system is a three-step process: (i) finding the ultrasound spine image with the most visible lateral features using the convolutional RankNet algorithm; (ii) segmenting the bony features from the noisy ultrasound images using joint spine segmentation and noise removal; and (iii) calculating the UCA automatically using a newly developed centroid pairing and inscribed rectangle slope method. The proposed method was evaluated on 109 patients with scoliosis of different severity. The results obtained had a good correlation with manually measured UCAs (R2=0.9784 for the main thoracic angle andR2=0.9671 for the thoracolumbar angle) and a clinically acceptable mean absolute difference of the main thoracic angle (2.82 ± 2.67°) and thoracolumbar angle (3.34 ± 2.83°). The proposed method establishes a very promising approach for enabling the applications of economic 3-D ultrasound volume projection imaging for mass screening of scoliosis.
AbstractList Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to be less ionising than traditional radiographic modalities. For posterior ultrasound scanning, alternate indices of the spinous process angle (SPA) and ultrasound curve angle (UCA) were developed and have proven comparable to those of the traditional Cobb angle. In SPA, the measurements are made using the spinous processes as an anatomical reference, leading to an underestimation of the traditionally used Cobb angles. Alternatively, in UCA, more lateral features of the spine are employed for measurement of the main thoracic and thoracolumbar angles; however, clear identification of bony features is required. The current practice of UCA angle measurement is manual. This research attempts to automate the process so that the errors related to human intervention can be avoided and the scalability of ultrasound scoliosis diagnosis can be improved. The key objective is to develop an automatic scoliosis diagnosis system using 3-D ultrasound imaging. The novel diagnosis system is a three-step process: (i) finding the ultrasound spine image with the most visible lateral features using the convolutional RankNet algorithm; (ii) segmenting the bony features from the noisy ultrasound images using joint spine segmentation and noise removal; and (iii) calculating the UCA automatically using a newly developed centroid pairing and inscribed rectangle slope method. The proposed method was evaluated on 109 patients with scoliosis of different severity. The results obtained had a good correlation with manually measured UCAs (R =0.9784 for the main thoracic angle andR =0.9671 for the thoracolumbar angle) and a clinically acceptable mean absolute difference of the main thoracic angle (2.82 ± 2.67°) and thoracolumbar angle (3.34 ± 2.83°). The proposed method establishes a very promising approach for enabling the applications of economic 3-D ultrasound volume projection imaging for mass screening of scoliosis.
OBJECTIVEScoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to be less ionising than traditional radiographic modalities. For posterior ultrasound scanning, alternate indices of the spinous process angle (SPA) and ultrasound curve angle (UCA) were developed and have proven comparable to those of the traditional Cobb angle. In SPA, the measurements are made using the spinous processes as an anatomical reference, leading to an underestimation of the traditionally used Cobb angles. Alternatively, in UCA, more lateral features of the spine are employed for measurement of the main thoracic and thoracolumbar angles; however, clear identification of bony features is required. The current practice of UCA angle measurement is manual. This research attempts to automate the process so that the errors related to human intervention can be avoided and the scalability of ultrasound scoliosis diagnosis can be improved. The key objective is to develop an automatic scoliosis diagnosis system using 3-D ultrasound imaging.METHODSThe novel diagnosis system is a three-step process: (i) finding the ultrasound spine image with the most visible lateral features using the convolutional RankNet algorithm; (ii) segmenting the bony features from the noisy ultrasound images using joint spine segmentation and noise removal; and (iii) calculating the UCA automatically using a newly developed centroid pairing and inscribed rectangle slope method.RESULTSThe proposed method was evaluated on 109 patients with scoliosis of different severity. The results obtained had a good correlation with manually measured UCAs (R2=0.9784 for the main thoracic angle andR2=0.9671 for the thoracolumbar angle) and a clinically acceptable mean absolute difference of the main thoracic angle (2.82 ± 2.67°) and thoracolumbar angle (3.34 ± 2.83°).CONCLUSIONThe proposed method establishes a very promising approach for enabling the applications of economic 3-D ultrasound volume projection imaging for mass screening of scoliosis.
Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting scoliosis is measurement of the Cobb angle in spine images obtained by anterior X-ray scanning. Ultrasound imaging of the spine is found to be less ionising than traditional radiographic modalities. For posterior ultrasound scanning, alternate indices of the spinous process angle (SPA) and ultrasound curve angle (UCA) were developed and have proven comparable to those of the traditional Cobb angle. In SPA, the measurements are made using the spinous processes as an anatomical reference, leading to an underestimation of the traditionally used Cobb angles. Alternatively, in UCA, more lateral features of the spine are employed for measurement of the main thoracic and thoracolumbar angles; however, clear identification of bony features is required. The current practice of UCA angle measurement is manual. This research attempts to automate the process so that the errors related to human intervention can be avoided and the scalability of ultrasound scoliosis diagnosis can be improved. The key objective is to develop an automatic scoliosis diagnosis system using 3-D ultrasound imaging. The novel diagnosis system is a three-step process: (i) finding the ultrasound spine image with the most visible lateral features using the convolutional RankNet algorithm; (ii) segmenting the bony features from the noisy ultrasound images using joint spine segmentation and noise removal; and (iii) calculating the UCA automatically using a newly developed centroid pairing and inscribed rectangle slope method. The proposed method was evaluated on 109 patients with scoliosis of different severity. The results obtained had a good correlation with manually measured UCAs (R2=0.9784 for the main thoracic angle andR2=0.9671 for the thoracolumbar angle) and a clinically acceptable mean absolute difference of the main thoracic angle (2.82 ± 2.67°) and thoracolumbar angle (3.34 ± 2.83°). The proposed method establishes a very promising approach for enabling the applications of economic 3-D ultrasound volume projection imaging for mass screening of scoliosis.
Author Ling, Sai Ho
Huang, Zixun
Zheng, Yongping
Lyu, Juan
Leung, Frank H.F.
Lee, Timothy
McAviney, Jeb
Yang, De
Banerjee, Sunetra
Author_xml – sequence: 1
  givenname: Sunetra
  surname: Banerjee
  fullname: Banerjee, Sunetra
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: Zixun
  surname: Huang
  fullname: Huang, Zixun
  organization: Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong, China
– sequence: 3
  givenname: Juan
  surname: Lyu
  fullname: Lyu, Juan
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 4
  givenname: Frank H.F.
  surname: Leung
  fullname: Leung, Frank H.F.
  organization: Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong, China
– sequence: 5
  givenname: Timothy
  surname: Lee
  fullname: Lee, Timothy
  organization: Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
– sequence: 6
  givenname: De
  surname: Yang
  fullname: Yang, De
  organization: Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
– sequence: 7
  givenname: Yongping
  surname: Zheng
  fullname: Zheng, Yongping
  organization: Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
– sequence: 8
  givenname: Jeb
  surname: McAviney
  fullname: McAviney, Jeb
  organization: ScoliCare Clinic Sydney (South), Kogarah, NSW 2217, Australia
– sequence: 9
  givenname: Sai Ho
  surname: Ling
  fullname: Ling, Sai Ho
  email: steve.ling@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38355361$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1vEzEQhi1URNPCX0AWJy672OPsF7co4aNSJZAgiJvltWcjR7t28Uel_ntcElCPnOYwzzuv5rkiF847JOQNZzVnvH13rPOcgooLmtH6GhiImkPNePOMrHjfDRUM_OcFWTHBeNW0MFySqxiPjLGuFd0Lcil60TSi5SvysMnJLypZTTcxYixHXaJ-ovs_FT47Q7c53KuUA9KNO8xIJx_oN-1n66ONdIcJdbLe0X207kBFtXsa_uHnvCD9GvzxjN0s6lDAl-T5pOaIr87zmuw_fvi-_Vzdfvl0s93cVlr0LFVci2aaRg0aNWeibTvshW4m6IwyuBbIoBWjGYwYFe_XAIzrrjegewBk4yCuydvT3bvgf2WMSS42apxn5dDnKGGADvi6yCno-xOqg48x4CTvgl1UeJCcyUf18iifqpeP6iUHWdSX8OtzTx7L-l_0r-sC7E4Alm_vLQYZtUWn0dhQ1Ejj7f_0_AaDI6A2
CitedBy_id crossref_primary_10_3390_jcm13082163
Cites_doi 10.1016/j.bbe.2022.02.011
10.1109/SMC42975.2020.9283335
10.1016/j.neucom.2023.126790
10.1097/00007632-198610000-00003
10.1186/s13013-016-0074-y
10.1109/TMI.2015.2390233
10.1007/s00586-015-3855-8
10.1002/rcs.2468
10.1007/s43390-021-00421-4
10.1016/j.compmedimag.2020.101847
10.1016/j.spinee.2015.01.019
10.3390/app112110180
10.1038/nrdp.2015.30
10.1007/s00586-019-06280-y
10.1016/j.spinee.2017.10.012
10.1007/s10439-022-02925-0
10.1016/j.neucom.2022.05.033
10.1007/978-3-030-00889-5_1
10.1093/ptj/71.12.897
10.1109/TMI.2022.3143953
10.1016/j.compmedimag.2021.101896
10.1097/BRS.0000000000001244
10.1109/TIP.2003.819861
10.1007/s11832-012-0457-4
10.1109/TIM.2021.3126366
10.2106/00004623-200303000-00001
10.3389/fped.2020.00548
10.1097/BSD.0b013e318057529b
10.1038/s41592-020-01008-z
10.1109/TBME.2020.2980540
10.1016/S0140-6736(86)90837-8
10.1007/s00586-020-06652-9
10.1109/TMI.2017.2674681
ContentType Journal Article
Copyright 2023 World Federation for Ultrasound in Medicine & Biology
Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 World Federation for Ultrasound in Medicine & Biology
– notice: Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.ultrasmedbio.2023.12.015
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1879-291X
EndPage 660
ExternalDocumentID 10_1016_j_ultrasmedbio_2023_12_015
38355361
S030156292300409X
Genre Journal Article
GroupedDBID ---
--K
-DZ
.1-
.55
.FO
.GJ
0R~
123
1B1
1P~
1RT
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
AACTN
AAEDT
AAEDW
AAIAV
AALRI
AAQFI
AAQXK
AAWTL
AAXUO
ABJNI
ABLJU
ABMAC
ABNEU
ABOCM
ABTAH
ACGFS
ACIUM
ADBBV
ADMUD
ADPAM
AENEX
AEVXI
AFCTW
AFRHN
AFTJW
AGZHU
AHHHB
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALXNB
AMRAJ
AQVPL
ASPBG
AVWKF
AZFZN
BELOY
C5W
CS3
DU5
EBS
EFJIC
EJD
F5P
FDB
FEDTE
FGOYB
FIRID
G-2
G8K
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M29
M41
MO0
NQ-
O9-
OI~
OU0
P2P
R2-
RIG
ROL
RPZ
SAE
SDG
SEL
SES
SEW
SSZ
WUQ
X7M
XH2
Z5R
ZA5
ZGI
ZXP
ZY4
~S-
ABDPE
AFJKZ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c380t-1c35ffbc2cec103667e83c5f27dade43e0263bd9d3ba1842201c78d2c822e0b93
ISSN 0301-5629
IngestDate Sat Oct 26 05:50:00 EDT 2024
Fri Nov 22 02:15:21 EST 2024
Sat Nov 02 12:20:07 EDT 2024
Sat Apr 06 16:24:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Ultrasound curvature angle
Bony feature
Segmentation
Scoliosis
Cobb angle
Language English
License Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-1c35ffbc2cec103667e83c5f27dade43e0263bd9d3ba1842201c78d2c822e0b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38355361
PQID 2927214000
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2927214000
crossref_primary_10_1016_j_ultrasmedbio_2023_12_015
pubmed_primary_38355361
elsevier_sciencedirect_doi_10_1016_j_ultrasmedbio_2023_12_015
PublicationCentury 2000
PublicationDate May 2024
2024-May
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Ultrasound in medicine & biology
PublicationTitleAlternate Ultrasound Med Biol
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cassella, Hall (bib0003) 1991; 71
Bland, Altman (bib0025) 1986; 327
Young, Hill, Zheng, Lou (bib0031) 2015; 24
Banerjee, Lyu, Huang, Leung, Lee, Yang (bib0049) 2022; 42
Huang, Zhao, Leung, Banerjee, Lee, Yang (bib0019) 2022; 41
Ronneberger, Fischer, Brox (bib0021) 2015
Huang Z, Wang LW, Leung FHF, Banerjee S, Yang D, Lee T, et al. Bone feature segmentation in ultrasound spine image with robustness to speckle and regular occlusion noise. arXiv preprint arXiv:2010.03740, 2020.
Zhou, Siddiquee, Tajbakhsh, Liang (bib0028) 2018; 11045
Yang, Lee, Lai, Lam, Chu, Castelein (bib0026) 2022; 10
Yang, Jiang, Chen, Fu, Li, Huang (bib0042) 2021; 70
Schulte, Hierholzer, Boerke, Lerner, Liljenqvist, Bullmann (bib0009) 2008; 21
Cheng, Castelein, Chu, Danielsson, Dobbs, Grivas (bib0005) 2015; 1
Wu, Liu, Wong (bib0040) 2020; 29
Lee, Lai, Cheng, Castelein, Lam, Zheng (bib0017) 2021; 29
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0023) 2017
Fong, Cheung, Wong, Wan, Lee, Lam (bib0004) 2015; 15
Zhou, Jiang, Lai, Zheng (bib0034) 2017; 36
Cobb (bib0011) 1948; 5
Zhou, Zheng (bib0014) 2015
de Reuver, Brink, Lee, Zheng, Beek (bib0037) 2021; 30
Huang, Zhou, Li (bib0044) 2023; 559
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib0027) 2021; 18
Wang, Bovik, Sheikh, Simoncelli (bib0022) 2004; 13
Konieczny, Senyurt, Krauspe (bib0007) 2013; 7
Cheung, Zhou, Law, Mak, Lai, Zheng (bib0015) 2015; 34
Banerjee, Ling, Lyu, Su, Zheng (bib0038) 2020
Zhao, Huang, Liu, Leung, Ling, De (bib0020) 2021
Dawson, Trapp (bib0024) 2004
Horng, Kuok, Fu, Lin, Sun (bib0012) 2019; 2019
Ungi, Greer, Sunderland, Wu, Baum, Schlenger (bib0039) 2020; 67
Campbell, Smith, Mayes, Mangos, Willey-Courand, Kose (bib0008) 2003; 85
Wong, Reformat, Parent, Lou (bib0033) 2022; 50
Zeng, Zheng, Le, Ta (bib0035) 2019
Banerjee, Lyu, Huang, Leung, Lee, Yang (bib0048) 2021; 11
Zheng, Lee, Lai, Yip, Zhou, Jiang (bib0013) 2016; 11
Lyu, Bi, Banerjee, Huang, Leung, Lee, Yang (bib0047) 2021; 89
Lyu, Ling, Banerjee, Zheng, Lai, Yang (bib0018) 2021; 89
Bunnell (bib0001) 1986; 11
Yan, Lu, Qiu, Nie, Huang (bib0010) 2020; 8
Huang, Zhao, Leung, Lam, Ling, Lyu (bib0029) 2021
Horne, Flannery, Usman (bib0006) 2014; 89
Zheng, Young, Hill, Le, Hedden, Moreau (bib0030) 2016; 41
Brink, Wijdicks, Tromp, Schlősser, Kruyt, Beek (bib0016) 2018; 18
Huang, Luo, Yang, Li, Deng, Liu (bib0041) 2022; 500
Zeng HY, Ge SH, Gao YC, Zhou DS, Zhou K, He XM, et al. Automatic segmentation of vertebral features on ultrasound spine images using Stacked Hourglass Network. arXiv preprint arXiv:2105.03847, 2021.
Victorova, Lau, Lee, Navarro-Alarcon, Zheng (bib0043) 2023; 19
Reamy, Slakey (bib0002) 2001; 64
Liu, Qian, Jing, Zhou, He, Lou (bib0032) 2021
Huang, Wang, Luo, Li (bib0045) 2023; 43
Isensee (10.1016/j.ultrasmedbio.2023.12.015_bib0027) 2021; 18
Lyu (10.1016/j.ultrasmedbio.2023.12.015_bib0047) 2021; 89
Banerjee (10.1016/j.ultrasmedbio.2023.12.015_bib0049) 2022; 42
Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0029) 2021
Dawson (10.1016/j.ultrasmedbio.2023.12.015_bib0024) 2004
10.1016/j.ultrasmedbio.2023.12.015_bib0036
Ungi (10.1016/j.ultrasmedbio.2023.12.015_bib0039) 2020; 67
Fong (10.1016/j.ultrasmedbio.2023.12.015_bib0004) 2015; 15
Yang (10.1016/j.ultrasmedbio.2023.12.015_bib0026) 2022; 10
Reamy (10.1016/j.ultrasmedbio.2023.12.015_bib0002) 2001; 64
Campbell (10.1016/j.ultrasmedbio.2023.12.015_bib0008) 2003; 85
Cheung (10.1016/j.ultrasmedbio.2023.12.015_bib0015) 2015; 34
Cobb (10.1016/j.ultrasmedbio.2023.12.015_bib0011) 1948; 5
Cheng (10.1016/j.ultrasmedbio.2023.12.015_bib0005) 2015; 1
Young (10.1016/j.ultrasmedbio.2023.12.015_bib0031) 2015; 24
de Reuver (10.1016/j.ultrasmedbio.2023.12.015_bib0037) 2021; 30
Bunnell (10.1016/j.ultrasmedbio.2023.12.015_bib0001) 1986; 11
Brink (10.1016/j.ultrasmedbio.2023.12.015_bib0016) 2018; 18
Wang (10.1016/j.ultrasmedbio.2023.12.015_bib0022) 2004; 13
Konieczny (10.1016/j.ultrasmedbio.2023.12.015_bib0007) 2013; 7
Yan (10.1016/j.ultrasmedbio.2023.12.015_bib0010) 2020; 8
Wu (10.1016/j.ultrasmedbio.2023.12.015_bib0040) 2020; 29
Victorova (10.1016/j.ultrasmedbio.2023.12.015_bib0043) 2023; 19
Bland (10.1016/j.ultrasmedbio.2023.12.015_bib0025) 1986; 327
Lee (10.1016/j.ultrasmedbio.2023.12.015_bib0017) 2021; 29
Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0041) 2022; 500
Lin (10.1016/j.ultrasmedbio.2023.12.015_bib0023) 2017
Zhou (10.1016/j.ultrasmedbio.2023.12.015_bib0034) 2017; 36
Zeng (10.1016/j.ultrasmedbio.2023.12.015_bib0035) 2019
Zheng (10.1016/j.ultrasmedbio.2023.12.015_bib0030) 2016; 41
Banerjee (10.1016/j.ultrasmedbio.2023.12.015_bib0048) 2021; 11
Zhou (10.1016/j.ultrasmedbio.2023.12.015_bib0028) 2018; 11045
Horne (10.1016/j.ultrasmedbio.2023.12.015_bib0006) 2014; 89
Lyu (10.1016/j.ultrasmedbio.2023.12.015_bib0018) 2021; 89
Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0019) 2022; 41
Cassella (10.1016/j.ultrasmedbio.2023.12.015_bib0003) 1991; 71
Zheng (10.1016/j.ultrasmedbio.2023.12.015_bib0013) 2016; 11
Yang (10.1016/j.ultrasmedbio.2023.12.015_bib0042) 2021; 70
Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0045) 2023; 43
Ronneberger (10.1016/j.ultrasmedbio.2023.12.015_bib0021) 2015
Zhou (10.1016/j.ultrasmedbio.2023.12.015_bib0014) 2015
Horng (10.1016/j.ultrasmedbio.2023.12.015_bib0012) 2019; 2019
Wong (10.1016/j.ultrasmedbio.2023.12.015_bib0033) 2022; 50
Huang (10.1016/j.ultrasmedbio.2023.12.015_bib0044) 2023; 559
10.1016/j.ultrasmedbio.2023.12.015_bib0046
Schulte (10.1016/j.ultrasmedbio.2023.12.015_bib0009) 2008; 21
Zhao (10.1016/j.ultrasmedbio.2023.12.015_bib0020) 2021
Banerjee (10.1016/j.ultrasmedbio.2023.12.015_bib0038) 2020
Liu (10.1016/j.ultrasmedbio.2023.12.015_bib0032) 2021
References_xml – volume: 71
  start-page: 897
  year: 1991
  end-page: 909
  ident: bib0003
  article-title: Current treatment approaches in the nonoperative and operative management of adolescent idiopathic scoliosis
  publication-title: Phys Ther
  contributor:
    fullname: Hall
– volume: 2019
  year: 2019
  ident: bib0012
  article-title: Cobb Angle measurement of spine from X-ray images using convolutional neural network
  publication-title: Computat Math Methods Med
  contributor:
    fullname: Sun
– start-page: 1477
  year: 2019
  end-page: 1480
  ident: bib0035
  article-title: Measuring spinous process angle on ultrasound spine images using the GVF segmentation method
  publication-title: Proc IEEE Int Ultrason Symp
  contributor:
    fullname: Ta
– volume: 5
  start-page: 261
  year: 1948
  end-page: 275
  ident: bib0011
  article-title: Outline for the study of scoliosis
  publication-title: Instruct Course Lect
  contributor:
    fullname: Cobb
– volume: 29
  start-page: 717
  year: 2020
  end-page: 725
  ident: bib0040
  article-title: Reliability and validity of lateral curvature assessments using clinical ultrasound for the patients with scoliosis: a systematic review
  publication-title: Eur Spine J
  contributor:
    fullname: Wong
– volume: 11
  start-page: 10180
  year: 2021
  ident: bib0048
  article-title: Light-convolution dense selection U-Net (LDS U-Net) for ultrasound lateral bony feature segmentation
  publication-title: Appl Sci
  contributor:
    fullname: Yang
– volume: 11
  start-page: 773
  year: 1986
  end-page: 776
  ident: bib0001
  article-title: The natural history of idiopathic scoliosis before skeletal maturity
  publication-title: Spine
  contributor:
    fullname: Bunnell
– volume: 15
  start-page: 825
  year: 2015
  end-page: 833
  ident: bib0004
  article-title: A population-based cohort study of 394,401 children followed for 10 years exhibits sustained effectiveness of scoliosis screening
  publication-title: Spine J
  contributor:
    fullname: Lam
– start-page: 2117
  year: 2017
  end-page: 2125
  ident: bib0023
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA
  contributor:
    fullname: Belongie
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0021
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
  contributor:
    fullname: Brox
– volume: 8
  start-page: 548
  year: 2020
  ident: bib0010
  article-title: Association between incorrect posture and adolescent idiopathic scoliosis among Chinese adolescents: findings from a large-scale population-based study
  publication-title: Front Pediatr
  contributor:
    fullname: Huang
– volume: 10
  start-page: 351
  year: 2022
  end-page: 359
  ident: bib0026
  article-title: Semi-automatic ultrasound curve angle measurement for adolescent idiopathic scoliosis
  publication-title: Spine Deform
  contributor:
    fullname: Castelein
– volume: 64
  start-page: 111
  year: 2001
  ident: bib0002
  article-title: Adolescent idiopathic scoliosis: review and current concepts
  publication-title: Am Fam Phys
  contributor:
    fullname: Slakey
– volume: 24
  start-page: 1427
  year: 2015
  end-page: 1433
  ident: bib0031
  article-title: Reliability and accuracy of ultrasound measurements with and without the aid of previous radiographs in adolescent idiopathic scoliosis (AIS)
  publication-title: Eur Spine J
  contributor:
    fullname: Lou
– volume: 29
  start-page: 51
  year: 2021
  end-page: 59
  ident: bib0017
  article-title: 3D ultrasound imaging provides reliable angle measurement with validity comparable to X-ray in patients with adolescent idiopathic scoliosis
  publication-title: J Orthop Transl
  contributor:
    fullname: Zheng
– volume: 11045
  start-page: 3
  year: 2018
  end-page: 11
  ident: bib0028
  article-title: Unet++: a nested U-net architecture for medical image segmentation
  publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support
  contributor:
    fullname: Liang
– volume: 67
  start-page: 3234
  year: 2020
  end-page: 3241
  ident: bib0039
  article-title: Automatic spine ultrasound segmentation for scoliosis visualization and measurement
  publication-title: IEEE Trans Biomed Eng
  contributor:
    fullname: Schlenger
– volume: 559
  year: 2023
  ident: bib0044
  article-title: Review of robot-assisted medical ultrasound imaging systems: technology and clinical applications
  publication-title: Neurocomputing
  contributor:
    fullname: Li
– volume: 30
  start-page: 628
  year: 2021
  end-page: 633
  ident: bib0037
  article-title: Castelein RM. Cross-validation of ultrasound imaging in adolescent idiopathic scoliosis
  publication-title: Eur Spine J
  contributor:
    fullname: Beek
– volume: 85
  start-page: 399
  year: 2003
  end-page: 408
  ident: bib0008
  article-title: The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis
  publication-title: J Bone Joint Surg
  contributor:
    fullname: Kose
– volume: 7
  start-page: 3
  year: 2013
  end-page: 9
  ident: bib0007
  article-title: Epidemiology of adolescent idiopathic scoliosis
  publication-title: J Child Orthop
  contributor:
    fullname: Krauspe
– volume: 50
  start-page: 401
  year: 2022
  end-page: 412
  ident: bib0033
  article-title: Convolutional neural network to segment laminae on 3D ultrasound spinal images to assist Cobb angle measurement
  publication-title: Ann Biomed Eng
  contributor:
    fullname: Lou
– volume: 41
  start-page: 1610
  year: 2022
  end-page: 1624
  ident: bib0019
  article-title: Joint spine segmentation and noise removal from ultrasound volume projection images with selective feature sharing
  publication-title: IEEE Trans Med Imaging
  contributor:
    fullname: Yang
– volume: 34
  start-page: 1760
  year: 2015
  end-page: 1768
  ident: bib0015
  article-title: Ultrasound volume projection imaging for assessment of scoliosis
  publication-title: IEEE Trans Med Imaging
  contributor:
    fullname: Zheng
– volume: 89
  year: 2021
  ident: bib0018
  article-title: Ultrasound volume projection image quality selection by ranking from convolutional RankNet
  publication-title: Comput Med Imaging Graph
  contributor:
    fullname: Yang
– volume: 327
  start-page: 307
  year: 1986
  end-page: 310
  ident: bib0025
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  contributor:
    fullname: Altman
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0042
  article-title: Automatic 3-D imaging and measurement of human spines with a robotic ultrasound system
  publication-title: IEEE Trans Instrum Measure
  contributor:
    fullname: Huang
– start-page: 1
  year: 2015
  end-page: 4
  ident: bib0014
  article-title: Assessment of scoliosis using 3-D ultrasound volume projection imaging with automatic spine curvature detection
  publication-title: Proc IEEE Int Ultrason Symp
  contributor:
    fullname: Zheng
– volume: 500
  start-page: 750
  year: 2022
  end-page: 760
  ident: bib0041
  article-title: Anatomical prior based vertebra modelling for reappearance of human spines
  publication-title: Neurocomputing
  contributor:
    fullname: Liu
– start-page: 1195
  year: 2021
  end-page: 1199
  ident: bib0020
  article-title: Structure-enhanced attentive learning for spine segmentation from ultrasound volume projection images
  publication-title: Proceedings, 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021)
  contributor:
    fullname: De
– volume: 43
  start-page: 373
  year: 2023
  end-page: 381
  ident: bib0045
  article-title: On mimicking human's manipulation for robot-assisted spine ultrasound imaging
  publication-title: Robot Intell Autom
  contributor:
    fullname: Li
– start-page: 1
  year: 2021
  end-page: 4
  ident: bib0032
  article-title: Automatic spinal curvature measurement on ultrasound spine images using Faster R-CNN
  publication-title: Proc IEEE Int Ultrason Symp
  contributor:
    fullname: Lou
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0022
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  contributor:
    fullname: Simoncelli
– start-page: 2039
  year: 2020
  ident: bib0038
  article-title: Automatic segmentation of 3D ultrasound spine curvature using convolutional neural network
  publication-title: Proceedings, 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
  contributor:
    fullname: Zheng
– start-page: 190
  year: 2004
  end-page: 220
  ident: bib0024
  article-title: Research questions about relationships among variables
  publication-title: Basic & Clinical Biostatistics
  contributor:
    fullname: Trapp
– volume: 42
  start-page: 341
  year: 2022
  end-page: 361
  ident: bib0049
  article-title: Ultrasound spine image segmentation using multi-scale feature fusion skip-inception U-Net (SIU-Net)
  publication-title: Biocybernet Biomed Eng
  contributor:
    fullname: Yang
– volume: 89
  year: 2021
  ident: bib0047
  article-title: Dual-task ultrasound spine transverse vertebrae segmentation network with contour regularization
  publication-title: Comput Med Imaging Graph
  contributor:
    fullname: Yang
– volume: 89
  start-page: 193
  year: 2014
  end-page: 198
  ident: bib0006
  article-title: Adolescent idiopathic scoliosis: diagnosis and management
  publication-title: Am Fam Phys
  contributor:
    fullname: Usman
– volume: 36
  start-page: 1250
  year: 2017
  end-page: 1262
  ident: bib0034
  article-title: Automatic measurement of spine curvature on 3-D ultrasound volume projection image with phase features
  publication-title: IEEE Trans Med Imaging
  contributor:
    fullname: Zheng
– volume: 19
  start-page: e2468
  year: 2023
  ident: bib0043
  article-title: Comparison of ultrasound scanning for scoliosis assessment: robotic versus manual
  publication-title: Int J Med Robotics Comput Assist Surg
  contributor:
    fullname: Zheng
– volume: 11
  start-page: 13
  year: 2016
  ident: bib0013
  article-title: A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging
  publication-title: Scoliosis Spinal Disord
  contributor:
    fullname: Jiang
– volume: 21
  start-page: 23
  year: 2008
  end-page: 28
  ident: bib0009
  article-title: Raster stereography versus radiography in the long-term follow-up of idiopathic scoliosis
  publication-title: J Spinal Disord Tech
  contributor:
    fullname: Bullmann
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: bib0027
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat Methods
  contributor:
    fullname: Maier-Hein
– volume: 41
  start-page: 404
  year: 2016
  end-page: 411
  ident: bib0030
  article-title: Improvement on the accuracy and reliability of ultrasound coronal curvature measurement on adolescent idiopathic scoliosis with the aid of previous radiographs
  publication-title: Spine (Phila Pa 1976)
  contributor:
    fullname: Moreau
– volume: 18
  start-page: 979
  year: 2018
  end-page: 985
  ident: bib0016
  article-title: A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis
  publication-title: Spine J
  contributor:
    fullname: Beek
– start-page: 770
  year: 2021
  end-page: 774
  ident: bib0029
  article-title: DA-GAN: learning structured noise removal in ultrasound volume projection imaging for enhanced spine segmentation
  publication-title: Proceedings, 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
  contributor:
    fullname: Lyu
– volume: 1
  start-page: 15030
  year: 2015
  ident: bib0005
  article-title: Adolescent idiopathic scoliosis
  publication-title: Nat Rev Dis Primers
  contributor:
    fullname: Grivas
– volume: 5
  start-page: 261
  year: 1948
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0011
  article-title: Outline for the study of scoliosis
  publication-title: Instruct Course Lect
  contributor:
    fullname: Cobb
– volume: 42
  start-page: 341
  year: 2022
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0049
  article-title: Ultrasound spine image segmentation using multi-scale feature fusion skip-inception U-Net (SIU-Net)
  publication-title: Biocybernet Biomed Eng
  doi: 10.1016/j.bbe.2022.02.011
  contributor:
    fullname: Banerjee
– ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0046
  doi: 10.1109/SMC42975.2020.9283335
– start-page: 1
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0014
  article-title: Assessment of scoliosis using 3-D ultrasound volume projection imaging with automatic spine curvature detection
  publication-title: Proc IEEE Int Ultrason Symp
  contributor:
    fullname: Zhou
– start-page: 234
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0021
  article-title: U-net: convolutional networks for biomedical image segmentation
  contributor:
    fullname: Ronneberger
– volume: 559
  year: 2023
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0044
  article-title: Review of robot-assisted medical ultrasound imaging systems: technology and clinical applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126790
  contributor:
    fullname: Huang
– volume: 11
  start-page: 773
  year: 1986
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0001
  article-title: The natural history of idiopathic scoliosis before skeletal maturity
  publication-title: Spine
  doi: 10.1097/00007632-198610000-00003
  contributor:
    fullname: Bunnell
– volume: 64
  start-page: 111
  year: 2001
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0002
  article-title: Adolescent idiopathic scoliosis: review and current concepts
  publication-title: Am Fam Phys
  contributor:
    fullname: Reamy
– volume: 11
  start-page: 13
  year: 2016
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0013
  article-title: A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging
  publication-title: Scoliosis Spinal Disord
  doi: 10.1186/s13013-016-0074-y
  contributor:
    fullname: Zheng
– volume: 34
  start-page: 1760
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0015
  article-title: Ultrasound volume projection imaging for assessment of scoliosis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2390233
  contributor:
    fullname: Cheung
– volume: 24
  start-page: 1427
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0031
  article-title: Reliability and accuracy of ultrasound measurements with and without the aid of previous radiographs in adolescent idiopathic scoliosis (AIS)
  publication-title: Eur Spine J
  doi: 10.1007/s00586-015-3855-8
  contributor:
    fullname: Young
– volume: 19
  start-page: e2468
  year: 2023
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0043
  article-title: Comparison of ultrasound scanning for scoliosis assessment: robotic versus manual
  publication-title: Int J Med Robotics Comput Assist Surg
  doi: 10.1002/rcs.2468
  contributor:
    fullname: Victorova
– start-page: 1195
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0020
  article-title: Structure-enhanced attentive learning for spine segmentation from ultrasound volume projection images
  contributor:
    fullname: Zhao
– volume: 10
  start-page: 351
  year: 2022
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0026
  article-title: Semi-automatic ultrasound curve angle measurement for adolescent idiopathic scoliosis
  publication-title: Spine Deform
  doi: 10.1007/s43390-021-00421-4
  contributor:
    fullname: Yang
– start-page: 190
  year: 2004
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0024
  article-title: Research questions about relationships among variables
  contributor:
    fullname: Dawson
– volume: 89
  start-page: 193
  year: 2014
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0006
  article-title: Adolescent idiopathic scoliosis: diagnosis and management
  publication-title: Am Fam Phys
  contributor:
    fullname: Horne
– volume: 89
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0018
  article-title: Ultrasound volume projection image quality selection by ranking from convolutional RankNet
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2020.101847
  contributor:
    fullname: Lyu
– start-page: 2039
  year: 2020
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0038
  article-title: Automatic segmentation of 3D ultrasound spine curvature using convolutional neural network
  contributor:
    fullname: Banerjee
– volume: 15
  start-page: 825
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0004
  article-title: A population-based cohort study of 394,401 children followed for 10 years exhibits sustained effectiveness of scoliosis screening
  publication-title: Spine J
  doi: 10.1016/j.spinee.2015.01.019
  contributor:
    fullname: Fong
– volume: 11
  start-page: 10180
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0048
  article-title: Light-convolution dense selection U-Net (LDS U-Net) for ultrasound lateral bony feature segmentation
  publication-title: Appl Sci
  doi: 10.3390/app112110180
  contributor:
    fullname: Banerjee
– volume: 1
  start-page: 15030
  year: 2015
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0005
  article-title: Adolescent idiopathic scoliosis
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/nrdp.2015.30
  contributor:
    fullname: Cheng
– volume: 29
  start-page: 717
  year: 2020
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0040
  article-title: Reliability and validity of lateral curvature assessments using clinical ultrasound for the patients with scoliosis: a systematic review
  publication-title: Eur Spine J
  doi: 10.1007/s00586-019-06280-y
  contributor:
    fullname: Wu
– volume: 18
  start-page: 979
  year: 2018
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0016
  article-title: A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis
  publication-title: Spine J
  doi: 10.1016/j.spinee.2017.10.012
  contributor:
    fullname: Brink
– volume: 50
  start-page: 401
  year: 2022
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0033
  article-title: Convolutional neural network to segment laminae on 3D ultrasound spinal images to assist Cobb angle measurement
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-022-02925-0
  contributor:
    fullname: Wong
– volume: 500
  start-page: 750
  year: 2022
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0041
  article-title: Anatomical prior based vertebra modelling for reappearance of human spines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.05.033
  contributor:
    fullname: Huang
– start-page: 1477
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0035
  article-title: Measuring spinous process angle on ultrasound spine images using the GVF segmentation method
  publication-title: Proc IEEE Int Ultrason Symp
  contributor:
    fullname: Zeng
– volume: 29
  start-page: 51
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0017
  article-title: 3D ultrasound imaging provides reliable angle measurement with validity comparable to X-ray in patients with adolescent idiopathic scoliosis
  publication-title: J Orthop Transl
  contributor:
    fullname: Lee
– volume: 11045
  start-page: 3
  year: 2018
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0028
  article-title: Unet++: a nested U-net architecture for medical image segmentation
  publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support
  doi: 10.1007/978-3-030-00889-5_1
  contributor:
    fullname: Zhou
– start-page: 770
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0029
  article-title: DA-GAN: learning structured noise removal in ultrasound volume projection imaging for enhanced spine segmentation
  contributor:
    fullname: Huang
– volume: 71
  start-page: 897
  year: 1991
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0003
  article-title: Current treatment approaches in the nonoperative and operative management of adolescent idiopathic scoliosis
  publication-title: Phys Ther
  doi: 10.1093/ptj/71.12.897
  contributor:
    fullname: Cassella
– volume: 41
  start-page: 1610
  year: 2022
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0019
  article-title: Joint spine segmentation and noise removal from ultrasound volume projection images with selective feature sharing
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3143953
  contributor:
    fullname: Huang
– volume: 43
  start-page: 373
  year: 2023
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0045
  article-title: On mimicking human's manipulation for robot-assisted spine ultrasound imaging
  publication-title: Robot Intell Autom
  contributor:
    fullname: Huang
– volume: 89
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0047
  article-title: Dual-task ultrasound spine transverse vertebrae segmentation network with contour regularization
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.101896
  contributor:
    fullname: Lyu
– volume: 41
  start-page: 404
  year: 2016
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0030
  article-title: Improvement on the accuracy and reliability of ultrasound coronal curvature measurement on adolescent idiopathic scoliosis with the aid of previous radiographs
  publication-title: Spine (Phila Pa 1976)
  doi: 10.1097/BRS.0000000000001244
  contributor:
    fullname: Zheng
– ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0036
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0022
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
  contributor:
    fullname: Wang
– volume: 7
  start-page: 3
  year: 2013
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0007
  article-title: Epidemiology of adolescent idiopathic scoliosis
  publication-title: J Child Orthop
  doi: 10.1007/s11832-012-0457-4
  contributor:
    fullname: Konieczny
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0042
  article-title: Automatic 3-D imaging and measurement of human spines with a robotic ultrasound system
  publication-title: IEEE Trans Instrum Measure
  doi: 10.1109/TIM.2021.3126366
  contributor:
    fullname: Yang
– volume: 85
  start-page: 399
  year: 2003
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0008
  article-title: The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis
  publication-title: J Bone Joint Surg
  doi: 10.2106/00004623-200303000-00001
  contributor:
    fullname: Campbell
– volume: 2019
  year: 2019
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0012
  article-title: Cobb Angle measurement of spine from X-ray images using convolutional neural network
  publication-title: Computat Math Methods Med
  contributor:
    fullname: Horng
– volume: 8
  start-page: 548
  year: 2020
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0010
  article-title: Association between incorrect posture and adolescent idiopathic scoliosis among Chinese adolescents: findings from a large-scale population-based study
  publication-title: Front Pediatr
  doi: 10.3389/fped.2020.00548
  contributor:
    fullname: Yan
– volume: 21
  start-page: 23
  year: 2008
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0009
  article-title: Raster stereography versus radiography in the long-term follow-up of idiopathic scoliosis
  publication-title: J Spinal Disord Tech
  doi: 10.1097/BSD.0b013e318057529b
  contributor:
    fullname: Schulte
– volume: 18
  start-page: 203
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0027
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01008-z
  contributor:
    fullname: Isensee
– start-page: 2117
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0023
  article-title: Feature pyramid networks for object detection
  contributor:
    fullname: Lin
– volume: 67
  start-page: 3234
  year: 2020
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0039
  article-title: Automatic spine ultrasound segmentation for scoliosis visualization and measurement
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2020.2980540
  contributor:
    fullname: Ungi
– volume: 327
  start-page: 307
  year: 1986
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0025
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
  contributor:
    fullname: Bland
– volume: 30
  start-page: 628
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0037
  article-title: Castelein RM. Cross-validation of ultrasound imaging in adolescent idiopathic scoliosis
  publication-title: Eur Spine J
  doi: 10.1007/s00586-020-06652-9
  contributor:
    fullname: de Reuver
– volume: 36
  start-page: 1250
  year: 2017
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0034
  article-title: Automatic measurement of spine curvature on 3-D ultrasound volume projection image with phase features
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2674681
  contributor:
    fullname: Zhou
– start-page: 1
  year: 2021
  ident: 10.1016/j.ultrasmedbio.2023.12.015_bib0032
  article-title: Automatic spinal curvature measurement on ultrasound spine images using Faster R-CNN
  publication-title: Proc IEEE Int Ultrason Symp
  contributor:
    fullname: Liu
SSID ssj0007637
Score 2.4760985
Snippet Scoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for detecting...
OBJECTIVEScoliosis is a spinal deformation in which the spine takes a lateral curvature, generating an angle in the coronal plane. The conventional method for...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 647
SubjectTerms Bony feature
Cobb angle
Humans
Imaging, Three-Dimensional
Radiography
Scoliosis
Scoliosis - diagnostic imaging
Segmentation
Spine - diagnostic imaging
Ultrasonography - methods
Ultrasound curvature angle
Title Automatic Assessment of Ultrasound Curvature Angle for Scoliosis Detection Using 3-D Ultrasound Volume Projection Imaging
URI https://dx.doi.org/10.1016/j.ultrasmedbio.2023.12.015
https://www.ncbi.nlm.nih.gov/pubmed/38355361
https://search.proquest.com/docview/2927214000
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6i0BcECyv8pKRuK1cNXaeBw7VtqtygAPdRau9RIntoFZLgtpEov-escd5AKq0CHGJKstuHH-fx-PxeIaQd7mvwkCJnMEsFMyHXS3LRKGZgicscJnIInPfebmKPl3F84W_GI3a7K592X9FGsoAa3Nz9i_Q7v4UCuA3YA5PQB2et8J91tQVhmGddUE3jUZ4eVNvs51JonR61hhDrDk5mJVfbzDq9woIsa5MdJK5rjXmD0d3AsHmw8ZfrDgzFww2rtqHbzbT0VDNHdRfl935vaWZi_rUW1BLvd24aP1Nqett1jPN2bKv1z-a3nNo3-BtkqEzkZNYNgP96XJyPhkaM7jfuw6iha29ZfOLE6jZtTHQ01C0ahTUcZQwnth0O50kxxC2jrHBQCyHGNXTrfAhZjD4Y_FAO8Zm0tgxgrGBEZmY9PLWYIy3Tn8Lzr0yfTNd4yZy2TS5OiJ3OIg8I3Gvg8-dTgBSPMLzLPySNvyt9TQ89L5DqtKhrZBViS4ekgduL0NnSMJHZKTLE3IXs5vuT8i9jw53KLSOxnL3mOw7ftKen7QqaE8Z2vGTWn5S4Cft-Ek7flLLTwr8HDZGftKen9Tx8wm5PF9cnC2ZS__BpIinNfOkCIoil1xq6YGiFUY6FjIoeKQypX2hpzwUuUpA0mRe7HNQZWUUKy5B59XTPBFPyXFZlfo5oTxPZC4zqAjLj_JlDJuiQinQroXMsiIZE9GOdPodo7ykrfvjJh3ikxp8Uo-ngM-YvG9BSZ2-inpoCoy6Vfu3LZIpCHVzUgdzrmp2KfAp4h4sr9MxeYYQd_0SsGcKROi9-Me3vyT3-xn4ihzX20a_Jkc71byx3P0J3zrXig
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Assessment+of+Ultrasound+Curvature+Angle+for+Scoliosis+Detection+Using+3-D+Ultrasound+Volume+Projection+Imaging&rft.jtitle=Ultrasound+in+medicine+%26+biology&rft.au=Banerjee%2C+Sunetra&rft.au=Huang%2C+Zixun&rft.au=Lyu%2C+Juan&rft.au=Leung%2C+Frank+H.F.&rft.date=2024-05-01&rft.pub=Elsevier+Inc&rft.issn=0301-5629&rft.eissn=1879-291X&rft.volume=50&rft.issue=5&rft.spage=647&rft.epage=660&rft_id=info:doi/10.1016%2Fj.ultrasmedbio.2023.12.015&rft.externalDocID=S030156292300409X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-5629&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-5629&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-5629&client=summon