Determining the drivers of population structure in a highly urbanized landscape to inform conservation planning
Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, humand...
Saved in:
Published in: | Conservation biology Vol. 32; no. 1; pp. 148 - 158 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Blackwell, Inc
01-02-2018
Blackwell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, humandominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home-range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11-81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions. El entendimiento de los contribuyentes ambientales a la estructura poblacional es de importancia primordial para la conservación en ecosistemas urbanizados. Utilizamos modelos espacialmente explícitos para determinar la estructura genética poblacional bajo condiciones ambientales actuales y futuras a lo largo de un ambiente dominado por humanos y altamente fragmentado en el sur de California para valorar los efectos de la variación ecológica natural y la urbanización. Nos enfocamos en siete especies comunes con diversos requerimientos de habitat, tamaños de extensión doméstica, y habilidades de dispersión. Cuantificamos los papeles relativos de las barreras potenciales, incluyendo las características ambientales naturales y una barrera antropogénica creada por una gran autopista, en la formación de la variación genética. La capacidad de predecir la variación genética en nuestros modelos difirió entre especies: el 11 - 81% de variación genética intraespecífica se explicó con variables ambientales. Aunque una barrera inducida antropogénicamente (una gran autopista) restringió severamente elflujogénicoy el movimiento a escalas grandes para algunas especies, la variación genética pareció estar conducida principalmente por la heterogeneidad ambiental natural a nivel local. Nuestros resultados muestran cómo la valoración ambiental asociada con la variación para múltiples especies bajo condiciones climáticas actuales y futuras puede ayudar a identificar las regiones prioritarias para maximizar la persistencia poblacional bajo el cambio ambiental en regiones urbanizadas. |
---|---|
AbstractList | Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human-dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home-range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11-81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions. Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human‐dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home‐range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11–81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions. Determinación de los Conductores de la Estructura Poblacional en un Paisaje Altamente Urbanizado para Informar a la Planeación de la Conservación Resumen El entendimiento de los contribuyentes ambientales a la estructura poblacional es de importancia primordial para la conservación en ecosistemas urbanizados. Utilizamos modelos espacialmente explícitos para determinar la estructura genética poblacional bajo condiciones ambientales actuales y futuras a lo largo de un ambiente dominado por humanos y altamente fragmentado en el sur de California para valorar los efectos de la variación ecológica natural y la urbanización. Nos enfocamos en siete especies comunes con diversos requerimientos de hábitat, tamaños de extensión doméstica, y habilidades de dispersión. Cuantificamos los papeles relativos de las barreras potenciales, incluyendo las características ambientales naturales y una barrera antropogénica creada por una gran autopista, en la formación de la variación genética. La capacidad de predecir la variación genética en nuestros modelos difirió entre especies: el 11 – 81% de variación genética intraespecífica se explicó con variables ambientales. Aunque una barrera inducida antropogénicamente (una gran autopista) restringió severamente el flujo génico y el movimiento a escalas grandes para algunas especies, la variación genética pareció estar conducida principalmente por la heterogeneidad ambiental natural a nivel local. Nuestros resultados muestran cómo la valoración ambiental asociada con la variación para múltiples especies bajo condiciones climáticas actuales y futuras puede ayudar a identificar las regiones prioritarias para maximizar la persistencia poblacional bajo el cambio ambiental en regiones urbanizadas. Article impact statement: Community approaches to assess environmental variation can identify priority areas to maximize population persistence under climate change. Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human-dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home-range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11-81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions. Determinación de los Conductores de la Estructura Poblacional en un Paisaje Altamente Urbanizado para Informar a la Planeación de la Conservación Resumen El entendimiento de los contribuyentes ambientales a la estructura poblacional es de importancia primordial para la conservación en ecosistemas urbanizados. Utilizamos modelos espacialmente explícitos para determinar la estructura genética poblacional bajo condiciones ambientales actuales y futuras a lo largo de un ambiente dominado por humanos y altamente fragmentado en el sur de California para valorar los efectos de la variación ecológica natural y la urbanización. Nos enfocamos en siete especies comunes con diversos requerimientos de hábitat, tamaños de extensión doméstica, y habilidades de dispersión. Cuantificamos los papeles relativos de las barreras potenciales, incluyendo las características ambientales naturales y una barrera antropogénica creada por una gran autopista, en la formación de la variación genética. La capacidad de predecir la variación genética en nuestros modelos difirió entre especies: el 11 - 81% de variación genética intraespecífica se explicó con variables ambientales. Aunque una barrera inducida antropogénicamente (una gran autopista) restringió severamente el flujo génico y el movimiento a escalas grandes para algunas especies, la variación genética pareció estar conducida principalmente por la heterogeneidad ambiental natural a nivel local. Nuestros resultados muestran cómo la valoración ambiental asociada con la variación para múltiples especies bajo condiciones climáticas actuales y futuras puede ayudar a identificar las regiones prioritarias para maximizar la persistencia poblacional bajo el cambio ambiental en regiones urbanizadas. Article impact statement: Community approaches to assess environmental variation can identify priority areas to maximize population persistence under climate change. Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human‐dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home‐range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11–81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions. Article impact statement : Community approaches to assess environmental variation can identify priority areas to maximize population persistence under climate change. Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, humandominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home-range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11-81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions. El entendimiento de los contribuyentes ambientales a la estructura poblacional es de importancia primordial para la conservación en ecosistemas urbanizados. Utilizamos modelos espacialmente explícitos para determinar la estructura genética poblacional bajo condiciones ambientales actuales y futuras a lo largo de un ambiente dominado por humanos y altamente fragmentado en el sur de California para valorar los efectos de la variación ecológica natural y la urbanización. Nos enfocamos en siete especies comunes con diversos requerimientos de habitat, tamaños de extensión doméstica, y habilidades de dispersión. Cuantificamos los papeles relativos de las barreras potenciales, incluyendo las características ambientales naturales y una barrera antropogénica creada por una gran autopista, en la formación de la variación genética. La capacidad de predecir la variación genética en nuestros modelos difirió entre especies: el 11 - 81% de variación genética intraespecífica se explicó con variables ambientales. Aunque una barrera inducida antropogénicamente (una gran autopista) restringió severamente elflujogénicoy el movimiento a escalas grandes para algunas especies, la variación genética pareció estar conducida principalmente por la heterogeneidad ambiental natural a nivel local. Nuestros resultados muestran cómo la valoración ambiental asociada con la variación para múltiples especies bajo condiciones climáticas actuales y futuras puede ayudar a identificar las regiones prioritarias para maximizar la persistencia poblacional bajo el cambio ambiental en regiones urbanizadas. |
Author | Harrigan, Ryan J. Smith, Thomas B. Wayne, Robert K. Pease, Katherine Thomassen, Henri A. Riley, Seth P. D. Serieys, Laurel E. K. Delaney, Kathleen Semple |
Author_xml | – sequence: 1 givenname: Henri A. surname: Thomassen fullname: Thomassen, Henri A. – sequence: 2 givenname: Ryan J. surname: Harrigan fullname: Harrigan, Ryan J. – sequence: 3 givenname: Kathleen Semple surname: Delaney fullname: Delaney, Kathleen Semple – sequence: 4 givenname: Seth P. D. surname: Riley fullname: Riley, Seth P. D. – sequence: 5 givenname: Laurel E. K. surname: Serieys fullname: Serieys, Laurel E. K. – sequence: 6 givenname: Katherine surname: Pease fullname: Pease, Katherine – sequence: 7 givenname: Robert K. surname: Wayne fullname: Wayne, Robert K. – sequence: 8 givenname: Thomas B. surname: Smith fullname: Smith, Thomas B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28631859$$D View this record in MEDLINE/PubMed |
BookMark | eNp90b9v1DAUB3ALFdFrYWEHWWJBSCl-sR3bIxy_KlXqAnOUOC89nxI72EnR9a-vj7QdGPDi5fO-_srvjJz44JGQ18AuIJ-PNrTuAkpTmWdkA7LkBShuTsiGaa0LrU15Ss5S2jPGjATxgpyWuuKgpdmQ8AVnjKPzzt_QeYe0i-4WY6Khp1OYlqGZXfA0zXGx8xKROk8bunM3u-FAl9g23t1hR4fGd8k2E9I5ZNKHOFIbfMJ4uwZMWRzfeEme982Q8NXDfU5-ffv6c_ujuLr-frn9dFVYrowpVCukqXpgDGWfm3at5J3opNat6cEK1TJhkZkORMMkVKKzCm1ZcQ5NhSXj5-T9mjvF8HvBNNejSxaHXAPDkmowAAqklCrTd__QfViiz-2y0kKq0nDI6sOqbAwpRezrKbqxiYcaWH1cQ31cQ_13DRm_fYhc2hG7J_r47xnACv64AQ__iaq3158vH0PfrDP7NIf4NCOEUVyJit8DK2Se3Q |
CitedBy_id | crossref_primary_10_1038_s41597_022_01479_z crossref_primary_10_1093_biolinnean_blaa209 crossref_primary_10_1111_eva_13156 crossref_primary_10_3389_fevo_2023_983371 crossref_primary_10_1111_mec_15274 crossref_primary_10_1093_jue_juaa010 crossref_primary_10_1111_mec_15221 crossref_primary_10_1093_icb_icy052 |
Cites_doi | 10.2307/1369175 10.1111/j.1471-8286.2005.01031.x 10.1126/science.1144004 10.2173/bna.654 10.1111/j.1472-4642.2007.00341.x 10.1111/j.0014-3820.2006.tb00500.x 10.1093/oso/9780199547760.003.0014 10.1038/sj.hdy.6800917 10.1093/oso/9780199547760.003.0017 10.1016/j.cub.2014.07.029 10.1093/beheco/arg056 10.1086/505765 10.1111/j.1752-4571.2010.00172.x 10.1111/mec.12561 10.1006/anbe.1994.1029 10.1007/s10592-006-9202-1 10.1016/j.ecocom.2004.11.003 10.1080/10635150252899752 10.1093/genetics/78.1.53 10.1111/eva.12226 10.2307/2999740 10.1016/S0169-5347(03)00008-9 10.1007/s00442-013-2745-1 10.1038/nature09670 10.1038/hdy.1997.134 10.1111/j.1365-294X.2006.02907.x 10.1111/j.1365-294X.2010.04737.x 10.2307/1564962 10.1016/j.tree.2013.05.012 10.1016/S1146-609X(02)01145-1 10.1016/j.ympev.2005.10.011 10.1098/rsos.140255 10.1111/eva.12357 10.1038/hdy.2012.26 10.1111/j.1558-5646.2007.00299.x 10.1016/j.biocon.2008.04.009 |
ContentType | Journal Article |
Copyright | 2018 Society for Conservation Biology 2017 Society for Conservation Biology 2017 Society for Conservation Biology. 2018, Society for Conservation Biology |
Copyright_xml | – notice: 2018 Society for Conservation Biology – notice: 2017 Society for Conservation Biology – notice: 2017 Society for Conservation Biology. – notice: 2018, Society for Conservation Biology |
DBID | NPM AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 |
DOI | 10.1111/cobi.12969 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | 158 |
ExternalDocumentID | 10_1111_cobi_12969 28631859 COBI12969 44973746 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Santa Monica Bay Audubon Society – fundername: Seventh Framework Programme funderid: 293886 – fundername: National Science Foundation Graduate Student Fellowship – fundername: California Landscape Conservation Cooperative – fundername: Mildred E. Matthias Graduate Research Grant – fundername: Pauley Fellowship – fundername: Panthera – fundername: National Science Foundation funderid: GK‐12; IIA PIRE‐1243524; PD‐08‐1269 |
GroupedDBID | --- -DZ .3N .GA 05W 0R~ 10A 1OC 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAJUZ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABHUG ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABWRO ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHBTC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IX1 J0M JBS JLS LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OES OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SUPJJ TEORI TN5 UB1 UKR V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YFH YUY YV5 YZZ ZCA ZO4 ZZTAW ~02 ~IA ~KM ~WT .-4 .Y3 1OB 31~ 42X AAHBH AAISJ AAUTI ABBHK ABEFU ABEML ACBWZ ACPVT ACSCC ADACV ADUKH ADULT AEUPB AFFDN AGUYK AI. AITYG ANHSF AQVQM ASPBG AVWKF AZFZN CAG CBGCD COF CUYZI DEVKO DOOOF FEDTE GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF IPSME JAAYA JBMMH JEB JENOY JHFFW JKQEH JLXEF JPM JSODD JST MVM NEJ OIG SA0 SAMSI UQL VH1 VOH WHG XIH ZCG AHXOZ AILXY NPM AAMNL AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c3799-7b4596f100e5f185db53d4d588b9f1c47b04ce09d14a05164dc7ec26331a6e203 |
IEDL.DBID | 33P |
ISSN | 0888-8892 |
IngestDate | Fri Aug 16 07:58:13 EDT 2024 Tue Nov 19 06:54:52 EST 2024 Fri Nov 22 03:38:42 EST 2024 Wed Oct 16 00:48:32 EDT 2024 Sat Aug 24 00:46:18 EDT 2024 Fri Feb 02 07:05:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | genética poblacional population genetics vertebrados adaptive variation conservation planning Santa Monica Mountains vertebrates Montañas de Santa Mónica landscape genetics variación adaptativa cambio climático climate change genética de paisajes |
Language | English |
License | 2017 Society for Conservation Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3799-7b4596f100e5f185db53d4d588b9f1c47b04ce09d14a05164dc7ec26331a6e203 |
Notes | Community approaches to assess environmental variation can identify priority areas to maximize population persistence under climate change. Article impact statement Both the authors contributed equally. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9403-1291 |
PMID | 28631859 |
PQID | 1984572931 |
PQPubID | 36794 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1911715557 proquest_journals_1984572931 crossref_primary_10_1111_cobi_12969 pubmed_primary_28631859 wiley_primary_10_1111_cobi_12969_COBI12969 jstor_primary_44973746 |
PublicationCentury | 2000 |
PublicationDate | 20180201 February 2018 2018-02-00 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 2 year: 2018 text: 20180201 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conserv Biol |
PublicationYear | 2018 |
Publisher | Wiley Blackwell, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley Blackwell, Inc – name: Blackwell Publishing Ltd |
References | 1995; 97 2015; 2 1974; 78 2013; 28 2013; 22 2011 2010; 19 2002; 51 2006; 39 2006; 15 2009 1954 2003; 14 2008 1994; 47 2014; 24 2003; 18 2003 1994; 28 2002 2011; 4 2011; 470 2007; 98 2014; 174 2015; 8 1993; 1 2007; 13 2008; 141 2012; 109 2006; 60 2007; 317 2002; 23 1997; 79 2005; 5 2007; 8 1977; 33 2015 2014 2005; 2 2008; 62 2010; 5 2016; 9 2006; 168 e_1_2_6_32_1 Ball IR (e_1_2_6_3_1) 2009 e_1_2_6_10_1 e_1_2_6_31_1 Semple Delaney K (e_1_2_6_35_1) 2010; 5 Stebbins RC (e_1_2_6_40_1) 1954 Busteed GT (e_1_2_6_4_1) 2003 R Core Team (e_1_2_6_30_1) 2014 Smith TB (e_1_2_6_39_1) 2008 Fitch HS (e_1_2_6_9_1) 1977; 33 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Moilanen A (e_1_2_6_22_1) 2008 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 Manion G (e_1_2_6_19_1) 2015 e_1_2_6_24_1 Sarkar S (e_1_2_6_34_1) 2009 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 |
References_xml | – year: 2011 – volume: 39 start-page: 293 year: 2006 end-page: 304 article-title: Phylogeography of Pseudacris regilla (Anura: Hylidae) in western North America, with a proposal for a new taxonomic rearrangement publication-title: Molecular Phylogenetics and Evolution – volume: 79 start-page: 117 year: 1997 end-page: 127 article-title: Genetic substructuring as a result of barriers to gene flow in urban (common frog) populatons: implications for biodiversity conservation publication-title: Heredity – start-page: 235 year: 2009 end-page: 348 – volume: 23 start-page: 121 year: 2002 end-page: 135 article-title: The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms publication-title: Acta Oecologica – volume: 470 start-page: 479 year: 2011 end-page: 485 article-title: Climate change and evolutionary adaptation publication-title: Nature – volume: 51 start-page: 238 year: 2002 end-page: 254 article-title: Strategies to protect biological diversity and the evolutionary processes that sustain it publication-title: Systematic Biology – volume: 15 start-page: 1733 year: 2006 end-page: 1741 article-title: A southern California freeway is a physical and social barrier to gene flow in carnivores publication-title: Molecular Ecology – volume: 2 start-page: 185 year: 2005 end-page: 203 article-title: Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California publication-title: Ecological Complexity – volume: 5 start-page: 712 year: 2005 end-page: 715 article-title: Geneland: a computer package for landscape genetics publication-title: Molecular Ecology Notes – volume: 33 start-page: 303 year: 1977 end-page: 313 article-title: Spatial relationships and seasonality in the skinks and in northeastern Kansas publication-title: Herpetologica – volume: 78 start-page: 53 year: 1974 end-page: 65 article-title: Genetic conservation: our evolutionary responsibility publication-title: Genetics – volume: 168 start-page: 88 year: 2006 end-page: 99 article-title: Genetic and maternal determinants of effective dispersal: the effect of sire genotype and size at birth in side‐blotched lizards publication-title: The American Naturalist – volume: 14 start-page: 650 year: 2003 end-page: 655 article-title: Genetic, prenatal, and postnatal correlates of dispersal in hatchling fence lizards ( ) publication-title: Behavioral Ecology – year: 2003 – volume: 109 start-page: 163 year: 2012 end-page: 172 article-title: Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient publication-title: Heredity – volume: 18 start-page: 189 year: 2003 end-page: 197 article-title: Landscape genetics: combining landscape ecology and population genetics publication-title: Trends in Ecology & Evolution – volume: 2 start-page: 140255 year: 2015 article-title: Genetic structure and diversity of the endangered growling grass frog in a rapidly urbanizing region publication-title: Royal Society Open Science – volume: 4 start-page: 397 year: 2011 end-page: 413 article-title: Mapping evolutionary process: a multi‐taxa approach to conservation prioritization publication-title: Evolutionary Applications – volume: 8 start-page: 599 year: 2007 end-page: 606 article-title: Impact of urban fragmentation on the genetic structure of the eastern red‐backed salamander publication-title: Conservation Genetics – start-page: 185 year: 2009 end-page: 195 – year: 1954 – year: 2014 – volume: 97 start-page: 663 year: 1995 end-page: 674 article-title: Correcting biased estimates of dispersal and survival due to limited study area: theory and an application using Wrentits publication-title: The Condor – volume: 22 start-page: 5983 year: 2013 end-page: 5999 article-title: Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization publication-title: Molecular Ecology – volume: 8 start-page: 75 year: 2015 end-page: 92 article-title: Disease and freeways drive genetic change in urban bobcat populations publication-title: Evolutionary Applications – volume: 19 start-page: 3532 year: 2010 end-page: 3548 article-title: Spatial modelling and landscape‐level approaches for visualizing intra‐specific variation publication-title: Molecular Ecology – volume: 28 start-page: 485 year: 1994 end-page: 490 article-title: The effects of habitat, time of hatching, and body size on the dispersal of hatchling publication-title: Journal of Herpetology – volume: 317 start-page: 1513 year: 2007 end-page: 1516 article-title: Complexity of coupled human and natural systems publication-title: Science – start-page: 85 year: 2008 end-page: 98 – volume: 13 start-page: 252 year: 2007 end-page: 264 article-title: Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment publication-title: Diversity and Distributions – year: 2002 – year: 2008 – volume: 60 start-page: 1551 year: 2006 end-page: 1561 article-title: Isolation by resistance publication-title: Evolution – volume: 5 issue: e12767 year: 2010 article-title: A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates publication-title: PLoS ONE – volume: 47 start-page: 227 year: 1994 end-page: 229 article-title: Sex‐biased dispersal in a polygynous lizard, publication-title: Animal Behaviour – volume: 62 start-page: 316 year: 2008 end-page: 336 article-title: Heterogeneous genomic differentiation between walking‐stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection publication-title: Evolution – volume: 28 start-page: 614 year: 2013 end-page: 621 article-title: Ten years of landscape genetics publication-title: Trends in Ecology & Evolution – volume: 24 start-page: 1989 year: 2014 end-page: 1994 article-title: Individual behaviors dominate the dynamics of an urban mountain lion population isolated by roads publication-title: Current Biology – volume: 174 start-page: 241 year: 2014 end-page: 252 article-title: Divergent responses of exposed and naive Pacific tree frog tadpoles to invasive predatory crayfish publication-title: Oecologia – volume: 1 start-page: 164 year: 1993 end-page: 167 article-title: The preservation of process: the missing element of conservation programs publication-title: Biodiversity Letters – volume: 141 start-page: 1648 year: 2008 end-page: 1664 article-title: Are hotspots of evolutionary potential adequately protected in southern California publication-title: Biological Conservation – volume: 9 start-page: 546 year: 2016 end-page: 564 article-title: Population genomics of the Anthropocene: urbanization is negatively associated with genome‐wide variation in white‐footed mouse populations publication-title: Evolutionary Applications – year: 2015 – volume: 98 start-page: 128 year: 2007 end-page: 142 article-title: Putting the “landscape” in landscape genetics publication-title: Heredity – ident: e_1_2_6_2_1 doi: 10.2307/1369175 – ident: e_1_2_6_12_1 doi: 10.1111/j.1471-8286.2005.01031.x – ident: e_1_2_6_16_1 doi: 10.1126/science.1144004 – ident: e_1_2_6_11_1 doi: 10.2173/bna.654 – ident: e_1_2_6_8_1 doi: 10.1111/j.1472-4642.2007.00341.x – ident: e_1_2_6_21_1 doi: 10.1111/j.0014-3820.2006.tb00500.x – start-page: 185 volume-title: Spatial conservation prioritisation: quantitative methods and computational tools year: 2009 ident: e_1_2_6_3_1 doi: 10.1093/oso/9780199547760.003.0014 contributor: fullname: Ball IR – ident: e_1_2_6_41_1 doi: 10.1038/sj.hdy.6800917 – start-page: 235 volume-title: Spatial conservation prioritization: quantitative methods and computational tools year: 2009 ident: e_1_2_6_34_1 doi: 10.1093/oso/9780199547760.003.0017 contributor: fullname: Sarkar S – ident: e_1_2_6_33_1 doi: 10.1016/j.cub.2014.07.029 – ident: e_1_2_6_20_1 doi: 10.1093/beheco/arg056 – ident: e_1_2_6_37_1 doi: 10.1086/505765 – ident: e_1_2_6_44_1 doi: 10.1111/j.1752-4571.2010.00172.x – ident: e_1_2_6_27_1 doi: 10.1111/mec.12561 – ident: e_1_2_6_7_1 doi: 10.1006/anbe.1994.1029 – volume-title: R: A language and environment for statistical computing year: 2014 ident: e_1_2_6_30_1 contributor: fullname: R Core Team – ident: e_1_2_6_25_1 doi: 10.1007/s10592-006-9202-1 – ident: e_1_2_6_42_1 doi: 10.1016/j.ecocom.2004.11.003 – ident: e_1_2_6_28_1 – start-page: 85 volume-title: Conservation biology: evolution in action year: 2008 ident: e_1_2_6_39_1 contributor: fullname: Smith TB – ident: e_1_2_6_23_1 doi: 10.1080/10635150252899752 – ident: e_1_2_6_10_1 doi: 10.1093/genetics/78.1.53 – ident: e_1_2_6_36_1 doi: 10.1111/eva.12226 – ident: e_1_2_6_38_1 doi: 10.2307/2999740 – volume-title: Zonation spatial conservation planning framework and software year: 2008 ident: e_1_2_6_22_1 contributor: fullname: Moilanen A – volume: 33 start-page: 303 year: 1977 ident: e_1_2_6_9_1 article-title: Spatial relationships and seasonality in the skinks Eumeces fasciatus and Scincella laterale in northeastern Kansas publication-title: Herpetologica contributor: fullname: Fitch HS – ident: e_1_2_6_18_1 doi: 10.1016/S0169-5347(03)00008-9 – ident: e_1_2_6_29_1 doi: 10.1007/s00442-013-2745-1 – ident: e_1_2_6_14_1 doi: 10.1038/nature09670 – ident: e_1_2_6_13_1 doi: 10.1038/hdy.1997.134 – ident: e_1_2_6_32_1 doi: 10.1111/j.1365-294X.2006.02907.x – ident: e_1_2_6_43_1 doi: 10.1111/j.1365-294X.2010.04737.x – ident: e_1_2_6_6_1 doi: 10.2307/1564962 – ident: e_1_2_6_17_1 doi: 10.1016/j.tree.2013.05.012 – volume-title: gdm: functions for generalized dissimilarity modeling year: 2015 ident: e_1_2_6_19_1 contributor: fullname: Manion G – volume-title: Amphibians and reptiles of western North America year: 1954 ident: e_1_2_6_40_1 contributor: fullname: Stebbins RC – ident: e_1_2_6_5_1 doi: 10.1016/S1146-609X(02)01145-1 – volume: 5 issue: 12767 year: 2010 ident: e_1_2_6_35_1 article-title: A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates publication-title: PLoS ONE contributor: fullname: Semple Delaney K – ident: e_1_2_6_31_1 doi: 10.1016/j.ympev.2005.10.011 – volume-title: Effects of habitat fragmentation on reptiles and amphibians in coastal sage scrub and grassland communities year: 2003 ident: e_1_2_6_4_1 contributor: fullname: Busteed GT – ident: e_1_2_6_15_1 doi: 10.1098/rsos.140255 – ident: e_1_2_6_24_1 doi: 10.1111/eva.12357 – ident: e_1_2_6_46_1 doi: 10.1038/hdy.2012.26 – ident: e_1_2_6_26_1 doi: 10.1111/j.1558-5646.2007.00299.x – ident: e_1_2_6_45_1 doi: 10.1016/j.biocon.2008.04.009 |
SSID | ssj0009514 |
Score | 2.3359835 |
Snippet | Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially... |
SourceID | proquest crossref pubmed wiley jstor |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 148 |
SubjectTerms | adaptive variation Anthropogenic factors Barriers cambio climático Climate Climate change Conservation conservation planning Dispersal Dispersion Ecological effects Ecological monitoring Environmental changes Environmental conditions Environmental impact Gene flow Genetic diversity genética de paisajes genética poblacional Habitat selection Home range Human influences Landscape landscape genetics Montañas de Santa Mónica Population Population genetics Population structure Regions Santa Monica Mountains Species Urbanization variación adaptativa vertebrados vertebrates |
SummonAdditionalLinks | – databaseName: JSTOR Ecology & Botany Collection dbid: JEB link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2xlSpx4aNQGmiREXBBCiTx95G2WxUOcAAkblFij6VKVbLasof994ztZFUkQL1ZiuVYfnZmJn7zBuCNM01QzvFSqt6VMYAoyQxjGTjailtjMEkKXX7TX36a82WUyXk758JEWmXiBaZbfHKQ-mv8IITVXAu1gIURcTN_Xp7eUtbNAt4UypXG2GbSII10HTf2V-_JoEU28y2rk4mHf3Mp__RQk4m5eHjHyT2CB5MPyT5m0B_DPRwOYD9XldxSa5mUqLdPYDyfyC5knxh5esyvEw2DjYGtdpW7WNaQ3ayRXQ2sY1HB-HrLNus-ZmmiZykdOBKl2K-RZaVV5iILe_qfy1ZT5aOn8ONi-f3sspwqLJSOa2tL3QtpVairCmUgy-17yb3w0pjehtoJ3VfCYWV9LTo6vUp4p9E1ivO6U9hU_BD2hnHAI2ChETRmxZ0LUgQuLTrlkT5fnZFIXkEBr2cE2lUW0mjnACTi1CacCjhMC7zrMq9uAcczWu10ym7a2hohKTrgdQGvdo_pfMRLj27AcRP71LUmp0nqAp5llHeDN0bF5HF667sE-38m1p59Pf2UWs__NcUXcJ-8KZMp3cewR9jhCSxu_OZl2rG_Af9H5mY priority: 102 providerName: JSTOR |
Title | Determining the drivers of population structure in a highly urbanized landscape to inform conservation planning |
URI | https://www.jstor.org/stable/44973746 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12969 https://www.ncbi.nlm.nih.gov/pubmed/28631859 https://www.proquest.com/docview/1984572931 https://search.proquest.com/docview/1911715557 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9aodCX2latUXtssU9CSpL9hr74caIvVrAF30KyHyBIctx5D_ffO7ubSxVEKH0JC9kky87OzszmN78B-G5U5YUxNOeiNXkIIHI0wy731OmCaqVcpBS6uJFXt-psGmhyfq5zYRI_xHjgFjQj7tdBwZt28UTJTd_e_UBrJUL2HoYJMX-DXj9h3E3E3hji5UrpauAmDTCev48-s0YJkPiSq_ncc42m53zz_wb9ET4MLic5TmvkE7xx3Wd4l4pQrrA1jcTVqy3ozwZsDJozgo4hsfOI2iC9J7Ox0BdJlLPLuSN3HWlIIDy-X5HlvA1Jnc6SmD0ccFXkoSeJmJWYANoejn_JbCiUtA1_zqe_Ty_yoSBDbqjUOpct41r4sigc92jobcupZZYr1WpfGibbghlXaFuyBpVdMGukM5WgtGyEqwq6Axtd37ldIL5i-M6CGuM585RrZ4R1uNs1ijt0IjI4XAumniXejXodr4RJrOMkZrATZTZ2YUxLKpnI4GAtxHpQykVdasU4BhO0zODbeBvVKfwjaTrXL0OfspToY3GZwZck_PHllRIh1xy_ehRl_MrA6tNfJ5extfcvnffhPTpkKqHCD2AD5em-wtuFXU7i4p7E3JxwnZ5MInz1ERpF_eI |
link.rule.ids | 315,782,786,808,814,843,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yoLSXJn2kdfNSaU8FF9t6H3rIY8OGpmmhKfRmbD0gUOxl0z3sv-9I8roJlEDJTWBZFhqNZkb-5huA90ZVXhhDcy5ak4cAIkcz7HJPnS6oVspFSqHpd3n5U51OAk3Op1UuTOKHGC_cgmbE8zooeLiQvqXlpm-vP6K5EnodNpnAnRgyOOi3W5y7idobg7xcKV0N7KQByPP33Tv2KEES_-Vs3vVdo_E523rgtLfh6eB1kqO0TZ7Bmuuew6NUh3KJrUnkrl6-gP50gMegRSPoGxI7j8AN0nsyG2t9kcQ6u5g7ct2RhgTO419Lspi3Ia_TWRITiAO0ivzuSeJmJSbgtocbYDIbaiW9hB9nk6uTaT7UZMgNlVrnsmVcC18WheMebb1tObXMcqVa7UvDZFsw4wptS9agvgtmjXSmEpSWjXBVQXdgo-s79xqIrxiOWVBjPGeecu2MsA4PvEZxh35EBu9WkqlniXqjXoUsYRHruIgZ7EShjV0Y05JKJjLYW0mxHvTypi61YhzjCVpm8HZ8jBoVfpM0nesXoU9ZSnSzuMzgVZL-OHilREg3x69-iEK-Z2L1ydfj89h68z-dD-Hx9OrLRX1xfvl5F56gf6YSSHwPNlC2bh_Wb-ziIO70PzIT_w4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6alJZcmr6SOkkTlfZUcLGtN-SSZHdJaEkDbaE3Y-sBgWIvm-5h_31HktdNoBRCbgLLstBoNN_IM98AfDCq8sIYmnPRmjw4EDmaYZd76nRBtVIuUgqdf5OXP9VkGmhyjte5MIkfYrxwC5oRz-ug4HPrbym56dvrT2ithN6AxwxxeGDOp_TqFuVuYvZGHy9XSlcDOWmI4_n77h1zlCIS_4U170LXaHtm2w-b9XN4NmBOcpI2yQt45LqX8CRVoVxhaxqZq1evoJ8MwTFozwgiQ2IXMWyD9J7Mx0pfJHHOLheOXHekIYHx-NeKLBdtyOp0lsT04RBYRX73JDGzEhOitof7XzIfKiW9hh-z6fez83yoyJAbKrXOZcu4Fr4sCsc9WnrbcmqZ5Uq12peGybZgxhXalqxBbRfMGulMJSgtG-Gqgu7AZtd37g0QXzEcs6DGeM485doZYR0ed43iDlFEBu_XgqnniXijXjssYRHruIgZ7ESZjV0Y05JKJjI4WAuxHrTypi61Yhy9CVpm8G58jPoUfpI0neuXoU9ZSgRZXGawm4Q_Dl4pEZLN8asfo4z_M7H67OvpRWzt3afzETy9mszqLxeXn_dhC8GZShHiB7CJonVvYePGLg_jPv8DGcf9tA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+the+drivers+of+population+structure+in+a+highly+urbanized+landscape+to+inform+conservation+planning&rft.jtitle=Conservation+biology&rft.au=Thomassen%2C+Henri+A.&rft.au=Harrigan%2C+Ryan+J.&rft.au=Semple+Delaney%2C+Kathleen&rft.au=Riley%2C+Seth+P.+D.&rft.date=2018-02-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=32&rft.issue=1&rft.spage=148&rft.epage=158&rft_id=info:doi/10.1111%2Fcobi.12969&rft.externalDBID=10.1111%252Fcobi.12969&rft.externalDocID=COBI12969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |