3D scaffolds for brain tissue regeneration: architectural challenges

Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain tissue) repair and regeneration. Tissue engineered three-dimensional (3D) scaffolds have shown various degrees of experimental success, indicatin...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials science Vol. 6; no. 11; p. 2812
Main Authors: Mahumane, Gillian Dumsile, Kumar, Pradeep, du Toit, Lisa Claire, Choonara, Yahya Essop, Pillay, Viness
Format: Journal Article
Language:English
Published: England 24-10-2018
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain tissue) repair and regeneration. Tissue engineered three-dimensional (3D) scaffolds have shown various degrees of experimental success, indicating great potential for development as treatment options. However, there is yet to be a 3D scaffold that exhibits consummate results of an effective clinical standard. Critical assessment of the performance of current 3D scaffolds could provide insightful feedback for tailoring future 3D scaffolds towards more promising results. This review provides a critical analysis of current 3D scaffolds for neural tissue engineering. Architectural properties, such as porosity, swelling, and architectural influences, such as design approach and polymeric material choice, were scrutinized for suitability for the desired tissue target properties. Success and shortcomings of various 3D scaffolds were evaluated through the analysis of tissue integration of the 3D scaffold in vivo. Investigations focused on in this review included those: (1) reporting at an in vivo experimental level in animal models, (2) involving polymer-based (natural/synthetic) scaffolds described as possessing a '3D' architecture, (3) targeting brain tissue regeneration (4) published from 2011 onward.
AbstractList Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain tissue) repair and regeneration. Tissue engineered three-dimensional (3D) scaffolds have shown various degrees of experimental success, indicating great potential for development as treatment options. However, there is yet to be a 3D scaffold that exhibits consummate results of an effective clinical standard. Critical assessment of the performance of current 3D scaffolds could provide insightful feedback for tailoring future 3D scaffolds towards more promising results. This review provides a critical analysis of current 3D scaffolds for neural tissue engineering. Architectural properties, such as porosity, swelling, and architectural influences, such as design approach and polymeric material choice, were scrutinized for suitability for the desired tissue target properties. Success and shortcomings of various 3D scaffolds were evaluated through the analysis of tissue integration of the 3D scaffold in vivo. Investigations focused on in this review included those: (1) reporting at an in vivo experimental level in animal models, (2) involving polymer-based (natural/synthetic) scaffolds described as possessing a '3D' architecture, (3) targeting brain tissue regeneration (4) published from 2011 onward.
Author Pillay, Viness
Mahumane, Gillian Dumsile
Choonara, Yahya Essop
Kumar, Pradeep
du Toit, Lisa Claire
Author_xml – sequence: 1
  givenname: Gillian Dumsile
  surname: Mahumane
  fullname: Mahumane, Gillian Dumsile
  email: viness.pillay@wits.ac.za
  organization: Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa. viness.pillay@wits.ac.za
– sequence: 2
  givenname: Pradeep
  surname: Kumar
  fullname: Kumar, Pradeep
– sequence: 3
  givenname: Lisa Claire
  surname: du Toit
  fullname: du Toit, Lisa Claire
– sequence: 4
  givenname: Yahya Essop
  surname: Choonara
  fullname: Choonara, Yahya Essop
– sequence: 5
  givenname: Viness
  surname: Pillay
  fullname: Pillay, Viness
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30255869$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAQRS1UREvphg9A_oGAX4ltdqjlJVViA-tqMhm3QYlT2cmCv6cS9C7O2R3pXrNZHCIxdivFvRTaP6CreyGMUuGCLZQwtjDO-Dlb5fwtTrPWi0pesbkWqixd5Rdsozc8I4QwdE3mYUi8TtBGPrY5T8QT7SlSgrEd4iOHhId2JBynBB3HA3QdxT3lG3YZoMu0-veSfb08f67fiu3H6_v6aVugtm4sKgylUQTaV7KuZKk8Bk-yQY2eTixD44QywWhn66C9BCRtfLCmkSCsU0t299c9TnVPze6Y2h7Sz-58R_0CrllM7g
CitedBy_id crossref_primary_10_1016_j_neuint_2021_105012
crossref_primary_10_1016_j_msec_2021_112253
crossref_primary_10_1016_j_engreg_2022_04_001
crossref_primary_10_3389_fbioe_2022_1096054
crossref_primary_10_3390_polym15040907
crossref_primary_10_1016_j_jbiotec_2024_01_015
crossref_primary_10_1021_acsnano_2c04756
crossref_primary_10_1016_j_jmbbm_2020_103979
crossref_primary_10_1039_C9RA07481C
crossref_primary_10_1016_j_biomaterials_2022_121639
crossref_primary_10_2147_IJN_S368960
crossref_primary_10_3390_pharmaceutics12100934
crossref_primary_10_1007_s11431_020_1635_3
crossref_primary_10_1021_acsbiomaterials_2c01310
crossref_primary_10_1007_s44164_022_00013_0
crossref_primary_10_1063_5_0043014
crossref_primary_10_3390_ijms24010630
crossref_primary_10_3390_pharmaceutics14020441
crossref_primary_10_3390_jfb13030146
crossref_primary_10_3389_fbioe_2023_1110547
crossref_primary_10_1039_D0QM00279H
crossref_primary_10_2174_1389450121666200106105633
crossref_primary_10_1039_D0BM02049D
crossref_primary_10_3389_fbioe_2021_639765
crossref_primary_10_1016_j_brainres_2019_146492
crossref_primary_10_1016_j_actbio_2021_12_010
crossref_primary_10_1155_2022_3606765
crossref_primary_10_1002_admt_202101633
crossref_primary_10_1007_s13204_021_01914_4
crossref_primary_10_2478_amns_2023_2_01226
crossref_primary_10_3390_pharmaceutics13020164
crossref_primary_10_1016_j_actbio_2020_11_044
crossref_primary_10_3389_fncel_2022_948454
crossref_primary_10_1039_D3BM01055D
crossref_primary_10_1016_j_mtbio_2020_100043
crossref_primary_10_3390_pr9040716
crossref_primary_10_1002_adfm_201909146
crossref_primary_10_1166_jmihi_2021_3529
crossref_primary_10_3390_gels6030029
crossref_primary_10_1007_s10517_021_05160_0
crossref_primary_10_1016_j_matlet_2024_136034
crossref_primary_10_3390_polym13101612
crossref_primary_10_1557_mrc_2020_60
crossref_primary_10_1039_D0BM00871K
crossref_primary_10_1002_adhm_202301494
crossref_primary_10_3389_fbioe_2021_617141
crossref_primary_10_1016_j_jmbbm_2021_104697
crossref_primary_10_3390_antiox11010072
crossref_primary_10_3390_gels9020105
crossref_primary_10_3390_ma12193218
crossref_primary_10_1021_acsbiomaterials_9b01115
crossref_primary_10_1002_smll_202207331
crossref_primary_10_1016_j_carbpol_2020_116107
crossref_primary_10_3389_fbioe_2022_895406
crossref_primary_10_1016_j_jiec_2022_07_006
crossref_primary_10_3390_gels8110695
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1039/c8bm00422f
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2047-4849
ExternalDocumentID 30255869
Genre Journal Article
Review
GroupedDBID -JG
0-7
0R~
4.4
53G
705
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CGR
CUY
CVF
EBS
ECGLT
ECM
EE0
EF-
EIF
EJD
GGIMP
H13
HZ~
H~N
J3I
NPM
O-G
O9-
OK1
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
ID FETCH-LOGICAL-c378t-6cf542ea3961b61529cf9e1dc3c9edc35fd8024f4387bf391ace349f74d1a0782
IngestDate Sat Sep 28 08:39:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-6cf542ea3961b61529cf9e1dc3c9edc35fd8024f4387bf391ace349f74d1a0782
PMID 30255869
ParticipantIDs pubmed_primary_30255869
PublicationCentury 2000
PublicationDate 20181024
PublicationDateYYYYMMDD 2018-10-24
PublicationDate_xml – month: 10
  year: 2018
  text: 20181024
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biomaterials science
PublicationTitleAlternate Biomater Sci
PublicationYear 2018
SSID ssj0000779061
Score 2.445926
SecondaryResourceType review_article
Snippet Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain...
SourceID pubmed
SourceType Index Database
StartPage 2812
SubjectTerms Biocompatible Materials - chemistry
Biomimetic Materials - chemistry
Brain - physiopathology
Humans
Nerve Regeneration
Neurons - physiology
Polymers - chemistry
Printing, Three-Dimensional
Regenerative Medicine
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Title 3D scaffolds for brain tissue regeneration: architectural challenges
URI https://www.ncbi.nlm.nih.gov/pubmed/30255869
Volume 6
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwELVakFZwQMCyfCMfuEWBOE4ThxtqC1xAK21XWk7I8cdSCZqKlAP_nrFdJwEEggMXK7LTKpp5ssfj8XsIHRrFxZTFRchhebHHjGGhWBTyiJOY8EJkxNxGvviTXf1jg2Ey7HS8akbT962ehj7wtbk5-wVv138KHfAMPocWvA7tp_xOB0EluNblnaxcLaYRgQhm1sDBg_pveaZ9SUfrHMEQhXhllerFWe-4hLDWfXswXzGbRLYV-bNZ0XObupkERjF5fFe_Uhdx_37gUqmp75ePwagczxMDFTfynK1K3P5tCXsEK4IUXPPbJx4MwXDTdpKCWMZYdzf6SNnJLDaMEAlz9KR-5k3bACPtaZS52uo383tEDT2qYMW9JS_T7ZfAatN761VqNkrMScB8PPqKa9sPdVEXIicTXPcv64xdZKgZU-I5bml-3HzHEvrhf_tqf2LjlNEqWplvMPCpQ8Ya6qjJOlpu0U7-RAM6wDVGMGAEW4xghxHcxsgJfoEQ3CBkA_09G476F-FcTSMUNGOzMBW6l8SK0zwlBcSxcS50rogUVOQK2p6WDAI2nVCWFZrmhAtFk1xniSTcBJK_0MKknKgthNMU1jmtRKIJTxTJuMgkzWFryiWJwCjbaNOZ4GbqKFNuvHF23h3ZRUsNcPbQogZMq33UreTjgfXDM2KMWEE
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+scaffolds+for+brain+tissue+regeneration%3A+architectural+challenges&rft.jtitle=Biomaterials+science&rft.au=Mahumane%2C+Gillian+Dumsile&rft.au=Kumar%2C+Pradeep&rft.au=du+Toit%2C+Lisa+Claire&rft.au=Choonara%2C+Yahya+Essop&rft.date=2018-10-24&rft.eissn=2047-4849&rft.volume=6&rft.issue=11&rft.spage=2812&rft_id=info:doi/10.1039%2Fc8bm00422f&rft_id=info%3Apmid%2F30255869&rft_id=info%3Apmid%2F30255869&rft.externalDocID=30255869