One-vs-One, One-vs-Rest, and a novel Outcome-Driven One-vs-One binary classifiers enabled by optoelectronic memristors towards overcoming hardware limitations in multiclass classification

Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adop...

Full description

Saved in:
Bibliographic Details
Published in:Discover materials Vol. 4; no. 1; pp. 7 - 13
Main Authors: Psaltakis, George, Rogdakis, Konstantinos, Loizos, Michalis, Kymakis, Emmanuel
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 03-03-2024
Springer Nature B.V
Springer
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to N 2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification.
AbstractList Abstract Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to $$\frac{N}{2}$$ N 2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification.
Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to N 2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification.
Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to $$\frac{N}{2}$$ N 2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification.
Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial intelligence (AI) systems require large computing hardware infrastructure and high power consumption. To overcome these hurdles, it is required to adopt new strategies such as designing novel computation architectures and developing building blocks that can mimic the low energy consumption of biological systems. On the architecture level, implementing classification tasks by splitting the problem into simpler subtasks is a way to relax hardware constraints despite the less accuracy of the approach. On the computation unit level, memristive devices are a promising technology for low power neuromorphic computation. Hereby, we combine both these two approaches and present a novel algorithmic approach for multiclass classification tasks through splitting the problem into binary subtasks while using optoelectronics memristors as synapses. Our approach leverages the core fundamentals from the One-vs-One (OvO) and the One-vs-Rest (OvR) classification strategies towards a novel Outcome-Driven One-vs-One (ODOvO) approach. The light modulation of synaptic weights, fed in our algorithm from experimental data, is a key enabling parameter that permits classification without modifying further applied electrical biases. Our approach requires at least a 10X less synapses (only 196 synapses are required) while reduces the classification time by up to N2 compared to conventional memristors. We show that the novel ODOvO algorithm has similar accuracies to OvO (reaching over 60% on the MNIST dataset) while requiring even fewer iterations compared to the OvR. Consequently, our approach constitutes a feasible solution for neural networks where key priorities are the minimum energy consumption i.e., small iterations number, fast execution, and the low hardware requirements allowing experimental verification.
ArticleNumber 7
Author Kymakis, Emmanuel
Rogdakis, Konstantinos
Loizos, Michalis
Psaltakis, George
Author_xml – sequence: 1
  givenname: George
  surname: Psaltakis
  fullname: Psaltakis, George
  organization: Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU)
– sequence: 2
  givenname: Konstantinos
  surname: Rogdakis
  fullname: Rogdakis, Konstantinos
  email: krogdakis@hmu.gr
  organization: Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Institute of Emerging Technologies (I-EMERGE), University Research and Innovation Center, HMU
– sequence: 3
  givenname: Michalis
  surname: Loizos
  fullname: Loizos, Michalis
  organization: Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU)
– sequence: 4
  givenname: Emmanuel
  surname: Kymakis
  fullname: Kymakis, Emmanuel
  email: kymakis@hmu.gr
  organization: Department of Electrical & Computer Engineering, Hellenic Mediterranean University (HMU), Institute of Emerging Technologies (I-EMERGE), University Research and Innovation Center, HMU
BookMark eNp9UVtvFCEUJqYm1to_4BOJr0W5DDDzaOqtSZNNjD4TBg4rmxlYYXZNf1v_nHSnaX3y6RwO3-XA9xqdpZwAobeMvmeU6g-1E4MYCOUdoe2siX6BzrkWlGjN9dk__St0WeuugbhkgjN6ju43Ccixklau8GP_HepyhW3y2OKUjzDhzWFxeQbyqcQjJPzMwWNMttxhN9laY4hQKoZkxwk8Hu9w3i8ZJnBLySk6PMNcYl1yAy35jy2-4iZfmnRMW_yrDdoQ8BTnuNgl5lRxTHg-TEs8GTzZuNPtG_Qy2KnC5WO9QD-_fP5x_Y3cbr7eXH-8JU70lBEme88GxkEr6qTtuFNaqSFQZ9modOgG4WyQjillpeugG1mwIAP1gXmvvLhAN6uuz3Zn9iXO7ckm22hOg1y2xpaHFcEo2fdSDIFBzzoHsleWa6s650GoQYSm9W7V2pf8-9A-2uzyoaS2vuGD6CjjktOG4ivKlVxrgfDkyqh5yNysmZuWuTllbnQjiZVUGzhtoTxL_4f1F_lLtI0
CitedBy_id crossref_primary_10_1016_j_microc_2024_111039
Cites_doi 10.1039/C6TC00141F
10.1021/acsaelm.0c00674
10.1021/acsami.0c18038
10.1021/acsami.1c06278
10.1021/acsaelm.9b00836
10.1016/j.nanoen.2022.108072
10.1021/acs.jpcc.7b12817
10.1021/acsnano.9b07687
10.1039/C5TC02270C
10.1038/s41586-021-04362-w
10.1007/s43939-022-00032-4
10.1016/j.patcog.2020.107528
10.1021/acsnano.7b07317
10.3389/fenrg.2021.629074
10.1002/inf2.12012
10.1002/aelm.202001126
10.1109/JPROC.2006.884094
10.1039/D0MA00162G
10.1063/5.0160599
10.1038/s41467-022-35092-w
10.1021/acsami.9b13552
10.1002/aelm.201901012
10.1007/978-3-540-76725-1_2
10.1088/2634-4386/acd4e2
10.1038/s41467-021-24057-0
10.1016/j.vacuum.2016.05.010
10.1557/mrs.2020.194
10.1063/5.0028539
10.1016/j.fmre.2022.06.022
10.1039/D0TC03275A
10.1002/aisy.202000085
10.1021/acsnano.7b05762
10.1109/JPROC.2023.3308088
10.1007/978-3-319-54313-0
10.1002/aelm.202200657
10.1039/D1TC02726C
10.1016/j.jallcom.2019.153552
10.1038/s41565-019-0501-3
10.1002/adfm.202100781
10.1002/admt.201900914
10.1021/acsnano.6b01643
10.1016/j.neuroimage.2008.04.239
10.1038/s41928-017-0006-8
10.3390/s23063037
10.1038/s41598-022-07404-z
10.1007/s43939-024-00074-w
10.1002/aelm.201700596
10.1002/adma.201804841
10.1109/5.156468
10.1002/ente.202201017
10.1038/ncomms8497
10.1063/5.0078798
10.1007/s11042-017-5046-6
10.1002/aisy.202000099
10.3389/fnins.2022.857513
10.1126/science.abj9979
10.1021/acsami.9b09080
10.1002/aelm.202300424
10.1002/adfm.202005582
10.1039/C7TC00266A
10.1016/j.jallcom.2021.162918
10.1002/adfm.201704665
10.1109/MSP.2012.2211477
10.1038/s41427-020-0202-2
10.1021/acsami.0c10851
10.1038/s41598-022-23404-5
10.1002/adma.201500039
10.1002/adma.201701048
10.1039/D2MA00402J
10.1002/adma.201903558
10.1021/acsami.8b09046
10.1039/D1TC04757D
10.1038/srep21331
10.1016/j.nanoen.2021.106291
10.1002/adma.201700527
10.5772/intechopen.74826
10.1109/ISCAS.2014.6865326
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1007/s43939-024-00077-7
DatabaseName Springer_OA刊
CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2730-7727
EndPage 13
ExternalDocumentID oai_doaj_org_article_6588539f1e814ce586a27a64cde3693f
10_1007_s43939_024_00077_7
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: 101008701
  funderid: http://dx.doi.org/10.13039/100010661
GroupedDBID AAJSJ
AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
ACVER
AFGXO
AFKRA
AFNRJ
AHBXF
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BENPR
C24
C6C
CCPQU
EBS
GROUPED_DOAJ
M~E
OK1
PIMPY
RSV
SOJ
0R~
AAYXX
CITATION
EBLON
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c3801-158d1912e760c5a42c67669f0ca1b67f493caf5c166a5c4e4b1fae5f0df1dd6d3
IEDL.DBID C24
ISSN 2730-7727
IngestDate Tue Oct 22 14:39:21 EDT 2024
Thu Nov 21 05:38:59 EST 2024
Thu Nov 21 21:13:44 EST 2024
Mon Mar 04 05:02:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3801-158d1912e760c5a42c67669f0ca1b67f493caf5c166a5c4e4b1fae5f0df1dd6d3
OpenAccessLink http://link.springer.com/10.1007/s43939-024-00077-7
PQID 2934012520
PQPubID 5642932
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_6588539f1e814ce586a27a64cde3693f
proquest_journals_2934012520
crossref_primary_10_1007_s43939_024_00077_7
springer_journals_10_1007_s43939_024_00077_7
PublicationCentury 2000
PublicationDate 2024-03-03
PublicationDateYYYYMMDD 2024-03-03
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Lisbon
PublicationTitle Discover materials
PublicationTitleAbbrev Discov Mater
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References Park, Lee, Kim, Seo, Go, Lee (CR15) 2020; 32
Tzoganakis, Feng, Loizos, Krassas, Tsikritzis, Zhuang, Kymakis (CR51) 2021; 9
Venianaki, Salvetti, de Bree, Maris, Karantanas, Kontopodis, Nikiforaki, Marias (CR1) 2018; 77
Liu, Xiong, Liu, Chen, Xu, Zhou, Han, Ye, Chen, Song, Zhu (CR60) 2020; 6
Rogdakis, Psaltakis, Fagas, Quinn, Martins, Kymakis (CR18) 2024; 4
Jain, Rueda, Mery, Kittler (CR4) 2007
Deng (CR75) 2012; 29
Xue, Song, Zhong, Wang, Zhao, Guo, Cong (CR57) 2020; 822
Hu, Yang, Wang, Cheng, Chua, Zhuge (CR23) 2021; 31
Muthu, Resmi, Pious, Dayal, Krishna, Jinesh, Vijayakumar (CR62) 2021; 9
Wang, Yin, Huang, Li, Huang, Zhu, Yang, Pi (CR20) 2021; 3
Sheykhifar, Mohseni (CR48) 2022; 12
Sun, Chen, Fan, Zhang, Han, He, Wu, Yu, Gao, Chen, Zhang, Liu (CR29) 2022
Yan, Peng, Yu, Cai, Chen, Hu, Chen, Gao, Dong, Zou (CR33) 2016; 4
Zhu, Lee, Lu (CR47) 2017; 29
Vijaya Kumar, Savvides, Xie (CR3) 2006; 94
Ye, Liu, Sun, Zhang, Shi, Liao (CR49) 2023; 9
Yu (CR17) 2017
Sun, Tai, Song, Wang, Yin, Li, Wu, Zeng, Lin, Pan (CR36) 2018; 122
Tan, Liu, Yang, Yi, Pan, Shang, Long, Liu, Wu, Li (CR71) 2017; 11
Pietrzak, Szczęsny, Huderek, Przyborowski (CR76) 2023; 23
Loizos, Rogdakis, Kymakis (CR26) 2022; 2
Eames, Frost, Barnes, O’Regan, Walsh, Islam (CR45) 2015; 6
Luo, Xia, Yang, Wilson, Gruverman, Alexe (CR73) 2020; 14
Liu, Gong, Wei, Li, Wu, Jiang, Li, Xu (CR8) 2022; 13
Emboras, Alabastri, Lehmann, Portner, Weilenmann, Ma, Cheng, Lewerenz, Passerini, Koch, Aeschlimann, Ducry, Leuthold, Luisier (CR7) 2020; 117
Hassan, Ang (CR27) 2019; 11
Zhou, Zhou, Chen, Choy, Wang, Zhang, Lin, Yu, Kang, Wong, Chai (CR21) 2019; 14
Park, Lee (CR56) 2021; 13
Mori, Suen, Yamamoto (CR2) 1992; 80
Huang, Tang, Wang, Fan, Zhao, Wu, Xu, Shen, Yang, Bian (CR63) 2020; 2
van de Burgt, Gkoupidenis (CR11) 2020; 45
Chen, Xiao, Huang, Jiang, Liu, Tang (CR25) 2023; 123
Tzoganakis, Feng, Loizos, Chatzimanolis, Krassas, Tsikritzis, Zhuang, Kymakis (CR50) 2023; 11
Mehonic, Kenyon (CR5) 2022; 604
Zhu, Lu (CR54) 2018; 12
Tan, Liu, Zhu, Yang, Chen, Chen, Shang, Lu, Wu, Li (CR70) 2015; 27
Venkatesan, Williams (CR9) 2022; 9
Wang, Xiong, Sha, Guo, Wang, Qiang, Shang, Jia, Sun, Huang, Gan, Wang (CR55) 2022; 10
Rogdakis, Loizos, Viskadouros, Kymakis (CR13) 2022; 3
Zhao, Xu, Wang, Lin, Liu (CR19) 2019; 1
Lin, Lin, Cui, Huang, Guo, Li, Dong, Guo, Sun (CR40) 2015; 3
Gu, Lee (CR53) 2016; 10
Pawara, Okafor, Groefsema, He, Schomaker, Wiering (CR65) 2020; 108
Tsikritzis, Rogdakis, Chatzimanolis, Petrović, Tzoganakis, Najafi, Martín-García, Oropesa-Nuñez, Bellani, Castillo, Prato, Stylianakis, Bonaccorso, Kymakis (CR52) 2020; 1
Prezioso, Merrikh Bayat, Hoskins, Likharev, Strukov (CR67) 2016; 6
Wang, Yin, Niu, Li, Kim, Kim (CR22) 2023; 106
Xiong, Hu, She, Lin, Hu, Tang, Sun (CR64) 2019; 11
Kim, Choi, Suh, Han, Kim, Le, Kim, Jang (CR34) 2020; 12
CR12
Mehonic, Sebastian, Rajendran, Simeone, Vasilaki, Kenyon (CR6) 2020; 2
Gerasimov, Zhao, Sultana, Abrahamsson, Han, Bliman, Tu, Simon, Olsson, Crispin, Berggren, Fabiano (CR10) 2021; 7
Lu, Xu (CR78) 2022
Lanza, Sebastian, Lu, Le Gallo, Chang, Akinwande, Puglisi, Alshareef, Liu, Roldan (CR16) 2022; 376
Sun, Wen (CR38) 2020; 2
Liu, Li, Chen, Guo, Wu, Kim (CR43) 2016; 130
Kanno, Uchida (CR69) 2022; 12
Lee, Park, Seo, Kwon, Lee, Kim, Jung, You, Lee, Kim, Pang, Seo, Hwang, Park (CR59) 2018; 10
Zidan, Strachan, Lu (CR14) 2018; 1
Hwang, Lee (CR35) 2017; 29
Tan, Liu, Li, Tan, Liu, Li, Srivastava (CR72) 2018
Rifkin, Klautau (CR66) 2004; 5
Hsu, Hua, Zhang, Jhang, Cheng, Tsai, Wu, Chien, Wu (CR58) 2022; 898
Rogdakis, Chatzimanolis, Psaltakis, Tzoganakis, Tsikritzis, Anthopoulos, Kymakis (CR31) 2023; 9
Kang, Ahn, Song, Lee, Kim, Kim, Yoo, Lee (CR37) 2019; 31
Eshraghian, Ward, Neftci, Wang, Lenz, Dwivedi, Bennamoun, Jeong, Lu (CR77) 2023; 111
John, Shah, Vishwanath, Ng, Febriansyah, Jagadeeswararao, Chang, Basu, Mathews (CR39) 2021; 12
Xu, Liu, Huang, Zheng, Chen, Zhou (CR44) 2017; 5
Futscher, Milić (CR32) 2021
Marreiros, Daunizeau, Kiebel, Friston (CR74) 2008; 42
Hao, Zhang, Dai, Zhang, Huang (CR41) 2020; 12
Lin, Hu, Zang, Zhou, Du, Wang, Han, Tang (CR42) 2018; 4
Liu, Zou, Wu, Wang, Lv, Duan, Zhang, Liu, Wu, Hu, Fan, Liao (CR28) 2021; 31
Guan, Hu, Haque, Wei, Liu, Chen, Wu (CR46) 2018; 28
Wang, Meng, Li, He, Zhu, Ji, Sun, Chen, Zhang (CR68) 2021; 89
Lee, Wolfe, Torres, Yun, Lee (CR61) 2021; 13
Xiao, Hu, Tang, Yan, Gao, Chen, Zou (CR30) 2020; 5
Pereira, Martins, Fortunato, Barquinha, Kiazadeh (CR24) 2023; 3
S Yu (77_CR17) 2017
Z Sheykhifar (77_CR48) 2022; 12
JY Gerasimov (77_CR10) 2021; 7
C Gu (77_CR53) 2016; 10
L Deng (77_CR75) 2012; 29
M Loizos (77_CR26) 2022; 2
J Sun (77_CR29) 2022
C Muthu (77_CR62) 2021; 9
X Xiao (77_CR30) 2020; 5
S Lu (77_CR78) 2022
X Zhu (77_CR54) 2018; 12
S Lee (77_CR61) 2021; 13
Y Huang (77_CR63) 2020; 2
G Lin (77_CR40) 2015; 3
AK Jain (77_CR4) 2007
J Liu (77_CR8) 2022; 13
Y Sun (77_CR36) 2018; 122
D Xue (77_CR57) 2020; 822
X Zhu (77_CR47) 2017; 29
Y van de Burgt (77_CR11) 2020; 45
RA John (77_CR39) 2021; 12
W Wang (77_CR22) 2023; 106
K Kang (77_CR37) 2019; 31
F Zhou (77_CR21) 2019; 14
B Hwang (77_CR35) 2017; 29
P Pietrzak (77_CR76) 2023; 23
MA Zidan (77_CR14) 2018; 1
C-C Hsu (77_CR58) 2022; 898
C Eames (77_CR45) 2015; 6
M-J Lee (77_CR59) 2018; 10
S Mori (77_CR2) 1992; 80
Z-L Chen (77_CR25) 2023; 123
X Guan (77_CR46) 2018; 28
N Tzoganakis (77_CR51) 2021; 9
Q Lin (77_CR42) 2018; 4
MY Hassan (77_CR27) 2019; 11
N Tzoganakis (77_CR50) 2023; 11
Z Xiong (77_CR64) 2019; 11
Y Liu (77_CR43) 2016; 130
K Kanno (77_CR69) 2022; 12
Z Xu (77_CR44) 2017; 5
A Emboras (77_CR7) 2020; 117
K Rogdakis (77_CR13) 2022; 3
A Mehonic (77_CR6) 2020; 2
H Tan (77_CR70) 2015; 27
H Tan (77_CR72) 2018
R Rifkin (77_CR66) 2004; 5
T Venkatesan (77_CR9) 2022; 9
JK Eshraghian (77_CR77) 2023; 111
A Mehonic (77_CR5) 2022; 604
Y Wang (77_CR55) 2022; 10
M Venianaki (77_CR1) 2018; 77
P Pawara (77_CR65) 2020; 108
MH Futscher (77_CR32) 2021
Y Park (77_CR56) 2021; 13
L Liu (77_CR60) 2020; 6
M Lanza (77_CR16) 2022; 376
C Liu (77_CR28) 2021; 31
K Rogdakis (77_CR31) 2023; 9
D Hao (77_CR41) 2020; 12
L Hu (77_CR23) 2021; 31
D Tsikritzis (77_CR52) 2020; 1
H Tan (77_CR71) 2017; 11
AC Marreiros (77_CR74) 2008; 42
Y Wang (77_CR20) 2021; 3
ME Pereira (77_CR24) 2023; 3
77_CR12
T-Y Wang (77_CR68) 2021; 89
X Zhao (77_CR19) 2019; 1
M Prezioso (77_CR67) 2016; 6
H-L Park (77_CR15) 2020; 32
H Ye (77_CR49) 2023; 9
K Yan (77_CR33) 2016; 4
Z-D Luo (77_CR73) 2020; 14
K Rogdakis (77_CR18) 2024; 4
BVK Vijaya Kumar (77_CR3) 2006; 94
Y Sun (77_CR38) 2020; 2
H Kim (77_CR34) 2020; 12
References_xml – volume: 4
  start-page: 1375
  year: 2016
  end-page: 1381
  ident: CR33
  article-title: High-performance perovskite memristor based on methyl ammonium lead halides
  publication-title: J Mater Chem C
  doi: 10.1039/C6TC00141F
  contributor:
    fullname: Zou
– volume: 5
  start-page: 101
  year: 2004
  end-page: 141
  ident: CR66
  article-title: In defense of one-vs-all classification
  publication-title: J Mach Learn Res
  contributor:
    fullname: Klautau
– volume: 2
  start-page: 3695
  year: 2020
  end-page: 3703
  ident: CR63
  article-title: Triple-cation perovskite resistive switching memory with enhanced endurance and retention
  publication-title: ACS Appl Electron Mater
  doi: 10.1021/acsaelm.0c00674
  contributor:
    fullname: Bian
– volume: 13
  start-page: 1021
  year: 2021
  end-page: 1026
  ident: CR56
  article-title: Bifunctional silver-doped ZnO for reliable and stable organic-inorganic hybrid perovskite memory
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c18038
  contributor:
    fullname: Lee
– volume: 13
  start-page: 27209
  year: 2021
  end-page: 27216
  ident: CR61
  article-title: Asymmetric bipolar resistive switching of halide perovskite film in contact with TiO2 layer
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c06278
  contributor:
    fullname: Lee
– volume: 2
  start-page: 618
  year: 2020
  end-page: 625
  ident: CR38
  article-title: Logic function and random number generator build based on perovskite resistive switching memory and performance conversion via flexible bending
  publication-title: ACS Appl Electron Mater
  doi: 10.1021/acsaelm.9b00836
  contributor:
    fullname: Wen
– volume: 106
  start-page: 108072
  year: 2023
  ident: CR22
  article-title: Tantalum pentoxide (Ta2O5 and Ta2O5-x)-based memristor for photonic in-memory computing application
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108072
  contributor:
    fullname: Kim
– volume: 122
  start-page: 6431
  year: 2018
  end-page: 6436
  ident: CR36
  article-title: Competition between metallic and vacancy defect conductive filaments in a CH3NH3PbI3-based memory device
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b12817
  contributor:
    fullname: Pan
– volume: 14
  start-page: 746
  year: 2020
  end-page: 754
  ident: CR73
  article-title: Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07687
  contributor:
    fullname: Alexe
– ident: CR12
– volume: 3
  start-page: 10793
  year: 2015
  end-page: 10798
  ident: CR40
  article-title: An organic–inorganic hybrid perovskite logic gate for better computing
  publication-title: J Mater Chem C
  doi: 10.1039/C5TC02270C
  contributor:
    fullname: Sun
– volume: 604
  start-page: 255
  year: 2022
  end-page: 260
  ident: CR5
  article-title: Brain-inspired computing needs a master plan
  publication-title: Nature
  doi: 10.1038/s41586-021-04362-w
  contributor:
    fullname: Kenyon
– volume: 2
  start-page: 11
  year: 2022
  ident: CR26
  article-title: An electronic synaptic memory device based on four-cation mixed halide perovskite
  publication-title: Discov Mater
  doi: 10.1007/s43939-022-00032-4
  contributor:
    fullname: Kymakis
– volume: 108
  start-page: 107528
  year: 2020
  ident: CR65
  article-title: One-vs-One classification for deep neural networks
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2020.107528
  contributor:
    fullname: Wiering
– volume: 12
  start-page: 1242
  year: 2018
  end-page: 1249
  ident: CR54
  article-title: Optogenetics-inspired tunable synaptic functions in memristors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07317
  contributor:
    fullname: Lu
– year: 2021
  ident: CR32
  article-title: Mixed conductivity of hybrid halide perovskites: emerging opportunities and challenges
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2021.629074
  contributor:
    fullname: Milić
– volume: 1
  start-page: 183
  year: 2019
  end-page: 210
  ident: CR19
  article-title: Memristors with organic-inorganic halide perovskites
  publication-title: InfoMat
  doi: 10.1002/inf2.12012
  contributor:
    fullname: Liu
– volume: 7
  start-page: 2001126
  year: 2021
  ident: CR10
  article-title: A biomimetic evolvable organic electrochemical transistor
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.202001126
  contributor:
    fullname: Fabiano
– volume: 94
  start-page: 1963
  year: 2006
  end-page: 1976
  ident: CR3
  article-title: Correlation pattern recognition for face recognition
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2006.884094
  contributor:
    fullname: Xie
– volume: 1
  start-page: 450
  year: 2020
  end-page: 462
  ident: CR52
  article-title: A two-fold engineering approach based on Bi 2 Te 3 flakes towards efficient and stable inverted perovskite solar cells
  publication-title: Mater Adv
  doi: 10.1039/D0MA00162G
  contributor:
    fullname: Kymakis
– volume: 123
  start-page: 100501
  year: 2023
  ident: CR25
  article-title: In-sensor reservoir computing based on optoelectronic synaptic devices
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0160599
  contributor:
    fullname: Tang
– volume: 13
  start-page: 7427
  year: 2022
  ident: CR8
  article-title: A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35092-w
  contributor:
    fullname: Xu
– volume: 11
  start-page: 42339
  year: 2019
  end-page: 42348
  ident: CR27
  article-title: On-demand visible-light sensing with optical memory capabilities based on an electrical-breakdown-triggered negative photoconductivity effect in the ubiquitous transparent hafnia
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b13552
  contributor:
    fullname: Ang
– volume: 6
  start-page: 1901012
  year: 2020
  ident: CR60
  article-title: Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201901012
  contributor:
    fullname: Zhu
– start-page: 13
  year: 2007
  end-page: 19
  ident: CR4
  article-title: Biometric recognition: overview and recent advances
  publication-title: Progress in pattern recognition, image analysis and applications
  doi: 10.1007/978-3-540-76725-1_2
  contributor:
    fullname: Kittler
– volume: 3
  start-page: 022002
  year: 2023
  ident: CR24
  article-title: Recent progress in optoelectronic memristors for neuromorphic and in-memory computation
  publication-title: Neuromorphic Comput Eng
  doi: 10.1088/2634-4386/acd4e2
  contributor:
    fullname: Kiazadeh
– volume: 12
  start-page: 3681
  year: 2021
  ident: CR39
  article-title: Halide perovskite memristors as flexible and reconfigurable physical unclonable functions
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24057-0
  contributor:
    fullname: Mathews
– volume: 130
  start-page: 109
  year: 2016
  end-page: 112
  ident: CR43
  article-title: Resistive switching memory based on organic/inorganic hybrid perovskite materials
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.05.010
  contributor:
    fullname: Kim
– volume: 45
  start-page: 631
  year: 2020
  end-page: 640
  ident: CR11
  article-title: Organic materials and devices for brain-inspired computing: from artificial implementation to biophysical realism
  publication-title: MRS Bull
  doi: 10.1557/mrs.2020.194
  contributor:
    fullname: Gkoupidenis
– volume: 117
  start-page: 230502
  year: 2020
  ident: CR7
  article-title: Opto-electronic memristors: prospects and challenges in neuromorphic computing
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0028539
  contributor:
    fullname: Luisier
– year: 2022
  ident: CR29
  article-title: A dual-mode organic memristor for coordinated visual perceptive computing
  publication-title: Fundam Res
  doi: 10.1016/j.fmre.2022.06.022
  contributor:
    fullname: Liu
– volume: 9
  start-page: 288
  year: 2021
  end-page: 293
  ident: CR62
  article-title: Resistive switching in formamidinium lead iodide perovskite nanocrystals: a contradiction to the bulk form
  publication-title: J Mater Chem C
  doi: 10.1039/D0TC03275A
  contributor:
    fullname: Vijayakumar
– volume: 2
  start-page: 2000085
  year: 2020
  ident: CR6
  article-title: Memristors—from in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing
  publication-title: Adv Intell Syst
  doi: 10.1002/aisy.202000085
  contributor:
    fullname: Kenyon
– volume: 11
  start-page: 11298
  year: 2017
  end-page: 11305
  ident: CR71
  article-title: Light-gated memristor with integrated logic and memory functions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05762
  contributor:
    fullname: Li
– volume: 111
  start-page: 1016
  year: 2023
  end-page: 1054
  ident: CR77
  article-title: Training spiking neural networks using lessons from deep learning
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2023.3308088
  contributor:
    fullname: Lu
– year: 2017
  ident: CR17
  publication-title: Neuro-inspired computing using resistive synaptic devices
  doi: 10.1007/978-3-319-54313-0
  contributor:
    fullname: Yu
– volume: 9
  start-page: 2200657
  year: 2023
  ident: CR49
  article-title: Optoelectronic resistive memory based on lead-free Cs2AgBiBr 6 double perovskite for artificial self-storage visual sensors
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.202200657
  contributor:
    fullname: Liao
– volume: 9
  start-page: 14709
  year: 2021
  end-page: 14719
  ident: CR51
  article-title: Ultrathin PTAA interlayer in conjunction with azulene derivatives for the fabrication of inverted perovskite solar cells
  publication-title: J Mater Chem C
  doi: 10.1039/D1TC02726C
  contributor:
    fullname: Kymakis
– volume: 822
  start-page: 153552
  year: 2020
  ident: CR57
  article-title: Flexible resistive switching device based on the TiO2 nanorod arrays for non-volatile memory application
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.153552
  contributor:
    fullname: Cong
– volume: 14
  start-page: 776
  year: 2019
  end-page: 782
  ident: CR21
  article-title: Optoelectronic resistive random access memory for neuromorphic vision sensors
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-019-0501-3
  contributor:
    fullname: Chai
– volume: 31
  start-page: 2100781
  year: 2021
  ident: CR28
  article-title: Polarization-resolved broadband MoS2/black phosphorus/MoS2 optoelectronic memory with ultralong retention time and ultrahigh switching ratio
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202100781
  contributor:
    fullname: Liao
– volume: 5
  start-page: 1900914
  year: 2020
  ident: CR30
  article-title: Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201900914
  contributor:
    fullname: Zou
– volume: 10
  start-page: 5413
  year: 2016
  end-page: 5418
  ident: CR53
  article-title: Flexible hybrid organic-inorganic perovskite memory
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01643
  contributor:
    fullname: Lee
– volume: 42
  start-page: 147
  year: 2008
  end-page: 157
  ident: CR74
  article-title: Population dynamics: variance and the sigmoid activation function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.04.239
  contributor:
    fullname: Friston
– volume: 1
  start-page: 22
  year: 2018
  end-page: 29
  ident: CR14
  article-title: The future of electronics based on memristive systems
  publication-title: Nat Electron
  doi: 10.1038/s41928-017-0006-8
  contributor:
    fullname: Lu
– volume: 23
  start-page: 3037
  year: 2023
  ident: CR76
  article-title: Overview of spiking neural network learning approaches and their computational complexities
  publication-title: Sensors
  doi: 10.3390/s23063037
  contributor:
    fullname: Przyborowski
– volume: 12
  start-page: 3720
  year: 2022
  ident: CR69
  article-title: Photonic reinforcement learning based on optoelectronic reservoir computing
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-07404-z
  contributor:
    fullname: Uchida
– volume: 4
  start-page: 4
  year: 2024
  ident: CR18
  article-title: Hybrid chips to enable a sustainable internet of things technology: opportunities and challenges
  publication-title: Discov Mater
  doi: 10.1007/s43939-024-00074-w
  contributor:
    fullname: Kymakis
– volume: 4
  start-page: 1700596
  year: 2018
  ident: CR42
  article-title: Transient resistive switching memory of CsPbBr 3 thin films
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201700596
  contributor:
    fullname: Tang
– volume: 31
  start-page: 1804841
  year: 2019
  ident: CR37
  article-title: High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure
  publication-title: Adv Mater
  doi: 10.1002/adma.201804841
  contributor:
    fullname: Lee
– volume: 80
  start-page: 1029
  year: 1992
  end-page: 1058
  ident: CR2
  article-title: Historical review of OCR research and development
  publication-title: Proc IEEE
  doi: 10.1109/5.156468
  contributor:
    fullname: Yamamoto
– volume: 11
  start-page: 2201017
  year: 2023
  ident: CR50
  article-title: Performance and stability improvement of inverted perovskite solar cells by interface modification of charge transport layers using an azulene-pyridine molecule
  publication-title: Energy Technol
  doi: 10.1002/ente.202201017
  contributor:
    fullname: Kymakis
– volume: 6
  start-page: 7497
  year: 2015
  ident: CR45
  article-title: Ionic transport in hybrid lead iodide perovskite solar cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms8497
  contributor:
    fullname: Islam
– volume: 9
  start-page: 010401
  year: 2022
  ident: CR9
  article-title: Brain inspired electronics
  publication-title: Appl Phys Rev
  doi: 10.1063/5.0078798
  contributor:
    fullname: Williams
– volume: 77
  start-page: 9417
  year: 2018
  end-page: 9439
  ident: CR1
  article-title: Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5046-6
  contributor:
    fullname: Marias
– volume: 3
  start-page: 2000099
  year: 2021
  ident: CR20
  article-title: Optoelectronic synaptic devices for neuromorphic computing
  publication-title: Adv Intell Syst
  doi: 10.1002/aisy.202000099
  contributor:
    fullname: Pi
– year: 2022
  ident: CR78
  article-title: Linear leaky-integrate-and-fire neuron model based spiking neural networks and its mapping relationship to deep neural networks
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2022.857513
  contributor:
    fullname: Xu
– volume: 376
  start-page: eabj9979
  year: 2022
  ident: CR16
  article-title: Memristive technologies for data storage, computation, encryption, and radio-frequency communication
  publication-title: Science
  doi: 10.1126/science.abj9979
  contributor:
    fullname: Roldan
– volume: 11
  start-page: 30037
  year: 2019
  end-page: 30044
  ident: CR64
  article-title: Air-stable lead-free perovskite thin film based on CsBi3I10 and its application in resistive switching devices
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b09080
  contributor:
    fullname: Sun
– volume: 9
  start-page: 2300424
  year: 2023
  ident: CR31
  article-title: Mixed-halide perovskite memristors with gate-tunable functions operating at low-switching electric fields
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.202300424
  contributor:
    fullname: Kymakis
– volume: 31
  start-page: 2005582
  year: 2021
  ident: CR23
  article-title: All-optically controlled memristor for optoelectronic neuromorphic computing
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202005582
  contributor:
    fullname: Zhuge
– volume: 5
  start-page: 5810
  year: 2017
  end-page: 5817
  ident: CR44
  article-title: To probe the performance of perovskite memory devices: defects property and hysteresis
  publication-title: J Mater Chem C
  doi: 10.1039/C7TC00266A
  contributor:
    fullname: Zhou
– volume: 898
  start-page: 162918
  year: 2022
  ident: CR58
  article-title: Effects of interfacial oxide layer formed by annealing process on WORM characteristics of Ag/CuxO/SiOx/n+–Si devices
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2021.162918
  contributor:
    fullname: Wu
– volume: 28
  start-page: 1704665
  year: 2018
  ident: CR46
  article-title: Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite Schottky junctions
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201704665
  contributor:
    fullname: Wu
– volume: 29
  start-page: 141
  year: 2012
  end-page: 142
  ident: CR75
  article-title: The MNIST database of handwritten digit images for machine learning research [Best of the Web]
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2211477
  contributor:
    fullname: Deng
– volume: 12
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR34
  article-title: Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109
  publication-title: NPG Asia Mater
  doi: 10.1038/s41427-020-0202-2
  contributor:
    fullname: Jang
– volume: 12
  start-page: 39487
  year: 2020
  end-page: 39495
  ident: CR41
  article-title: Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c10851
  contributor:
    fullname: Huang
– volume: 12
  start-page: 18771
  year: 2022
  ident: CR48
  article-title: Highly light-tunable memristors in solution-processed 2D materials/metal composites
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-23404-5
  contributor:
    fullname: Mohseni
– volume: 27
  start-page: 2797
  year: 2015
  end-page: 2803
  ident: CR70
  article-title: An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions
  publication-title: Adv Mater
  doi: 10.1002/adma.201500039
  contributor:
    fullname: Li
– volume: 29
  start-page: 1701048
  year: 2017
  ident: CR35
  article-title: A strategy to design high-density nanoscale devices utilizing vapor deposition of metal halide perovskite materials
  publication-title: Adv Mater
  doi: 10.1002/adma.201701048
  contributor:
    fullname: Lee
– volume: 3
  start-page: 7002
  year: 2022
  end-page: 7014
  ident: CR13
  article-title: Memristive perovskite solar cells towards parallel solar energy harvesting and processing-in-memory computing
  publication-title: Mater Adv
  doi: 10.1039/D2MA00402J
  contributor:
    fullname: Kymakis
– volume: 32
  start-page: 1903558
  year: 2020
  ident: CR15
  article-title: Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics
  publication-title: Adv Mater
  doi: 10.1002/adma.201903558
  contributor:
    fullname: Lee
– volume: 10
  start-page: 29757
  year: 2018
  end-page: 29765
  ident: CR59
  article-title: Reliable multivalued conductance states in TaOx memristors through oxygen plasma-assisted electrode deposition with in situ-biased conductance state transmission electron microscopy analysis
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b09046
  contributor:
    fullname: Park
– volume: 10
  start-page: 1414
  year: 2022
  end-page: 1420
  ident: CR55
  article-title: Inverse photoconductivity effect in triple cation organic–inorganic hybrid perovskite memristors with various iodine concentrations, electrodes, and modified layers
  publication-title: J Mater Chem C
  doi: 10.1039/D1TC04757D
  contributor:
    fullname: Wang
– volume: 6
  start-page: 21331
  year: 2016
  ident: CR67
  article-title: Self-adaptive spike-time-dependent plasticity of metal-oxide memristors
  publication-title: Sci Rep
  doi: 10.1038/srep21331
  contributor:
    fullname: Strukov
– volume: 89
  start-page: 106291
  year: 2021
  ident: CR68
  article-title: Reconfigurable optoelectronic memristor for in-sensor computing applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106291
  contributor:
    fullname: Zhang
– volume: 29
  start-page: 1700527
  year: 2017
  ident: CR47
  article-title: Iodine vacancy redistribution in organic-inorganic halide perovskite films and resistive switching effects
  publication-title: Adv Mater
  doi: 10.1002/adma.201700527
  contributor:
    fullname: Lu
– year: 2018
  ident: CR72
  article-title: Multifunctional optoelectronic device based on resistive switching effects
  publication-title: Recent development in optoelectronic devices
  doi: 10.5772/intechopen.74826
  contributor:
    fullname: Srivastava
– volume: 9
  start-page: 2200657
  year: 2023
  ident: 77_CR49
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.202200657
  contributor:
    fullname: H Ye
– volume: 14
  start-page: 776
  year: 2019
  ident: 77_CR21
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-019-0501-3
  contributor:
    fullname: F Zhou
– year: 2021
  ident: 77_CR32
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2021.629074
  contributor:
    fullname: MH Futscher
– volume: 5
  start-page: 101
  year: 2004
  ident: 77_CR66
  publication-title: J Mach Learn Res
  contributor:
    fullname: R Rifkin
– volume: 45
  start-page: 631
  year: 2020
  ident: 77_CR11
  publication-title: MRS Bull
  doi: 10.1557/mrs.2020.194
  contributor:
    fullname: Y van de Burgt
– volume: 6
  start-page: 21331
  year: 2016
  ident: 77_CR67
  publication-title: Sci Rep
  doi: 10.1038/srep21331
  contributor:
    fullname: M Prezioso
– volume: 3
  start-page: 2000099
  year: 2021
  ident: 77_CR20
  publication-title: Adv Intell Syst
  doi: 10.1002/aisy.202000099
  contributor:
    fullname: Y Wang
– volume: 32
  start-page: 1903558
  year: 2020
  ident: 77_CR15
  publication-title: Adv Mater
  doi: 10.1002/adma.201903558
  contributor:
    fullname: H-L Park
– volume: 12
  start-page: 3681
  year: 2021
  ident: 77_CR39
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24057-0
  contributor:
    fullname: RA John
– volume: 376
  start-page: eabj9979
  year: 2022
  ident: 77_CR16
  publication-title: Science
  doi: 10.1126/science.abj9979
  contributor:
    fullname: M Lanza
– volume: 12
  start-page: 39487
  year: 2020
  ident: 77_CR41
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c10851
  contributor:
    fullname: D Hao
– volume: 5
  start-page: 5810
  year: 2017
  ident: 77_CR44
  publication-title: J Mater Chem C
  doi: 10.1039/C7TC00266A
  contributor:
    fullname: Z Xu
– volume-title: Neuro-inspired computing using resistive synaptic devices
  year: 2017
  ident: 77_CR17
  doi: 10.1007/978-3-319-54313-0
  contributor:
    fullname: S Yu
– volume: 11
  start-page: 11298
  year: 2017
  ident: 77_CR71
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05762
  contributor:
    fullname: H Tan
– volume: 822
  start-page: 153552
  year: 2020
  ident: 77_CR57
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.153552
  contributor:
    fullname: D Xue
– volume: 108
  start-page: 107528
  year: 2020
  ident: 77_CR65
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2020.107528
  contributor:
    fullname: P Pawara
– volume: 11
  start-page: 2201017
  year: 2023
  ident: 77_CR50
  publication-title: Energy Technol
  doi: 10.1002/ente.202201017
  contributor:
    fullname: N Tzoganakis
– volume: 9
  start-page: 14709
  year: 2021
  ident: 77_CR51
  publication-title: J Mater Chem C
  doi: 10.1039/D1TC02726C
  contributor:
    fullname: N Tzoganakis
– volume: 2
  start-page: 3695
  year: 2020
  ident: 77_CR63
  publication-title: ACS Appl Electron Mater
  doi: 10.1021/acsaelm.0c00674
  contributor:
    fullname: Y Huang
– start-page: 13
  volume-title: Progress in pattern recognition, image analysis and applications
  year: 2007
  ident: 77_CR4
  doi: 10.1007/978-3-540-76725-1_2
  contributor:
    fullname: AK Jain
– volume: 2
  start-page: 618
  year: 2020
  ident: 77_CR38
  publication-title: ACS Appl Electron Mater
  doi: 10.1021/acsaelm.9b00836
  contributor:
    fullname: Y Sun
– volume: 29
  start-page: 141
  year: 2012
  ident: 77_CR75
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2211477
  contributor:
    fullname: L Deng
– volume: 130
  start-page: 109
  year: 2016
  ident: 77_CR43
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.05.010
  contributor:
    fullname: Y Liu
– volume: 29
  start-page: 1701048
  year: 2017
  ident: 77_CR35
  publication-title: Adv Mater
  doi: 10.1002/adma.201701048
  contributor:
    fullname: B Hwang
– volume: 29
  start-page: 1700527
  year: 2017
  ident: 77_CR47
  publication-title: Adv Mater
  doi: 10.1002/adma.201700527
  contributor:
    fullname: X Zhu
– volume: 4
  start-page: 1375
  year: 2016
  ident: 77_CR33
  publication-title: J Mater Chem C
  doi: 10.1039/C6TC00141F
  contributor:
    fullname: K Yan
– volume: 898
  start-page: 162918
  year: 2022
  ident: 77_CR58
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2021.162918
  contributor:
    fullname: C-C Hsu
– volume: 13
  start-page: 27209
  year: 2021
  ident: 77_CR61
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c06278
  contributor:
    fullname: S Lee
– volume: 42
  start-page: 147
  year: 2008
  ident: 77_CR74
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.04.239
  contributor:
    fullname: AC Marreiros
– volume: 4
  start-page: 4
  year: 2024
  ident: 77_CR18
  publication-title: Discov Mater
  doi: 10.1007/s43939-024-00074-w
  contributor:
    fullname: K Rogdakis
– volume: 604
  start-page: 255
  year: 2022
  ident: 77_CR5
  publication-title: Nature
  doi: 10.1038/s41586-021-04362-w
  contributor:
    fullname: A Mehonic
– volume: 6
  start-page: 7497
  year: 2015
  ident: 77_CR45
  publication-title: Nat Commun
  doi: 10.1038/ncomms8497
  contributor:
    fullname: C Eames
– volume: 77
  start-page: 9417
  year: 2018
  ident: 77_CR1
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5046-6
  contributor:
    fullname: M Venianaki
– volume: 7
  start-page: 2001126
  year: 2021
  ident: 77_CR10
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.202001126
  contributor:
    fullname: JY Gerasimov
– ident: 77_CR12
  doi: 10.1109/ISCAS.2014.6865326
– volume: 117
  start-page: 230502
  year: 2020
  ident: 77_CR7
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0028539
  contributor:
    fullname: A Emboras
– volume: 11
  start-page: 30037
  year: 2019
  ident: 77_CR64
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b09080
  contributor:
    fullname: Z Xiong
– volume: 27
  start-page: 2797
  year: 2015
  ident: 77_CR70
  publication-title: Adv Mater
  doi: 10.1002/adma.201500039
  contributor:
    fullname: H Tan
– volume: 11
  start-page: 42339
  year: 2019
  ident: 77_CR27
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b13552
  contributor:
    fullname: MY Hassan
– volume: 14
  start-page: 746
  year: 2020
  ident: 77_CR73
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07687
  contributor:
    fullname: Z-D Luo
– volume: 94
  start-page: 1963
  year: 2006
  ident: 77_CR3
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2006.884094
  contributor:
    fullname: BVK Vijaya Kumar
– volume: 12
  start-page: 1242
  year: 2018
  ident: 77_CR54
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07317
  contributor:
    fullname: X Zhu
– volume: 1
  start-page: 183
  year: 2019
  ident: 77_CR19
  publication-title: InfoMat
  doi: 10.1002/inf2.12012
  contributor:
    fullname: X Zhao
– volume: 3
  start-page: 10793
  year: 2015
  ident: 77_CR40
  publication-title: J Mater Chem C
  doi: 10.1039/C5TC02270C
  contributor:
    fullname: G Lin
– volume: 80
  start-page: 1029
  year: 1992
  ident: 77_CR2
  publication-title: Proc IEEE
  doi: 10.1109/5.156468
  contributor:
    fullname: S Mori
– year: 2022
  ident: 77_CR78
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2022.857513
  contributor:
    fullname: S Lu
– volume: 3
  start-page: 7002
  year: 2022
  ident: 77_CR13
  publication-title: Mater Adv
  doi: 10.1039/D2MA00402J
  contributor:
    fullname: K Rogdakis
– volume: 31
  start-page: 2100781
  year: 2021
  ident: 77_CR28
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202100781
  contributor:
    fullname: C Liu
– volume: 9
  start-page: 288
  year: 2021
  ident: 77_CR62
  publication-title: J Mater Chem C
  doi: 10.1039/D0TC03275A
  contributor:
    fullname: C Muthu
– year: 2022
  ident: 77_CR29
  publication-title: Fundam Res
  doi: 10.1016/j.fmre.2022.06.022
  contributor:
    fullname: J Sun
– volume: 3
  start-page: 022002
  year: 2023
  ident: 77_CR24
  publication-title: Neuromorphic Comput Eng
  doi: 10.1088/2634-4386/acd4e2
  contributor:
    fullname: ME Pereira
– volume: 6
  start-page: 1901012
  year: 2020
  ident: 77_CR60
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201901012
  contributor:
    fullname: L Liu
– volume-title: Recent development in optoelectronic devices
  year: 2018
  ident: 77_CR72
  doi: 10.5772/intechopen.74826
  contributor:
    fullname: H Tan
– volume: 106
  start-page: 108072
  year: 2023
  ident: 77_CR22
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108072
  contributor:
    fullname: W Wang
– volume: 12
  start-page: 1
  year: 2020
  ident: 77_CR34
  publication-title: NPG Asia Mater
  doi: 10.1038/s41427-020-0202-2
  contributor:
    fullname: H Kim
– volume: 28
  start-page: 1704665
  year: 2018
  ident: 77_CR46
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201704665
  contributor:
    fullname: X Guan
– volume: 4
  start-page: 1700596
  year: 2018
  ident: 77_CR42
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201700596
  contributor:
    fullname: Q Lin
– volume: 9
  start-page: 010401
  year: 2022
  ident: 77_CR9
  publication-title: Appl Phys Rev
  doi: 10.1063/5.0078798
  contributor:
    fullname: T Venkatesan
– volume: 10
  start-page: 29757
  year: 2018
  ident: 77_CR59
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b09046
  contributor:
    fullname: M-J Lee
– volume: 12
  start-page: 18771
  year: 2022
  ident: 77_CR48
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-23404-5
  contributor:
    fullname: Z Sheykhifar
– volume: 31
  start-page: 1804841
  year: 2019
  ident: 77_CR37
  publication-title: Adv Mater
  doi: 10.1002/adma.201804841
  contributor:
    fullname: K Kang
– volume: 89
  start-page: 106291
  year: 2021
  ident: 77_CR68
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106291
  contributor:
    fullname: T-Y Wang
– volume: 1
  start-page: 450
  year: 2020
  ident: 77_CR52
  publication-title: Mater Adv
  doi: 10.1039/D0MA00162G
  contributor:
    fullname: D Tsikritzis
– volume: 12
  start-page: 3720
  year: 2022
  ident: 77_CR69
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-07404-z
  contributor:
    fullname: K Kanno
– volume: 5
  start-page: 1900914
  year: 2020
  ident: 77_CR30
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201900914
  contributor:
    fullname: X Xiao
– volume: 9
  start-page: 2300424
  year: 2023
  ident: 77_CR31
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.202300424
  contributor:
    fullname: K Rogdakis
– volume: 13
  start-page: 7427
  year: 2022
  ident: 77_CR8
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35092-w
  contributor:
    fullname: J Liu
– volume: 122
  start-page: 6431
  year: 2018
  ident: 77_CR36
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b12817
  contributor:
    fullname: Y Sun
– volume: 13
  start-page: 1021
  year: 2021
  ident: 77_CR56
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c18038
  contributor:
    fullname: Y Park
– volume: 111
  start-page: 1016
  year: 2023
  ident: 77_CR77
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2023.3308088
  contributor:
    fullname: JK Eshraghian
– volume: 1
  start-page: 22
  year: 2018
  ident: 77_CR14
  publication-title: Nat Electron
  doi: 10.1038/s41928-017-0006-8
  contributor:
    fullname: MA Zidan
– volume: 2
  start-page: 11
  year: 2022
  ident: 77_CR26
  publication-title: Discov Mater
  doi: 10.1007/s43939-022-00032-4
  contributor:
    fullname: M Loizos
– volume: 10
  start-page: 5413
  year: 2016
  ident: 77_CR53
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01643
  contributor:
    fullname: C Gu
– volume: 23
  start-page: 3037
  year: 2023
  ident: 77_CR76
  publication-title: Sensors
  doi: 10.3390/s23063037
  contributor:
    fullname: P Pietrzak
– volume: 31
  start-page: 2005582
  year: 2021
  ident: 77_CR23
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202005582
  contributor:
    fullname: L Hu
– volume: 123
  start-page: 100501
  year: 2023
  ident: 77_CR25
  publication-title: Appl Phys Lett
  doi: 10.1063/5.0160599
  contributor:
    fullname: Z-L Chen
– volume: 2
  start-page: 2000085
  year: 2020
  ident: 77_CR6
  publication-title: Adv Intell Syst
  doi: 10.1002/aisy.202000085
  contributor:
    fullname: A Mehonic
– volume: 10
  start-page: 1414
  year: 2022
  ident: 77_CR55
  publication-title: J Mater Chem C
  doi: 10.1039/D1TC04757D
  contributor:
    fullname: Y Wang
SSID ssj0002513210
Score 2.3004065
Snippet Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial...
Abstract Deep neural networks have achieved considerable success over the past ten years in a variety of fields. However, current state-of-the-art artificial...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 7
SubjectTerms Accuracy
Algorithms
Biomaterials
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classification
Energy consumption
Energy Materials
Internet of Things
Light
Materials Science
Metallic Materials
Neural networks
Pattern recognition
Structural Materials
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtTr2UhrR026TMIbeuqG29rGPbJOTUQB_Qm9BjBIHEG7K7gf62_rmOZO9uUwi9BAw2si0NnrG-GWkejB33MQVtfcdTsIHLmBtuZRbcky1C-C5UrOXezr-ZLz_7k9OSJmdb6qv4hI3pgccP94EQkhDF5hb7VkZUvfad8VrGhEJbkevs2-i_jKkyBxNql-CUKUqmxsoR8grLCZJKILUx3NxDopqw_56W-c_GaMWbsxfs-aQowseRwH32BIcD9vtiQH635HSaw3T9lfqZgx8SeBgWd3gFF-sVyRHyk9sylcHuHQg1-hZiUZkvc6mCDViDpxKEX7C4WS12ZXHgGq9r4gF6aFWda5dQ_D2payIYSrQWNSJclRCpcd0PLgeoHop1gO0w46rgS_bj7PT753M-lV_gURBu8Vb1iay5Do1uovKyi9pobXMTfRu0ydKK6LOKrdZeRYkytNmjyk3KbalTJV6xvWEx4GsGAckQCqZXQZRtTkLAzqqGhCdZnyTmGXu_YYW7GbNsuG0-5co4R4xzlXHOzNinwq3tkyVDdm0guXGT3Lj_yc2MHW547abfdulI9yF7s1NdM2PzDf93tx8m6c1jkPSWPeuqfAo6Dtne6naNR-zpMq3fVen-Aze8_2g
  priority: 102
  providerName: Directory of Open Access Journals
Title One-vs-One, One-vs-Rest, and a novel Outcome-Driven One-vs-One binary classifiers enabled by optoelectronic memristors towards overcoming hardware limitations in multiclass classification
URI https://link.springer.com/article/10.1007/s43939-024-00077-7
https://www.proquest.com/docview/2934012520
https://doaj.org/article/6588539f1e814ce586a27a64cde3693f
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja90wEBZNesmlC2noS9Mwh9zyFGxrs45tFnJKoAv0JrSW0MQObwn0t_XPdaTn50dKemjBYCPLGpkZaUYjfTOEHLU-OKltQ4PTjnKfKqp5YtTiWgT1OxO-pHu7_KyuvrVn5zlMDhtdF92Pk_WOZJmoR6wbak6mKaqUDIRWiqot8hyNB57TFpwOEIc8_aLCzriUASDz9KePlFCJ1f_IwPxjT7SomouX_9XJV-TFYFnCh5UovCbPYrdLfl13kT7MKd6mMDx_QupTsF0AC13_EG_hernA9iM9m-W5DzbfgCtwXfDZxr5JOW02xIK2CuB-Qn-_6Dd5dOAu3pVIBVhpUU7jziEfEMWm8R8gw7uwMMJtxlStHIVw00E50lgIjGRWbsQ35OvF-ZfTSzrka6CeoaKjtWgDLv-aqGTlheWNl0pKnSpvaydV4pp5m4SvpbTC88hdnWwUqQqpzomt2B7Z7vouviXgIq6cnGqFY3lfFFVmo0WF0ha0DTymCTleM9Dcr8JymDEAc2GCQSaYwgSjJuRj5vFYM4fULgX97LsZRqhBUwxNF53q2NbcR9FK2ygruQ-RSc2Q5MFaQswwzucGjSVcoDaiqSZkuhaJzeu_d2n_36q_IztNkSqG1wHZXsyW8T3ZmoflYZH-w-JL-A3DCgOC
link.rule.ids 315,782,786,866,2106,27933,27934,41128,42197,52242
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcCFhwCxpcAcuLGWkvgVH6EPLaK0EhSJm-UnqtQm1T4q8dv4c4y9ya6K4ABSpESOYzuasWfGnm-GkDetD05q29DgtKPcp4pqnhi1aIugfGfCl3Rvsy_q9Ft7eJTD5PARC1O83ccjybJSb8BuKDqZpihTMhJaKap2yF2OEy6bXAcDxiGvvyixMzBlQMj8-dNbUqgE67-lYf52KFpkzfHD_xvlI_Jg0C3h3ZoZHpM7sXtCfp51kd4sKN6mMDx_xu6nYLsAFrr-Jl7C2WqJ7Ud6OM-rH2y_AVcAu-Czln2RcuJsiAVvFcD9gP562W8z6cBVvCqxCrDSsvjjLiC7iGLT-A-QAV5YGOEyo6rWW4Vw0UFxaiwdbLpZbyQ-JV-Pj84PZnTI2EA9Q1FHa9EGNACbqGTlheWNl0pKnSpvaydV4pp5m4SvpbTC88hdnWwUqQqpzqmt2DOy2_VdfE7ARbSdnGqFY_lkFIVmo0WF_Ba0DTymCXk7UtBcrwNzmE0I5kIEg0QwhQhGTcj7TORNzRxUuxT08-9mmKMGlTFUXnSqY1tzH0UrbaOs5D5EJjXDLvdHFjHDTF8YVJfQRG1EU03IdGSJ7eu_D2nv36q_Jvdm559OzMmH048vyP2mcBjDa5_sLuer-JLsLMLqVZkKvwD93gZn
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-2gviiFRVPa82Db17o7uZr86i9HhWlFT_At5DPUmh3j7u9gn-b_5yT7N4elfpQhIVdsskmy0wyM8n8ZhB6WztvhTIV8VZZwlwsiGKREgO2CMh3yl1O93byTZ7-rGfHKUzOiOLP3u6bI8ke05CiNDXd4cLHwxH4BmKUKgLyJaGipSRyB91noDokp66jAe-Q1mKQ3gmkMqBlbm96QyLlwP03tM2_Dkiz3Jk__v8R76FHg86J3_dM8gTdC81T9PusCeR6ReA2xcPzVxjKFJvGY4Ob9jpc4rN1B30FMlumVRFv22CbgbzYJe37IqaE2jhkHJbH9hduF127zbCDr8JVjmEAlbrsp7vCyXUUPg3_gxPwCwoDvkxoq34LEV80ODs75g7GbvoNxmfox_z4-9EJGTI5EEdBBJKS1x4MwypIUThuWOWEFELFwpnSChmZos5E7kohDHcsMFtGE3gsfCxTyiv6HO02bRNeIGwD2FRW1tzSdGIKwrRSvAA-9Mp4FuIEvdtQUy_6gB16DM2ciaCBCDoTQcsJ-pAIPtZMwbZzQbs818Pc1aCkgVKjYhnqkrnAa2EqaQRzPlChKHS5v2EXPawAKw1qFJiuFa-KCZpu2GP7-t9Denm36m_Qgy-zuf788fTTK_SwygxG4dpHu91yHV6jnZVfH-RZ8QfIqA9C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-vs-One%2C+One-vs-Rest%2C+and+a+novel+Outcome-Driven+One-vs-One+binary+classifiers+enabled+by+optoelectronic+memristors+towards+overcoming+hardware+limitations+in+multiclass+classification&rft.jtitle=Discover+materials&rft.au=Psaltakis%2C+George&rft.au=Rogdakis%2C+Konstantinos&rft.au=Loizos%2C+Michalis&rft.au=Kymakis%2C+Emmanuel&rft.date=2024-03-03&rft.pub=Springer+International+Publishing&rft.eissn=2730-7727&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs43939-024-00077-7&rft.externalDocID=10_1007_s43939_024_00077_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7727&client=summon