Construction of analytical solutions to systems of two stochastic differential equations

A scheme for the stochastization of systems of ordinary differential equations (ODEs) based on Itô calculus is presented in this article. Using the presented techniques, a system of stochastic differential equations (SDEs) can be constructed in such a way that eliminating the stochastic component yi...

Full description

Saved in:
Bibliographic Details
Published in:Open mathematics (Warsaw, Poland) Vol. 21; no. 1; pp. 108133 - 336
Main Authors: Navickas, Zenonas, Telksniene, Inga, Telksnys, Tadas, Marcinkevicius, Romas, Ragulskis, Minvydas
Format: Journal Article
Language:English
Published: Warsaw De Gruyter 11-11-2023
De Gruyter Poland
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A scheme for the stochastization of systems of ordinary differential equations (ODEs) based on Itô calculus is presented in this article. Using the presented techniques, a system of stochastic differential equations (SDEs) can be constructed in such a way that eliminating the stochastic component yields the original system of ODEs. One of the main benefits of this scheme is the ability to construct analytical solutions to SDEs with the use of special vector-valued functions, which significantly differs from the randomization approach, which can only be applied via numerical integration. Moreover, using the presented techniques, a system of ODEs and SDEs can be constructed from a given diffusion function, which governs the uncertainty of a particular process.
AbstractList A scheme for the stochastization of systems of ordinary differential equations (ODEs) based on Itô calculus is presented in this article. Using the presented techniques, a system of stochastic differential equations (SDEs) can be constructed in such a way that eliminating the stochastic component yields the original system of ODEs. One of the main benefits of this scheme is the ability to construct analytical solutions to SDEs with the use of special vector-valued functions, which significantly differs from the randomization approach, which can only be applied via numerical integration. Moreover, using the presented techniques, a system of ODEs and SDEs can be constructed from a given diffusion function, which governs the uncertainty of a particular process.
Author Ragulskis, Minvydas
Marcinkevicius, Romas
Telksnys, Tadas
Telksniene, Inga
Navickas, Zenonas
Author_xml – sequence: 1
  givenname: Zenonas
  surname: Navickas
  fullname: Navickas, Zenonas
  email: zenonas.navickas@ktu.lt
  organization: Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania
– sequence: 2
  givenname: Inga
  surname: Telksniene
  fullname: Telksniene, Inga
  email: inga.telksniene@ktu.edu
  organization: Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania
– sequence: 3
  givenname: Tadas
  surname: Telksnys
  fullname: Telksnys, Tadas
  email: tadas.telksnys@ktu.lt
  organization: Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania
– sequence: 4
  givenname: Romas
  surname: Marcinkevicius
  fullname: Marcinkevicius, Romas
  email: romas.marcinkevicius@ktu.lt
  organization: Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania
– sequence: 5
  givenname: Minvydas
  surname: Ragulskis
  fullname: Ragulskis, Minvydas
  email: minvydas.ragulskis@ktu.lt
  organization: Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania
BookMark eNptkctLxDAQxoMo-Lx6LniuZppH26MsvkDwouAtpMlkt0u30SRF9r83dUU9eMpk-H7fDPMdk_3Rj0jIOdBLECCuNjqtyopWrKTA5B45qlgLpeBC7P-pD8lZjGtKaWZoDXBEXhd-jClMJvV-LLwr9KiHbeqNHoroh2luxyL5Im5jwk2cJekjf5M3Kx2zsLC9cxhwTH1m8H3SX8wpOXB6iHj2_Z6Ql9ub58V9-fh097C4fiwNq5tUonTcSuA1CuzamkoNnWGWNZ0xQjqgHCtXdyCRA4O2ahrJ0QK2zkpZoWAn5GHna71eq7fQb3TYKq979dXwYal0yGsOqNBhW0tm0JqOa3RdS3VHneXG1FUnbfa62Hm9Bf8-YUxq7aeQDxJVHtyyhgsms-pypzLBxxjQ_UwFquYw1ByGmsNQcxgZaHfAhx4SBovLMG1z8ev-P1gBsE-DI5Sk
Cites_doi 10.1515/math-2022-0051
10.1016/j.ijepes.2019.05.054
10.1007/978-3-642-14394-6_5
10.1016/j.matcom.2022.08.012
10.1016/j.chaos.2021.111105
10.1137/050645142
10.1016/j.cnsns.2023.107201
10.1038/s41598-022-20059-0
10.1016/j.jsv.2013.03.025
10.4171/072
10.2514/6.2009-976
10.1093/biomethods/bpac022
10.1016/j.chaos.2022.113008
10.1016/j.compchemeng.2023.108133
10.1201/9780203738283
10.1201/9781003168102
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1515/math-2023-0136
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Science Journals
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2391-5455
EndPage 336
ExternalDocumentID oai_doaj_org_article_efe9763cedcb4aefb90ab0fd4cc72b6d
10_1515_math_2023_0136
10_1515_math_2023_0136211
GroupedDBID 5VS
88I
AAFWJ
ABFKT
ABUWG
ACGFS
ADBBV
AENEX
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
F-.
GNUQQ
GROUPED_DOAJ
HCIFZ
K7-
KQ8
M2P
M~E
OK1
PIMPY
QD8
AAYXX
CITATION
M48
SLJYH
3V.
7XB
8FE
8FG
8FK
COVID
JQ2
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c378t-e6f4d6147e5eb9706a1bc3d38bcc56f104e2f7b16e4131928864ed1e9fd662e53
IEDL.DBID DOA
ISSN 2391-5455
IngestDate Tue Oct 22 15:08:05 EDT 2024
Thu Oct 10 16:21:28 EDT 2024
Fri Nov 22 00:13:10 EST 2024
Tue Nov 14 02:10:34 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-e6f4d6147e5eb9706a1bc3d38bcc56f104e2f7b16e4131928864ed1e9fd662e53
OpenAccessLink https://doaj.org/article/efe9763cedcb4aefb90ab0fd4cc72b6d
PQID 2889384536
PQPubID 5000747
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_efe9763cedcb4aefb90ab0fd4cc72b6d
proquest_journals_2889384536
crossref_primary_10_1515_math_2023_0136
walterdegruyter_journals_10_1515_math_2023_0136211
PublicationCentury 2000
PublicationDate 2023-11-11
PublicationDateYYYYMMDD 2023-11-11
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-11
  day: 11
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Open mathematics (Warsaw, Poland)
PublicationYear 2023
Publisher De Gruyter
De Gruyter Poland
Publisher_xml – name: De Gruyter
– name: De Gruyter Poland
References 2023111316290992370_j_math-2023-0136_ref_009
2023111316290992370_j_math-2023-0136_ref_008
2023111316290992370_j_math-2023-0136_ref_019
2023111316290992370_j_math-2023-0136_ref_007
2023111316290992370_j_math-2023-0136_ref_018
2023111316290992370_j_math-2023-0136_ref_002
2023111316290992370_j_math-2023-0136_ref_013
2023111316290992370_j_math-2023-0136_ref_001
2023111316290992370_j_math-2023-0136_ref_012
2023111316290992370_j_math-2023-0136_ref_011
2023111316290992370_j_math-2023-0136_ref_010
2023111316290992370_j_math-2023-0136_ref_006
2023111316290992370_j_math-2023-0136_ref_017
2023111316290992370_j_math-2023-0136_ref_005
2023111316290992370_j_math-2023-0136_ref_016
2023111316290992370_j_math-2023-0136_ref_004
2023111316290992370_j_math-2023-0136_ref_015
2023111316290992370_j_math-2023-0136_ref_003
2023111316290992370_j_math-2023-0136_ref_014
References_xml – ident: 2023111316290992370_j_math-2023-0136_ref_015
  doi: 10.1515/math-2022-0051
– ident: 2023111316290992370_j_math-2023-0136_ref_009
  doi: 10.1016/j.ijepes.2019.05.054
– ident: 2023111316290992370_j_math-2023-0136_ref_017
  doi: 10.1007/978-3-642-14394-6_5
– ident: 2023111316290992370_j_math-2023-0136_ref_010
– ident: 2023111316290992370_j_math-2023-0136_ref_011
– ident: 2023111316290992370_j_math-2023-0136_ref_005
  doi: 10.1016/j.matcom.2022.08.012
– ident: 2023111316290992370_j_math-2023-0136_ref_008
  doi: 10.1016/j.chaos.2021.111105
– ident: 2023111316290992370_j_math-2023-0136_ref_013
  doi: 10.1137/050645142
– ident: 2023111316290992370_j_math-2023-0136_ref_006
  doi: 10.1016/j.cnsns.2023.107201
– ident: 2023111316290992370_j_math-2023-0136_ref_003
  doi: 10.1038/s41598-022-20059-0
– ident: 2023111316290992370_j_math-2023-0136_ref_014
  doi: 10.1016/j.jsv.2013.03.025
– ident: 2023111316290992370_j_math-2023-0136_ref_001
  doi: 10.4171/072
– ident: 2023111316290992370_j_math-2023-0136_ref_012
  doi: 10.2514/6.2009-976
– ident: 2023111316290992370_j_math-2023-0136_ref_018
– ident: 2023111316290992370_j_math-2023-0136_ref_004
  doi: 10.1093/biomethods/bpac022
– ident: 2023111316290992370_j_math-2023-0136_ref_007
  doi: 10.1016/j.chaos.2022.113008
– ident: 2023111316290992370_j_math-2023-0136_ref_002
  doi: 10.1016/j.compchemeng.2023.108133
– ident: 2023111316290992370_j_math-2023-0136_ref_016
  doi: 10.1201/9780203738283
– ident: 2023111316290992370_j_math-2023-0136_ref_019
  doi: 10.1201/9781003168102
SSID ssj0001510711
Score 2.3284569
Snippet A scheme for the stochastization of systems of ordinary differential equations (ODEs) based on Itô calculus is presented in this article. Using the presented...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 108133
SubjectTerms 35R60
60H10
Differential calculus
differential equation
Differential equations
Exact solutions
Itô equation
Numerical integration
stochastic calculus
Title Construction of analytical solutions to systems of two stochastic differential equations
URI http://www.degruyter.com/doi/10.1515/math-2023-0136
https://www.proquest.com/docview/2889384536
https://doaj.org/article/efe9763cedcb4aefb90ab0fd4cc72b6d
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI6AExwmnmIwUA5InKr1kabtkcemXeACSLtFTeKwA9qAdpr499h9wRASF46tLMX6bNd2k3xm7CK1GkQEMQ130digWIy5SMeeELEFF4hYhHQ5efKQ3E_T2xHR5HSjvuhMWE0PXAM3BAeYMSMD1miRg9OZn2vfWWFMEmppq6-vL781U_X9YGxrgqBhacScPcT6b-bRrHCPWMrWslBF1r9WYfZW1V61hef35UfZ7o1WKWe8y3pNrcivah332AbM99nOXUe0WhywKQ3cbClg-cLxnEhGqv_TvPMqXi54zdhckEi5wsdyYWY5cTTzdkQKhvoLh7ea-rs4ZE_j0ePNxGuGJXgmStLSA-mExVybQAw6S3yZB9pENkq1MbF02HVB6BIdSMC0hWVdmkoBNoDMWSlDiKMjtjVfzOGY8dDoPLGSYj0TEiPcJRLrIishw-LL9_vssgVPvdacGIp6CYRZEcyKYFYEc59dE7adFHFZVy_QwqqxsPrLwn02aC2jmgArFOqfRamIaY3wh7W-pH7XCnvek_9Q7JRtVw5FhwKDAdtCa8MZ2yzs8rzyxk_Vo-mf
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+analytical+solutions+to+systems+of+two+stochastic+differential+equations&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Navickas%2C+Zenonas&rft.au=Telksniene%2C+Inga&rft.au=Telksnys%2C+Tadas&rft.au=Marcinkevicius%2C+Romas&rft.date=2023-11-11&rft.pub=De+Gruyter+Poland&rft.eissn=2391-5455&rft.issue=1&rft_id=info:doi/10.1515%2Fmath-2023-0136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon