One-vs-One, One-vs-Rest, and a novel Outcome-Driven One-vs-One binary classifiers enabled by optoelectronic memristors towards overcoming hardware limitations in multiclass classification
Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adop...
Saved in:
Published in: | Discover materials Vol. 4; no. 1; pp. 7 - 13 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
03-03-2024
Springer Nature B.V Springer |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to
N
2
compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification. |
---|---|
AbstractList | Abstract Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to $$\frac{N}{2}$$ N 2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification. Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to N 2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification. Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to $$\frac{N}{2}$$ N 2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification. Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to N2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification. |
ArticleNumber | 7 |
Author | Kymakis, Emmanuel Rogdakis, Konstantinos Loizos, Michalis Psaltakis, George |
Author_xml | – sequence: 1 givenname: George surname: Psaltakis fullname: Psaltakis, George organization: Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU) – sequence: 2 givenname: Konstantinos surname: Rogdakis fullname: Rogdakis, Konstantinos email: krogdakis@hmu.gr organization: Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Institute of Emerging Technologies (I-EMERGE), University Research and Innovation Center, HMU – sequence: 3 givenname: Michalis surname: Loizos fullname: Loizos, Michalis organization: Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU) – sequence: 4 givenname: Emmanuel surname: Kymakis fullname: Kymakis, Emmanuel email: kymakis@hmu.gr organization: Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Institute of Emerging Technologies (I-EMERGE), University Research and Innovation Center, HMU |
BookMark | eNp9UVtvFCEUJqYm1to_4BOJr0W5DDDzaOqtSZNNjD4TBg4rmxlYYXZNf1v_nHSnaX3y6RwO3-XA9xqdpZwAobeMvmeU6g-1E4MYCOUdoe2siX6BzrkWlGjN9dk__St0WeuugbhkgjN6ju43Ccixklau8GP_HepyhW3y2OKUjzDhzWFxeQbyqcQjJPzMwWNMttxhN9laY4hQKoZkxwk8Hu9w3i8ZJnBLySk6PMNcYl1yAy35jy2-4iZfmnRMW_yrDdoQ8BTnuNgl5lRxTHg-TEs8GTzZuNPtG_Qy2KnC5WO9QD-_fP5x_Y3cbr7eXH-8JU70lBEme88GxkEr6qTtuFNaqSFQZ9modOgG4WyQjillpeugG1mwIAP1gXmvvLhAN6uuz3Zn9iXO7ckm22hOg1y2xpaHFcEo2fdSDIFBzzoHsleWa6s650GoQYSm9W7V2pf8-9A-2uzyoaS2vuGD6CjjktOG4ivKlVxrgfDkyqh5yNysmZuWuTllbnQjiZVUGzhtoTxL_4f1F_lLtI0 |
CitedBy_id | crossref_primary_10_1016_j_microc_2024_111039 |
Cites_doi | 10.1039/C6TC00141F 10.1021/acsaelm.0c00674 10.1021/acsami.0c18038 10.1021/acsami.1c06278 10.1021/acsaelm.9b00836 10.1016/j.nanoen.2022.108072 10.1021/acs.jpcc.7b12817 10.1021/acsnano.9b07687 10.1039/C5TC02270C 10.1038/s41586-021-04362-w 10.1007/s43939-022-00032-4 10.1016/j.patcog.2020.107528 10.1021/acsnano.7b07317 10.3389/fenrg.2021.629074 10.1002/inf2.12012 10.1002/aelm.202001126 10.1109/JPROC.2006.884094 10.1039/D0MA00162G 10.1063/5.0160599 10.1038/s41467-022-35092-w 10.1021/acsami.9b13552 10.1002/aelm.201901012 10.1007/978-3-540-76725-1_2 10.1088/2634-4386/acd4e2 10.1038/s41467-021-24057-0 10.1016/j.vacuum.2016.05.010 10.1557/mrs.2020.194 10.1063/5.0028539 10.1016/j.fmre.2022.06.022 10.1039/D0TC03275A 10.1002/aisy.202000085 10.1021/acsnano.7b05762 10.1109/JPROC.2023.3308088 10.1007/978-3-319-54313-0 10.1002/aelm.202200657 10.1039/D1TC02726C 10.1016/j.jallcom.2019.153552 10.1038/s41565-019-0501-3 10.1002/adfm.202100781 10.1002/admt.201900914 10.1021/acsnano.6b01643 10.1016/j.neuroimage.2008.04.239 10.1038/s41928-017-0006-8 10.3390/s23063037 10.1038/s41598-022-07404-z 10.1007/s43939-024-00074-w 10.1002/aelm.201700596 10.1002/adma.201804841 10.1109/5.156468 10.1002/ente.202201017 10.1038/ncomms8497 10.1063/5.0078798 10.1007/s11042-017-5046-6 10.1002/aisy.202000099 10.3389/fnins.2022.857513 10.1126/science.abj9979 10.1021/acsami.9b09080 10.1002/aelm.202300424 10.1002/adfm.202005582 10.1039/C7TC00266A 10.1016/j.jallcom.2021.162918 10.1002/adfm.201704665 10.1109/MSP.2012.2211477 10.1038/s41427-020-0202-2 10.1021/acsami.0c10851 10.1038/s41598-022-23404-5 10.1002/adma.201500039 10.1002/adma.201701048 10.1039/D2MA00402J 10.1002/adma.201903558 10.1021/acsami.8b09046 10.1039/D1TC04757D 10.1038/srep21331 10.1016/j.nanoen.2021.106291 10.1002/adma.201700527 10.5772/intechopen.74826 10.1109/ISCAS.2014.6865326 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.1007/s43939-024-00077-7 |
DatabaseName | Springer_OA刊 CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2730-7727 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_6588539f1e814ce586a27a64cde3693f 10_1007_s43939_024_00077_7 |
GrantInformation_xml | – fundername: Horizon 2020 Framework Programme grantid: 101008701 funderid: http://dx.doi.org/10.13039/100010661 |
GroupedDBID | AAJSJ AAKKN AAYZJ ABEEZ ACACY ACULB ACVER AFGXO AFKRA AFNRJ AHBXF ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR C24 C6C CCPQU EBS GROUPED_DOAJ M~E OK1 PIMPY RSV SOJ 0R~ AAYXX CITATION EBLON ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c3801-158d1912e760c5a42c67669f0ca1b67f493caf5c166a5c4e4b1fae5f0df1dd6d3 |
IEDL.DBID | C24 |
ISSN | 2730-7727 |
IngestDate | Tue Oct 22 14:39:21 EDT 2024 Thu Nov 21 05:38:59 EST 2024 Thu Nov 21 21:13:44 EST 2024 Mon Mar 04 05:02:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3801-158d1912e760c5a42c67669f0ca1b67f493caf5c166a5c4e4b1fae5f0df1dd6d3 |
OpenAccessLink | http://link.springer.com/10.1007/s43939-024-00077-7 |
PQID | 2934012520 |
PQPubID | 5642932 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6588539f1e814ce586a27a64cde3693f proquest_journals_2934012520 crossref_primary_10_1007_s43939_024_00077_7 springer_journals_10_1007_s43939_024_00077_7 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-03 |
PublicationDateYYYYMMDD | 2024-03-03 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Lisbon |
PublicationTitle | Discover materials |
PublicationTitleAbbrev | Discov Mater |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | Park, Lee, Kim, Seo, Go, Lee (CR15) 2020; 32 Tzoganakis, Feng, Loizos, Krassas, Tsikritzis, Zhuang, Kymakis (CR51) 2021; 9 Venianaki, Salvetti, de Bree, Maris, Karantanas, Kontopodis, Nikiforaki, Marias (CR1) 2018; 77 Liu, Xiong, Liu, Chen, Xu, Zhou, Han, Ye, Chen, Song, Zhu (CR60) 2020; 6 Rogdakis, Psaltakis, Fagas, Quinn, Martins, Kymakis (CR18) 2024; 4 Jain, Rueda, Mery, Kittler (CR4) 2007 Deng (CR75) 2012; 29 Xue, Song, Zhong, Wang, Zhao, Guo, Cong (CR57) 2020; 822 Hu, Yang, Wang, Cheng, Chua, Zhuge (CR23) 2021; 31 Muthu, Resmi, Pious, Dayal, Krishna, Jinesh, Vijayakumar (CR62) 2021; 9 Wang, Yin, Huang, Li, Huang, Zhu, Yang, Pi (CR20) 2021; 3 Sheykhifar, Mohseni (CR48) 2022; 12 Sun, Chen, Fan, Zhang, Han, He, Wu, Yu, Gao, Chen, Zhang, Liu (CR29) 2022 Yan, Peng, Yu, Cai, Chen, Hu, Chen, Gao, Dong, Zou (CR33) 2016; 4 Zhu, Lee, Lu (CR47) 2017; 29 Vijaya Kumar, Savvides, Xie (CR3) 2006; 94 Ye, Liu, Sun, Zhang, Shi, Liao (CR49) 2023; 9 Yu (CR17) 2017 Sun, Tai, Song, Wang, Yin, Li, Wu, Zeng, Lin, Pan (CR36) 2018; 122 Tan, Liu, Yang, Yi, Pan, Shang, Long, Liu, Wu, Li (CR71) 2017; 11 Pietrzak, Szczęsny, Huderek, Przyborowski (CR76) 2023; 23 Loizos, Rogdakis, Kymakis (CR26) 2022; 2 Eames, Frost, Barnes, O’Regan, Walsh, Islam (CR45) 2015; 6 Luo, Xia, Yang, Wilson, Gruverman, Alexe (CR73) 2020; 14 Liu, Gong, Wei, Li, Wu, Jiang, Li, Xu (CR8) 2022; 13 Emboras, Alabastri, Lehmann, Portner, Weilenmann, Ma, Cheng, Lewerenz, Passerini, Koch, Aeschlimann, Ducry, Leuthold, Luisier (CR7) 2020; 117 Hassan, Ang (CR27) 2019; 11 Zhou, Zhou, Chen, Choy, Wang, Zhang, Lin, Yu, Kang, Wong, Chai (CR21) 2019; 14 Park, Lee (CR56) 2021; 13 Mori, Suen, Yamamoto (CR2) 1992; 80 Huang, Tang, Wang, Fan, Zhao, Wu, Xu, Shen, Yang, Bian (CR63) 2020; 2 van de Burgt, Gkoupidenis (CR11) 2020; 45 Chen, Xiao, Huang, Jiang, Liu, Tang (CR25) 2023; 123 Tzoganakis, Feng, Loizos, Chatzimanolis, Krassas, Tsikritzis, Zhuang, Kymakis (CR50) 2023; 11 Mehonic, Kenyon (CR5) 2022; 604 Zhu, Lu (CR54) 2018; 12 Tan, Liu, Zhu, Yang, Chen, Chen, Shang, Lu, Wu, Li (CR70) 2015; 27 Venkatesan, Williams (CR9) 2022; 9 Wang, Xiong, Sha, Guo, Wang, Qiang, Shang, Jia, Sun, Huang, Gan, Wang (CR55) 2022; 10 Rogdakis, Loizos, Viskadouros, Kymakis (CR13) 2022; 3 Zhao, Xu, Wang, Lin, Liu (CR19) 2019; 1 Lin, Lin, Cui, Huang, Guo, Li, Dong, Guo, Sun (CR40) 2015; 3 Gu, Lee (CR53) 2016; 10 Pawara, Okafor, Groefsema, He, Schomaker, Wiering (CR65) 2020; 108 Tsikritzis, Rogdakis, Chatzimanolis, Petrović, Tzoganakis, Najafi, Martín-García, Oropesa-Nuñez, Bellani, Castillo, Prato, Stylianakis, Bonaccorso, Kymakis (CR52) 2020; 1 Prezioso, Merrikh Bayat, Hoskins, Likharev, Strukov (CR67) 2016; 6 Wang, Yin, Niu, Li, Kim, Kim (CR22) 2023; 106 Xiong, Hu, She, Lin, Hu, Tang, Sun (CR64) 2019; 11 Kim, Choi, Suh, Han, Kim, Le, Kim, Jang (CR34) 2020; 12 CR12 Mehonic, Sebastian, Rajendran, Simeone, Vasilaki, Kenyon (CR6) 2020; 2 Gerasimov, Zhao, Sultana, Abrahamsson, Han, Bliman, Tu, Simon, Olsson, Crispin, Berggren, Fabiano (CR10) 2021; 7 Lu, Xu (CR78) 2022 Lanza, Sebastian, Lu, Le Gallo, Chang, Akinwande, Puglisi, Alshareef, Liu, Roldan (CR16) 2022; 376 Sun, Wen (CR38) 2020; 2 Liu, Li, Chen, Guo, Wu, Kim (CR43) 2016; 130 Kanno, Uchida (CR69) 2022; 12 Lee, Park, Seo, Kwon, Lee, Kim, Jung, You, Lee, Kim, Pang, Seo, Hwang, Park (CR59) 2018; 10 Zidan, Strachan, Lu (CR14) 2018; 1 Hwang, Lee (CR35) 2017; 29 Tan, Liu, Li, Tan, Liu, Li, Srivastava (CR72) 2018 Rifkin, Klautau (CR66) 2004; 5 Hsu, Hua, Zhang, Jhang, Cheng, Tsai, Wu, Chien, Wu (CR58) 2022; 898 Rogdakis, Chatzimanolis, Psaltakis, Tzoganakis, Tsikritzis, Anthopoulos, Kymakis (CR31) 2023; 9 Kang, Ahn, Song, Lee, Kim, Kim, Yoo, Lee (CR37) 2019; 31 Eshraghian, Ward, Neftci, Wang, Lenz, Dwivedi, Bennamoun, Jeong, Lu (CR77) 2023; 111 John, Shah, Vishwanath, Ng, Febriansyah, Jagadeeswararao, Chang, Basu, Mathews (CR39) 2021; 12 Xu, Liu, Huang, Zheng, Chen, Zhou (CR44) 2017; 5 Futscher, Milić (CR32) 2021 Marreiros, Daunizeau, Kiebel, Friston (CR74) 2008; 42 Hao, Zhang, Dai, Zhang, Huang (CR41) 2020; 12 Lin, Hu, Zang, Zhou, Du, Wang, Han, Tang (CR42) 2018; 4 Liu, Zou, Wu, Wang, Lv, Duan, Zhang, Liu, Wu, Hu, Fan, Liao (CR28) 2021; 31 Guan, Hu, Haque, Wei, Liu, Chen, Wu (CR46) 2018; 28 Wang, Meng, Li, He, Zhu, Ji, Sun, Chen, Zhang (CR68) 2021; 89 Lee, Wolfe, Torres, Yun, Lee (CR61) 2021; 13 Xiao, Hu, Tang, Yan, Gao, Chen, Zou (CR30) 2020; 5 Pereira, Martins, Fortunato, Barquinha, Kiazadeh (CR24) 2023; 3 S Yu (77_CR17) 2017 Z Sheykhifar (77_CR48) 2022; 12 JY Gerasimov (77_CR10) 2021; 7 C Gu (77_CR53) 2016; 10 L Deng (77_CR75) 2012; 29 M Loizos (77_CR26) 2022; 2 J Sun (77_CR29) 2022 C Muthu (77_CR62) 2021; 9 X Xiao (77_CR30) 2020; 5 S Lu (77_CR78) 2022 X Zhu (77_CR54) 2018; 12 S Lee (77_CR61) 2021; 13 Y Huang (77_CR63) 2020; 2 G Lin (77_CR40) 2015; 3 AK Jain (77_CR4) 2007 J Liu (77_CR8) 2022; 13 Y Sun (77_CR36) 2018; 122 D Xue (77_CR57) 2020; 822 X Zhu (77_CR47) 2017; 29 Y van de Burgt (77_CR11) 2020; 45 RA John (77_CR39) 2021; 12 W Wang (77_CR22) 2023; 106 K Kang (77_CR37) 2019; 31 F Zhou (77_CR21) 2019; 14 B Hwang (77_CR35) 2017; 29 P Pietrzak (77_CR76) 2023; 23 MA Zidan (77_CR14) 2018; 1 C-C Hsu (77_CR58) 2022; 898 C Eames (77_CR45) 2015; 6 M-J Lee (77_CR59) 2018; 10 S Mori (77_CR2) 1992; 80 Z-L Chen (77_CR25) 2023; 123 X Guan (77_CR46) 2018; 28 N Tzoganakis (77_CR51) 2021; 9 Q Lin (77_CR42) 2018; 4 MY Hassan (77_CR27) 2019; 11 N Tzoganakis (77_CR50) 2023; 11 Z Xiong (77_CR64) 2019; 11 Y Liu (77_CR43) 2016; 130 K Kanno (77_CR69) 2022; 12 Z Xu (77_CR44) 2017; 5 A Emboras (77_CR7) 2020; 117 K Rogdakis (77_CR13) 2022; 3 A Mehonic (77_CR6) 2020; 2 H Tan (77_CR70) 2015; 27 H Tan (77_CR72) 2018 R Rifkin (77_CR66) 2004; 5 T Venkatesan (77_CR9) 2022; 9 JK Eshraghian (77_CR77) 2023; 111 A Mehonic (77_CR5) 2022; 604 Y Wang (77_CR55) 2022; 10 M Venianaki (77_CR1) 2018; 77 P Pawara (77_CR65) 2020; 108 MH Futscher (77_CR32) 2021 Y Park (77_CR56) 2021; 13 L Liu (77_CR60) 2020; 6 M Lanza (77_CR16) 2022; 376 C Liu (77_CR28) 2021; 31 K Rogdakis (77_CR31) 2023; 9 D Hao (77_CR41) 2020; 12 L Hu (77_CR23) 2021; 31 D Tsikritzis (77_CR52) 2020; 1 H Tan (77_CR71) 2017; 11 AC Marreiros (77_CR74) 2008; 42 Y Wang (77_CR20) 2021; 3 ME Pereira (77_CR24) 2023; 3 77_CR12 T-Y Wang (77_CR68) 2021; 89 X Zhao (77_CR19) 2019; 1 M Prezioso (77_CR67) 2016; 6 H-L Park (77_CR15) 2020; 32 H Ye (77_CR49) 2023; 9 K Yan (77_CR33) 2016; 4 Z-D Luo (77_CR73) 2020; 14 K Rogdakis (77_CR18) 2024; 4 BVK Vijaya Kumar (77_CR3) 2006; 94 Y Sun (77_CR38) 2020; 2 H Kim (77_CR34) 2020; 12 |
References_xml | – volume: 4 start-page: 1375 year: 2016 end-page: 1381 ident: CR33 article-title: High-performance perovskite memristor based on methyl ammonium lead halides publication-title: J Mater Chem C doi: 10.1039/C6TC00141F contributor: fullname: Zou – volume: 5 start-page: 101 year: 2004 end-page: 141 ident: CR66 article-title: In defense of one-vs-all classification publication-title: J Mach Learn Res contributor: fullname: Klautau – volume: 2 start-page: 3695 year: 2020 end-page: 3703 ident: CR63 article-title: Triple-cation perovskite resistive switching memory with enhanced endurance and retention publication-title: ACS Appl Electron Mater doi: 10.1021/acsaelm.0c00674 contributor: fullname: Bian – volume: 13 start-page: 1021 year: 2021 end-page: 1026 ident: CR56 article-title: Bifunctional silver-doped ZnO for reliable and stable organic-inorganic hybrid perovskite memory publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c18038 contributor: fullname: Lee – volume: 13 start-page: 27209 year: 2021 end-page: 27216 ident: CR61 article-title: Asymmetric bipolar resistive switching of halide perovskite film in contact with TiO2 layer publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c06278 contributor: fullname: Lee – volume: 2 start-page: 618 year: 2020 end-page: 625 ident: CR38 article-title: Logic function and random number generator build based on perovskite resistive switching memory and performance conversion via flexible bending publication-title: ACS Appl Electron Mater doi: 10.1021/acsaelm.9b00836 contributor: fullname: Wen – volume: 106 start-page: 108072 year: 2023 ident: CR22 article-title: Tantalum pentoxide (Ta2O5 and Ta2O5-x)-based memristor for photonic in-memory computing application publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108072 contributor: fullname: Kim – volume: 122 start-page: 6431 year: 2018 end-page: 6436 ident: CR36 article-title: Competition between metallic and vacancy defect conductive filaments in a CH3NH3PbI3-based memory device publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b12817 contributor: fullname: Pan – volume: 14 start-page: 746 year: 2020 end-page: 754 ident: CR73 article-title: Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors publication-title: ACS Nano doi: 10.1021/acsnano.9b07687 contributor: fullname: Alexe – ident: CR12 – volume: 3 start-page: 10793 year: 2015 end-page: 10798 ident: CR40 article-title: An organic–inorganic hybrid perovskite logic gate for better computing publication-title: J Mater Chem C doi: 10.1039/C5TC02270C contributor: fullname: Sun – volume: 604 start-page: 255 year: 2022 end-page: 260 ident: CR5 article-title: Brain-inspired computing needs a master plan publication-title: Nature doi: 10.1038/s41586-021-04362-w contributor: fullname: Kenyon – volume: 2 start-page: 11 year: 2022 ident: CR26 article-title: An electronic synaptic memory device based on four-cation mixed halide perovskite publication-title: Discov Mater doi: 10.1007/s43939-022-00032-4 contributor: fullname: Kymakis – volume: 108 start-page: 107528 year: 2020 ident: CR65 article-title: One-vs-One classification for deep neural networks publication-title: Pattern Recognit doi: 10.1016/j.patcog.2020.107528 contributor: fullname: Wiering – volume: 12 start-page: 1242 year: 2018 end-page: 1249 ident: CR54 article-title: Optogenetics-inspired tunable synaptic functions in memristors publication-title: ACS Nano doi: 10.1021/acsnano.7b07317 contributor: fullname: Lu – year: 2021 ident: CR32 article-title: Mixed conductivity of hybrid halide perovskites: emerging opportunities and challenges publication-title: Front Energy Res doi: 10.3389/fenrg.2021.629074 contributor: fullname: Milić – volume: 1 start-page: 183 year: 2019 end-page: 210 ident: CR19 article-title: Memristors with organic-inorganic halide perovskites publication-title: InfoMat doi: 10.1002/inf2.12012 contributor: fullname: Liu – volume: 7 start-page: 2001126 year: 2021 ident: CR10 article-title: A biomimetic evolvable organic electrochemical transistor publication-title: Adv Electron Mater doi: 10.1002/aelm.202001126 contributor: fullname: Fabiano – volume: 94 start-page: 1963 year: 2006 end-page: 1976 ident: CR3 article-title: Correlation pattern recognition for face recognition publication-title: Proc IEEE doi: 10.1109/JPROC.2006.884094 contributor: fullname: Xie – volume: 1 start-page: 450 year: 2020 end-page: 462 ident: CR52 article-title: A two-fold engineering approach based on Bi 2 Te 3 flakes towards efficient and stable inverted perovskite solar cells publication-title: Mater Adv doi: 10.1039/D0MA00162G contributor: fullname: Kymakis – volume: 123 start-page: 100501 year: 2023 ident: CR25 article-title: In-sensor reservoir computing based on optoelectronic synaptic devices publication-title: Appl Phys Lett doi: 10.1063/5.0160599 contributor: fullname: Tang – volume: 13 start-page: 7427 year: 2022 ident: CR8 article-title: A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation publication-title: Nat Commun doi: 10.1038/s41467-022-35092-w contributor: fullname: Xu – volume: 11 start-page: 42339 year: 2019 end-page: 42348 ident: CR27 article-title: On-demand visible-light sensing with optical memory capabilities based on an electrical-breakdown-triggered negative photoconductivity effect in the ubiquitous transparent hafnia publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b13552 contributor: fullname: Ang – volume: 6 start-page: 1901012 year: 2020 ident: CR60 article-title: Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications publication-title: Adv Electron Mater doi: 10.1002/aelm.201901012 contributor: fullname: Zhu – start-page: 13 year: 2007 end-page: 19 ident: CR4 article-title: Biometric recognition: overview and recent advances publication-title: Progress in pattern recognition, image analysis and applications doi: 10.1007/978-3-540-76725-1_2 contributor: fullname: Kittler – volume: 3 start-page: 022002 year: 2023 ident: CR24 article-title: Recent progress in optoelectronic memristors for neuromorphic and in-memory computation publication-title: Neuromorphic Comput Eng doi: 10.1088/2634-4386/acd4e2 contributor: fullname: Kiazadeh – volume: 12 start-page: 3681 year: 2021 ident: CR39 article-title: Halide perovskite memristors as flexible and reconfigurable physical unclonable functions publication-title: Nat Commun doi: 10.1038/s41467-021-24057-0 contributor: fullname: Mathews – volume: 130 start-page: 109 year: 2016 end-page: 112 ident: CR43 article-title: Resistive switching memory based on organic/inorganic hybrid perovskite materials publication-title: Vacuum doi: 10.1016/j.vacuum.2016.05.010 contributor: fullname: Kim – volume: 45 start-page: 631 year: 2020 end-page: 640 ident: CR11 article-title: Organic materials and devices for brain-inspired computing: from artificial implementation to biophysical realism publication-title: MRS Bull doi: 10.1557/mrs.2020.194 contributor: fullname: Gkoupidenis – volume: 117 start-page: 230502 year: 2020 ident: CR7 article-title: Opto-electronic memristors: prospects and challenges in neuromorphic computing publication-title: Appl Phys Lett doi: 10.1063/5.0028539 contributor: fullname: Luisier – year: 2022 ident: CR29 article-title: A dual-mode organic memristor for coordinated visual perceptive computing publication-title: Fundam Res doi: 10.1016/j.fmre.2022.06.022 contributor: fullname: Liu – volume: 9 start-page: 288 year: 2021 end-page: 293 ident: CR62 article-title: Resistive switching in formamidinium lead iodide perovskite nanocrystals: a contradiction to the bulk form publication-title: J Mater Chem C doi: 10.1039/D0TC03275A contributor: fullname: Vijayakumar – volume: 2 start-page: 2000085 year: 2020 ident: CR6 article-title: Memristors—from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing publication-title: Adv Intell Syst doi: 10.1002/aisy.202000085 contributor: fullname: Kenyon – volume: 11 start-page: 11298 year: 2017 end-page: 11305 ident: CR71 article-title: Light-gated memristor with integrated logic and memory functions publication-title: ACS Nano doi: 10.1021/acsnano.7b05762 contributor: fullname: Li – volume: 111 start-page: 1016 year: 2023 end-page: 1054 ident: CR77 article-title: Training spiking neural networks using lessons from deep learning publication-title: Proc IEEE doi: 10.1109/JPROC.2023.3308088 contributor: fullname: Lu – year: 2017 ident: CR17 publication-title: Neuro-inspired computing using resistive synaptic devices doi: 10.1007/978-3-319-54313-0 contributor: fullname: Yu – volume: 9 start-page: 2200657 year: 2023 ident: CR49 article-title: Optoelectronic resistive memory based on lead-free Cs2AgBiBr 6 double perovskite for artificial self-storage visual sensors publication-title: Adv Electron Mater doi: 10.1002/aelm.202200657 contributor: fullname: Liao – volume: 9 start-page: 14709 year: 2021 end-page: 14719 ident: CR51 article-title: Ultrathin PTAA interlayer in conjunction with azulene derivatives for the fabrication of inverted perovskite solar cells publication-title: J Mater Chem C doi: 10.1039/D1TC02726C contributor: fullname: Kymakis – volume: 822 start-page: 153552 year: 2020 ident: CR57 article-title: Flexible resistive switching device based on the TiO2 nanorod arrays for non-volatile memory application publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.153552 contributor: fullname: Cong – volume: 14 start-page: 776 year: 2019 end-page: 782 ident: CR21 article-title: Optoelectronic resistive random access memory for neuromorphic vision sensors publication-title: Nat Nanotechnol doi: 10.1038/s41565-019-0501-3 contributor: fullname: Chai – volume: 31 start-page: 2100781 year: 2021 ident: CR28 article-title: Polarization-resolved broadband MoS2/black phosphorus/MoS2 optoelectronic memory with ultralong retention time and ultrahigh switching ratio publication-title: Adv Funct Mater doi: 10.1002/adfm.202100781 contributor: fullname: Liao – volume: 5 start-page: 1900914 year: 2020 ident: CR30 article-title: Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications publication-title: Adv Mater Technol doi: 10.1002/admt.201900914 contributor: fullname: Zou – volume: 10 start-page: 5413 year: 2016 end-page: 5418 ident: CR53 article-title: Flexible hybrid organic-inorganic perovskite memory publication-title: ACS Nano doi: 10.1021/acsnano.6b01643 contributor: fullname: Lee – volume: 42 start-page: 147 year: 2008 end-page: 157 ident: CR74 article-title: Population dynamics: variance and the sigmoid activation function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.04.239 contributor: fullname: Friston – volume: 1 start-page: 22 year: 2018 end-page: 29 ident: CR14 article-title: The future of electronics based on memristive systems publication-title: Nat Electron doi: 10.1038/s41928-017-0006-8 contributor: fullname: Lu – volume: 23 start-page: 3037 year: 2023 ident: CR76 article-title: Overview of spiking neural network learning approaches and their computational complexities publication-title: Sensors doi: 10.3390/s23063037 contributor: fullname: Przyborowski – volume: 12 start-page: 3720 year: 2022 ident: CR69 article-title: Photonic reinforcement learning based on optoelectronic reservoir computing publication-title: Sci Rep doi: 10.1038/s41598-022-07404-z contributor: fullname: Uchida – volume: 4 start-page: 4 year: 2024 ident: CR18 article-title: Hybrid chips to enable a sustainable internet of things technology: opportunities and challenges publication-title: Discov Mater doi: 10.1007/s43939-024-00074-w contributor: fullname: Kymakis – volume: 4 start-page: 1700596 year: 2018 ident: CR42 article-title: Transient resistive switching memory of CsPbBr 3 thin films publication-title: Adv Electron Mater doi: 10.1002/aelm.201700596 contributor: fullname: Tang – volume: 31 start-page: 1804841 year: 2019 ident: CR37 article-title: High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure publication-title: Adv Mater doi: 10.1002/adma.201804841 contributor: fullname: Lee – volume: 80 start-page: 1029 year: 1992 end-page: 1058 ident: CR2 article-title: Historical review of OCR research and development publication-title: Proc IEEE doi: 10.1109/5.156468 contributor: fullname: Yamamoto – volume: 11 start-page: 2201017 year: 2023 ident: CR50 article-title: Performance and stability improvement of inverted perovskite solar cells by interface modification of charge transport layers using an azulene-pyridine molecule publication-title: Energy Technol doi: 10.1002/ente.202201017 contributor: fullname: Kymakis – volume: 6 start-page: 7497 year: 2015 ident: CR45 article-title: Ionic transport in hybrid lead iodide perovskite solar cells publication-title: Nat Commun doi: 10.1038/ncomms8497 contributor: fullname: Islam – volume: 9 start-page: 010401 year: 2022 ident: CR9 article-title: Brain inspired electronics publication-title: Appl Phys Rev doi: 10.1063/5.0078798 contributor: fullname: Williams – volume: 77 start-page: 9417 year: 2018 end-page: 9439 ident: CR1 article-title: Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5046-6 contributor: fullname: Marias – volume: 3 start-page: 2000099 year: 2021 ident: CR20 article-title: Optoelectronic synaptic devices for neuromorphic computing publication-title: Adv Intell Syst doi: 10.1002/aisy.202000099 contributor: fullname: Pi – year: 2022 ident: CR78 article-title: Linear leaky-integrate-and-fire neuron model based spiking neural networks and its mapping relationship to deep neural networks publication-title: Front Neurosci doi: 10.3389/fnins.2022.857513 contributor: fullname: Xu – volume: 376 start-page: eabj9979 year: 2022 ident: CR16 article-title: Memristive technologies for data storage, computation, encryption, and radio-frequency communication publication-title: Science doi: 10.1126/science.abj9979 contributor: fullname: Roldan – volume: 11 start-page: 30037 year: 2019 end-page: 30044 ident: CR64 article-title: Air-stable lead-free perovskite thin film based on CsBi3I10 and its application in resistive switching devices publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b09080 contributor: fullname: Sun – volume: 9 start-page: 2300424 year: 2023 ident: CR31 article-title: Mixed-halide perovskite memristors with gate-tunable functions operating at low-switching electric fields publication-title: Adv Electron Mater doi: 10.1002/aelm.202300424 contributor: fullname: Kymakis – volume: 31 start-page: 2005582 year: 2021 ident: CR23 article-title: All-optically controlled memristor for optoelectronic neuromorphic computing publication-title: Adv Funct Mater doi: 10.1002/adfm.202005582 contributor: fullname: Zhuge – volume: 5 start-page: 5810 year: 2017 end-page: 5817 ident: CR44 article-title: To probe the performance of perovskite memory devices: defects property and hysteresis publication-title: J Mater Chem C doi: 10.1039/C7TC00266A contributor: fullname: Zhou – volume: 898 start-page: 162918 year: 2022 ident: CR58 article-title: Effects of interfacial oxide layer formed by annealing process on WORM characteristics of Ag/CuxO/SiOx/n+–Si devices publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.162918 contributor: fullname: Wu – volume: 28 start-page: 1704665 year: 2018 ident: CR46 article-title: Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite Schottky junctions publication-title: Adv Funct Mater doi: 10.1002/adfm.201704665 contributor: fullname: Wu – volume: 29 start-page: 141 year: 2012 end-page: 142 ident: CR75 article-title: The MNIST database of handwritten digit images for machine learning research [Best of the Web] publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2211477 contributor: fullname: Deng – volume: 12 start-page: 1 year: 2020 end-page: 11 ident: CR34 article-title: Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109 publication-title: NPG Asia Mater doi: 10.1038/s41427-020-0202-2 contributor: fullname: Jang – volume: 12 start-page: 39487 year: 2020 end-page: 39495 ident: CR41 article-title: Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c10851 contributor: fullname: Huang – volume: 12 start-page: 18771 year: 2022 ident: CR48 article-title: Highly light-tunable memristors in solution-processed 2D materials/metal composites publication-title: Sci Rep doi: 10.1038/s41598-022-23404-5 contributor: fullname: Mohseni – volume: 27 start-page: 2797 year: 2015 end-page: 2803 ident: CR70 article-title: An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions publication-title: Adv Mater doi: 10.1002/adma.201500039 contributor: fullname: Li – volume: 29 start-page: 1701048 year: 2017 ident: CR35 article-title: A strategy to design high-density nanoscale devices utilizing vapor deposition of metal halide perovskite materials publication-title: Adv Mater doi: 10.1002/adma.201701048 contributor: fullname: Lee – volume: 3 start-page: 7002 year: 2022 end-page: 7014 ident: CR13 article-title: Memristive perovskite solar cells towards parallel solar energy harvesting and processing-in-memory computing publication-title: Mater Adv doi: 10.1039/D2MA00402J contributor: fullname: Kymakis – volume: 32 start-page: 1903558 year: 2020 ident: CR15 article-title: Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics publication-title: Adv Mater doi: 10.1002/adma.201903558 contributor: fullname: Lee – volume: 10 start-page: 29757 year: 2018 end-page: 29765 ident: CR59 article-title: Reliable multivalued conductance states in TaOx memristors through oxygen plasma-assisted electrode deposition with in situ-biased conductance state transmission electron microscopy analysis publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b09046 contributor: fullname: Park – volume: 10 start-page: 1414 year: 2022 end-page: 1420 ident: CR55 article-title: Inverse photoconductivity effect in triple cation organic–inorganic hybrid perovskite memristors with various iodine concentrations, electrodes, and modified layers publication-title: J Mater Chem C doi: 10.1039/D1TC04757D contributor: fullname: Wang – volume: 6 start-page: 21331 year: 2016 ident: CR67 article-title: Self-adaptive spike-time-dependent plasticity of metal-oxide memristors publication-title: Sci Rep doi: 10.1038/srep21331 contributor: fullname: Strukov – volume: 89 start-page: 106291 year: 2021 ident: CR68 article-title: Reconfigurable optoelectronic memristor for in-sensor computing applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106291 contributor: fullname: Zhang – volume: 29 start-page: 1700527 year: 2017 ident: CR47 article-title: Iodine vacancy redistribution in organic-inorganic halide perovskite films and resistive switching effects publication-title: Adv Mater doi: 10.1002/adma.201700527 contributor: fullname: Lu – year: 2018 ident: CR72 article-title: Multifunctional optoelectronic device based on resistive switching effects publication-title: Recent development in optoelectronic devices doi: 10.5772/intechopen.74826 contributor: fullname: Srivastava – volume: 9 start-page: 2200657 year: 2023 ident: 77_CR49 publication-title: Adv Electron Mater doi: 10.1002/aelm.202200657 contributor: fullname: H Ye – volume: 14 start-page: 776 year: 2019 ident: 77_CR21 publication-title: Nat Nanotechnol doi: 10.1038/s41565-019-0501-3 contributor: fullname: F Zhou – year: 2021 ident: 77_CR32 publication-title: Front Energy Res doi: 10.3389/fenrg.2021.629074 contributor: fullname: MH Futscher – volume: 5 start-page: 101 year: 2004 ident: 77_CR66 publication-title: J Mach Learn Res contributor: fullname: R Rifkin – volume: 45 start-page: 631 year: 2020 ident: 77_CR11 publication-title: MRS Bull doi: 10.1557/mrs.2020.194 contributor: fullname: Y van de Burgt – volume: 6 start-page: 21331 year: 2016 ident: 77_CR67 publication-title: Sci Rep doi: 10.1038/srep21331 contributor: fullname: M Prezioso – volume: 3 start-page: 2000099 year: 2021 ident: 77_CR20 publication-title: Adv Intell Syst doi: 10.1002/aisy.202000099 contributor: fullname: Y Wang – volume: 32 start-page: 1903558 year: 2020 ident: 77_CR15 publication-title: Adv Mater doi: 10.1002/adma.201903558 contributor: fullname: H-L Park – volume: 12 start-page: 3681 year: 2021 ident: 77_CR39 publication-title: Nat Commun doi: 10.1038/s41467-021-24057-0 contributor: fullname: RA John – volume: 376 start-page: eabj9979 year: 2022 ident: 77_CR16 publication-title: Science doi: 10.1126/science.abj9979 contributor: fullname: M Lanza – volume: 12 start-page: 39487 year: 2020 ident: 77_CR41 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c10851 contributor: fullname: D Hao – volume: 5 start-page: 5810 year: 2017 ident: 77_CR44 publication-title: J Mater Chem C doi: 10.1039/C7TC00266A contributor: fullname: Z Xu – volume-title: Neuro-inspired computing using resistive synaptic devices year: 2017 ident: 77_CR17 doi: 10.1007/978-3-319-54313-0 contributor: fullname: S Yu – volume: 11 start-page: 11298 year: 2017 ident: 77_CR71 publication-title: ACS Nano doi: 10.1021/acsnano.7b05762 contributor: fullname: H Tan – volume: 822 start-page: 153552 year: 2020 ident: 77_CR57 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.153552 contributor: fullname: D Xue – volume: 108 start-page: 107528 year: 2020 ident: 77_CR65 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2020.107528 contributor: fullname: P Pawara – volume: 11 start-page: 2201017 year: 2023 ident: 77_CR50 publication-title: Energy Technol doi: 10.1002/ente.202201017 contributor: fullname: N Tzoganakis – volume: 9 start-page: 14709 year: 2021 ident: 77_CR51 publication-title: J Mater Chem C doi: 10.1039/D1TC02726C contributor: fullname: N Tzoganakis – volume: 2 start-page: 3695 year: 2020 ident: 77_CR63 publication-title: ACS Appl Electron Mater doi: 10.1021/acsaelm.0c00674 contributor: fullname: Y Huang – start-page: 13 volume-title: Progress in pattern recognition, image analysis and applications year: 2007 ident: 77_CR4 doi: 10.1007/978-3-540-76725-1_2 contributor: fullname: AK Jain – volume: 2 start-page: 618 year: 2020 ident: 77_CR38 publication-title: ACS Appl Electron Mater doi: 10.1021/acsaelm.9b00836 contributor: fullname: Y Sun – volume: 29 start-page: 141 year: 2012 ident: 77_CR75 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2211477 contributor: fullname: L Deng – volume: 130 start-page: 109 year: 2016 ident: 77_CR43 publication-title: Vacuum doi: 10.1016/j.vacuum.2016.05.010 contributor: fullname: Y Liu – volume: 29 start-page: 1701048 year: 2017 ident: 77_CR35 publication-title: Adv Mater doi: 10.1002/adma.201701048 contributor: fullname: B Hwang – volume: 29 start-page: 1700527 year: 2017 ident: 77_CR47 publication-title: Adv Mater doi: 10.1002/adma.201700527 contributor: fullname: X Zhu – volume: 4 start-page: 1375 year: 2016 ident: 77_CR33 publication-title: J Mater Chem C doi: 10.1039/C6TC00141F contributor: fullname: K Yan – volume: 898 start-page: 162918 year: 2022 ident: 77_CR58 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2021.162918 contributor: fullname: C-C Hsu – volume: 13 start-page: 27209 year: 2021 ident: 77_CR61 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c06278 contributor: fullname: S Lee – volume: 42 start-page: 147 year: 2008 ident: 77_CR74 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.04.239 contributor: fullname: AC Marreiros – volume: 4 start-page: 4 year: 2024 ident: 77_CR18 publication-title: Discov Mater doi: 10.1007/s43939-024-00074-w contributor: fullname: K Rogdakis – volume: 604 start-page: 255 year: 2022 ident: 77_CR5 publication-title: Nature doi: 10.1038/s41586-021-04362-w contributor: fullname: A Mehonic – volume: 6 start-page: 7497 year: 2015 ident: 77_CR45 publication-title: Nat Commun doi: 10.1038/ncomms8497 contributor: fullname: C Eames – volume: 77 start-page: 9417 year: 2018 ident: 77_CR1 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5046-6 contributor: fullname: M Venianaki – volume: 7 start-page: 2001126 year: 2021 ident: 77_CR10 publication-title: Adv Electron Mater doi: 10.1002/aelm.202001126 contributor: fullname: JY Gerasimov – ident: 77_CR12 doi: 10.1109/ISCAS.2014.6865326 – volume: 117 start-page: 230502 year: 2020 ident: 77_CR7 publication-title: Appl Phys Lett doi: 10.1063/5.0028539 contributor: fullname: A Emboras – volume: 11 start-page: 30037 year: 2019 ident: 77_CR64 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b09080 contributor: fullname: Z Xiong – volume: 27 start-page: 2797 year: 2015 ident: 77_CR70 publication-title: Adv Mater doi: 10.1002/adma.201500039 contributor: fullname: H Tan – volume: 11 start-page: 42339 year: 2019 ident: 77_CR27 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b13552 contributor: fullname: MY Hassan – volume: 14 start-page: 746 year: 2020 ident: 77_CR73 publication-title: ACS Nano doi: 10.1021/acsnano.9b07687 contributor: fullname: Z-D Luo – volume: 94 start-page: 1963 year: 2006 ident: 77_CR3 publication-title: Proc IEEE doi: 10.1109/JPROC.2006.884094 contributor: fullname: BVK Vijaya Kumar – volume: 12 start-page: 1242 year: 2018 ident: 77_CR54 publication-title: ACS Nano doi: 10.1021/acsnano.7b07317 contributor: fullname: X Zhu – volume: 1 start-page: 183 year: 2019 ident: 77_CR19 publication-title: InfoMat doi: 10.1002/inf2.12012 contributor: fullname: X Zhao – volume: 3 start-page: 10793 year: 2015 ident: 77_CR40 publication-title: J Mater Chem C doi: 10.1039/C5TC02270C contributor: fullname: G Lin – volume: 80 start-page: 1029 year: 1992 ident: 77_CR2 publication-title: Proc IEEE doi: 10.1109/5.156468 contributor: fullname: S Mori – year: 2022 ident: 77_CR78 publication-title: Front Neurosci doi: 10.3389/fnins.2022.857513 contributor: fullname: S Lu – volume: 3 start-page: 7002 year: 2022 ident: 77_CR13 publication-title: Mater Adv doi: 10.1039/D2MA00402J contributor: fullname: K Rogdakis – volume: 31 start-page: 2100781 year: 2021 ident: 77_CR28 publication-title: Adv Funct Mater doi: 10.1002/adfm.202100781 contributor: fullname: C Liu – volume: 9 start-page: 288 year: 2021 ident: 77_CR62 publication-title: J Mater Chem C doi: 10.1039/D0TC03275A contributor: fullname: C Muthu – year: 2022 ident: 77_CR29 publication-title: Fundam Res doi: 10.1016/j.fmre.2022.06.022 contributor: fullname: J Sun – volume: 3 start-page: 022002 year: 2023 ident: 77_CR24 publication-title: Neuromorphic Comput Eng doi: 10.1088/2634-4386/acd4e2 contributor: fullname: ME Pereira – volume: 6 start-page: 1901012 year: 2020 ident: 77_CR60 publication-title: Adv Electron Mater doi: 10.1002/aelm.201901012 contributor: fullname: L Liu – volume-title: Recent development in optoelectronic devices year: 2018 ident: 77_CR72 doi: 10.5772/intechopen.74826 contributor: fullname: H Tan – volume: 106 start-page: 108072 year: 2023 ident: 77_CR22 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108072 contributor: fullname: W Wang – volume: 12 start-page: 1 year: 2020 ident: 77_CR34 publication-title: NPG Asia Mater doi: 10.1038/s41427-020-0202-2 contributor: fullname: H Kim – volume: 28 start-page: 1704665 year: 2018 ident: 77_CR46 publication-title: Adv Funct Mater doi: 10.1002/adfm.201704665 contributor: fullname: X Guan – volume: 4 start-page: 1700596 year: 2018 ident: 77_CR42 publication-title: Adv Electron Mater doi: 10.1002/aelm.201700596 contributor: fullname: Q Lin – volume: 9 start-page: 010401 year: 2022 ident: 77_CR9 publication-title: Appl Phys Rev doi: 10.1063/5.0078798 contributor: fullname: T Venkatesan – volume: 10 start-page: 29757 year: 2018 ident: 77_CR59 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b09046 contributor: fullname: M-J Lee – volume: 12 start-page: 18771 year: 2022 ident: 77_CR48 publication-title: Sci Rep doi: 10.1038/s41598-022-23404-5 contributor: fullname: Z Sheykhifar – volume: 31 start-page: 1804841 year: 2019 ident: 77_CR37 publication-title: Adv Mater doi: 10.1002/adma.201804841 contributor: fullname: K Kang – volume: 89 start-page: 106291 year: 2021 ident: 77_CR68 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106291 contributor: fullname: T-Y Wang – volume: 1 start-page: 450 year: 2020 ident: 77_CR52 publication-title: Mater Adv doi: 10.1039/D0MA00162G contributor: fullname: D Tsikritzis – volume: 12 start-page: 3720 year: 2022 ident: 77_CR69 publication-title: Sci Rep doi: 10.1038/s41598-022-07404-z contributor: fullname: K Kanno – volume: 5 start-page: 1900914 year: 2020 ident: 77_CR30 publication-title: Adv Mater Technol doi: 10.1002/admt.201900914 contributor: fullname: X Xiao – volume: 9 start-page: 2300424 year: 2023 ident: 77_CR31 publication-title: Adv Electron Mater doi: 10.1002/aelm.202300424 contributor: fullname: K Rogdakis – volume: 13 start-page: 7427 year: 2022 ident: 77_CR8 publication-title: Nat Commun doi: 10.1038/s41467-022-35092-w contributor: fullname: J Liu – volume: 122 start-page: 6431 year: 2018 ident: 77_CR36 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b12817 contributor: fullname: Y Sun – volume: 13 start-page: 1021 year: 2021 ident: 77_CR56 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c18038 contributor: fullname: Y Park – volume: 111 start-page: 1016 year: 2023 ident: 77_CR77 publication-title: Proc IEEE doi: 10.1109/JPROC.2023.3308088 contributor: fullname: JK Eshraghian – volume: 1 start-page: 22 year: 2018 ident: 77_CR14 publication-title: Nat Electron doi: 10.1038/s41928-017-0006-8 contributor: fullname: MA Zidan – volume: 2 start-page: 11 year: 2022 ident: 77_CR26 publication-title: Discov Mater doi: 10.1007/s43939-022-00032-4 contributor: fullname: M Loizos – volume: 10 start-page: 5413 year: 2016 ident: 77_CR53 publication-title: ACS Nano doi: 10.1021/acsnano.6b01643 contributor: fullname: C Gu – volume: 23 start-page: 3037 year: 2023 ident: 77_CR76 publication-title: Sensors doi: 10.3390/s23063037 contributor: fullname: P Pietrzak – volume: 31 start-page: 2005582 year: 2021 ident: 77_CR23 publication-title: Adv Funct Mater doi: 10.1002/adfm.202005582 contributor: fullname: L Hu – volume: 123 start-page: 100501 year: 2023 ident: 77_CR25 publication-title: Appl Phys Lett doi: 10.1063/5.0160599 contributor: fullname: Z-L Chen – volume: 2 start-page: 2000085 year: 2020 ident: 77_CR6 publication-title: Adv Intell Syst doi: 10.1002/aisy.202000085 contributor: fullname: A Mehonic – volume: 10 start-page: 1414 year: 2022 ident: 77_CR55 publication-title: J Mater Chem C doi: 10.1039/D1TC04757D contributor: fullname: Y Wang |
SSID | ssj0002513210 |
Score | 2.3004065 |
Snippet | Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial... Abstract Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 7 |
SubjectTerms | Accuracy Algorithms Biomaterials Characterization and Evaluation of Materials Chemistry and Materials Science Classification Energy consumption Energy Materials Internet of Things Light Materials Science Metallic Materials Neural networks Pattern recognition Structural Materials |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtTr2UhrR026TMIbeuqG29rGPbJOTUQB_Qm9BjBIHEG7K7gf62_rmOZO9uUwi9BAw2si0NnrG-GWkejB33MQVtfcdTsIHLmBtuZRbcky1C-C5UrOXezr-ZLz_7k9OSJmdb6qv4hI3pgccP94EQkhDF5hb7VkZUvfad8VrGhEJbkevs2-i_jKkyBxNql-CUKUqmxsoR8grLCZJKILUx3NxDopqw_56W-c_GaMWbsxfs-aQowseRwH32BIcD9vtiQH635HSaw3T9lfqZgx8SeBgWd3gFF-sVyRHyk9sylcHuHQg1-hZiUZkvc6mCDViDpxKEX7C4WS12ZXHgGq9r4gF6aFWda5dQ_D2payIYSrQWNSJclRCpcd0PLgeoHop1gO0w46rgS_bj7PT753M-lV_gURBu8Vb1iay5Do1uovKyi9pobXMTfRu0ydKK6LOKrdZeRYkytNmjyk3KbalTJV6xvWEx4GsGAckQCqZXQZRtTkLAzqqGhCdZnyTmGXu_YYW7GbNsuG0-5co4R4xzlXHOzNinwq3tkyVDdm0guXGT3Lj_yc2MHW547abfdulI9yF7s1NdM2PzDf93tx8m6c1jkPSWPeuqfAo6Dtne6naNR-zpMq3fVen-Aze8_2g priority: 102 providerName: Directory of Open Access Journals |
Title | One-vs-One, One-vs-Rest, and a novel Outcome-Driven One-vs-One binary classifiers enabled by optoelectronic memristors towards overcoming hardware limitations in multiclass classification |
URI | https://link.springer.com/article/10.1007/s43939-024-00077-7 https://www.proquest.com/docview/2934012520 https://doaj.org/article/6588539f1e814ce586a27a64cde3693f |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja90wEBZNesmlC2noS9Mwh9zyFGxrs45tFnJKoAv0JrSW0MQObwn0t_XPdaTn50dKemjBYCPLGpkZaUYjfTOEHLU-OKltQ4PTjnKfKqp5YtTiWgT1OxO-pHu7_KyuvrVn5zlMDhtdF92Pk_WOZJmoR6wbak6mKaqUDIRWiqot8hyNB57TFpwOEIc8_aLCzriUASDz9KePlFCJ1f_IwPxjT7SomouX_9XJV-TFYFnCh5UovCbPYrdLfl13kT7MKd6mMDx_QupTsF0AC13_EG_hernA9iM9m-W5DzbfgCtwXfDZxr5JOW02xIK2CuB-Qn-_6Dd5dOAu3pVIBVhpUU7jziEfEMWm8R8gw7uwMMJtxlStHIVw00E50lgIjGRWbsQ35OvF-ZfTSzrka6CeoaKjtWgDLv-aqGTlheWNl0pKnSpvaydV4pp5m4SvpbTC88hdnWwUqQqpzomt2B7Z7vouviXgIq6cnGqFY3lfFFVmo0WF0ha0DTymCTleM9Dcr8JymDEAc2GCQSaYwgSjJuRj5vFYM4fULgX97LsZRqhBUwxNF53q2NbcR9FK2ygruQ-RSc2Q5MFaQswwzucGjSVcoDaiqSZkuhaJzeu_d2n_36q_IztNkSqG1wHZXsyW8T3ZmoflYZH-w-JL-A3DCgOC |
link.rule.ids | 315,782,786,866,2106,27933,27934,41128,42197,52242 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcCFhwCxpcAcuLGWkvgVH6EPLaK0EhSJm-UnqtQm1T4q8dv4c4y9ya6K4ABSpESOYzuasWfGnm-GkDetD05q29DgtKPcp4pqnhi1aIugfGfCl3Rvsy_q9Ft7eJTD5PARC1O83ccjybJSb8BuKDqZpihTMhJaKap2yF2OEy6bXAcDxiGvvyixMzBlQMj8-dNbUqgE67-lYf52KFpkzfHD_xvlI_Jg0C3h3ZoZHpM7sXtCfp51kd4sKN6mMDx_xu6nYLsAFrr-Jl7C2WqJ7Ud6OM-rH2y_AVcAu-Czln2RcuJsiAVvFcD9gP562W8z6cBVvCqxCrDSsvjjLiC7iGLT-A-QAV5YGOEyo6rWW4Vw0UFxaiwdbLpZbyQ-JV-Pj84PZnTI2EA9Q1FHa9EGNACbqGTlheWNl0pKnSpvaydV4pp5m4SvpbTC88hdnWwUqQqpzqmt2DOy2_VdfE7ARbSdnGqFY_lkFIVmo0WF_Ba0DTymCXk7UtBcrwNzmE0I5kIEg0QwhQhGTcj7TORNzRxUuxT08-9mmKMGlTFUXnSqY1tzH0UrbaOs5D5EJjXDLvdHFjHDTF8YVJfQRG1EU03IdGSJ7eu_D2nv36q_Jvdm559OzMmH048vyP2mcBjDa5_sLuer-JLsLMLqVZkKvwD93gZn |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-2gviiFRVPa82Db17o7uZr86i9HhWlFT_At5DPUmh3j7u9gn-b_5yT7N4elfpQhIVdsskmy0wyM8n8ZhB6WztvhTIV8VZZwlwsiGKREgO2CMh3yl1O93byTZ7-rGfHKUzOiOLP3u6bI8ke05CiNDXd4cLHwxH4BmKUKgLyJaGipSRyB91noDokp66jAe-Q1mKQ3gmkMqBlbm96QyLlwP03tM2_Dkiz3Jk__v8R76FHg86J3_dM8gTdC81T9PusCeR6ReA2xcPzVxjKFJvGY4Ob9jpc4rN1B30FMlumVRFv22CbgbzYJe37IqaE2jhkHJbH9hduF127zbCDr8JVjmEAlbrsp7vCyXUUPg3_gxPwCwoDvkxoq34LEV80ODs75g7GbvoNxmfox_z4-9EJGTI5EEdBBJKS1x4MwypIUThuWOWEFELFwpnSChmZos5E7kohDHcsMFtGE3gsfCxTyiv6HO02bRNeIGwD2FRW1tzSdGIKwrRSvAA-9Mp4FuIEvdtQUy_6gB16DM2ciaCBCDoTQcsJ-pAIPtZMwbZzQbs818Pc1aCkgVKjYhnqkrnAa2EqaQRzPlChKHS5v2EXPawAKw1qFJiuFa-KCZpu2GP7-t9Denm36m_Qgy-zuf788fTTK_SwygxG4dpHu91yHV6jnZVfH-RZ8QfIqA9C |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-vs-One%2C+One-vs-Rest%2C+and+a+novel+Outcome-Driven+One-vs-One+binary+classifiers+enabled+by+optoelectronic+memristors+towards+overcoming+hardware+limitations+in+multiclass+classification&rft.jtitle=Discover+materials&rft.au=Psaltakis%2C+George&rft.au=Rogdakis%2C+Konstantinos&rft.au=Loizos%2C+Michalis&rft.au=Kymakis%2C+Emmanuel&rft.date=2024-03-03&rft.pub=Springer+International+Publishing&rft.eissn=2730-7727&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs43939-024-00077-7&rft.externalDocID=10_1007_s43939_024_00077_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7727&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7727&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7727&client=summon |