3D scaffolds for brain tissue regeneration: architectural challenges
Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain tissue) repair and regeneration. Tissue engineered three-dimensional (3D) scaffolds have shown various degrees of experimental success, indicatin...
Saved in:
Published in: | Biomaterials science Vol. 6; no. 11; p. 2812 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
24-10-2018
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain tissue) repair and regeneration. Tissue engineered three-dimensional (3D) scaffolds have shown various degrees of experimental success, indicating great potential for development as treatment options. However, there is yet to be a 3D scaffold that exhibits consummate results of an effective clinical standard. Critical assessment of the performance of current 3D scaffolds could provide insightful feedback for tailoring future 3D scaffolds towards more promising results. This review provides a critical analysis of current 3D scaffolds for neural tissue engineering. Architectural properties, such as porosity, swelling, and architectural influences, such as design approach and polymeric material choice, were scrutinized for suitability for the desired tissue target properties. Success and shortcomings of various 3D scaffolds were evaluated through the analysis of tissue integration of the 3D scaffold in vivo. Investigations focused on in this review included those: (1) reporting at an in vivo experimental level in animal models, (2) involving polymer-based (natural/synthetic) scaffolds described as possessing a '3D' architecture, (3) targeting brain tissue regeneration (4) published from 2011 onward. |
---|---|
AbstractList | Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain tissue) repair and regeneration. Tissue engineered three-dimensional (3D) scaffolds have shown various degrees of experimental success, indicating great potential for development as treatment options. However, there is yet to be a 3D scaffold that exhibits consummate results of an effective clinical standard. Critical assessment of the performance of current 3D scaffolds could provide insightful feedback for tailoring future 3D scaffolds towards more promising results. This review provides a critical analysis of current 3D scaffolds for neural tissue engineering. Architectural properties, such as porosity, swelling, and architectural influences, such as design approach and polymeric material choice, were scrutinized for suitability for the desired tissue target properties. Success and shortcomings of various 3D scaffolds were evaluated through the analysis of tissue integration of the 3D scaffold in vivo. Investigations focused on in this review included those: (1) reporting at an in vivo experimental level in animal models, (2) involving polymer-based (natural/synthetic) scaffolds described as possessing a '3D' architecture, (3) targeting brain tissue regeneration (4) published from 2011 onward. |
Author | Pillay, Viness Mahumane, Gillian Dumsile Choonara, Yahya Essop Kumar, Pradeep du Toit, Lisa Claire |
Author_xml | – sequence: 1 givenname: Gillian Dumsile surname: Mahumane fullname: Mahumane, Gillian Dumsile email: viness.pillay@wits.ac.za organization: Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa. viness.pillay@wits.ac.za – sequence: 2 givenname: Pradeep surname: Kumar fullname: Kumar, Pradeep – sequence: 3 givenname: Lisa Claire surname: du Toit fullname: du Toit, Lisa Claire – sequence: 4 givenname: Yahya Essop surname: Choonara fullname: Choonara, Yahya Essop – sequence: 5 givenname: Viness surname: Pillay fullname: Pillay, Viness |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30255869$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tOwzAQRS1UREvphg9A_oGAX4ltdqjlJVViA-tqMhm3QYlT2cmCv6cS9C7O2R3pXrNZHCIxdivFvRTaP6CreyGMUuGCLZQwtjDO-Dlb5fwtTrPWi0pesbkWqixd5Rdsozc8I4QwdE3mYUi8TtBGPrY5T8QT7SlSgrEd4iOHhId2JBynBB3HA3QdxT3lG3YZoMu0-veSfb08f67fiu3H6_v6aVugtm4sKgylUQTaV7KuZKk8Bk-yQY2eTixD44QywWhn66C9BCRtfLCmkSCsU0t299c9TnVPze6Y2h7Sz-58R_0CrllM7g |
CitedBy_id | crossref_primary_10_1016_j_neuint_2021_105012 crossref_primary_10_1016_j_msec_2021_112253 crossref_primary_10_1016_j_engreg_2022_04_001 crossref_primary_10_3389_fbioe_2022_1096054 crossref_primary_10_3390_polym15040907 crossref_primary_10_1016_j_jbiotec_2024_01_015 crossref_primary_10_1021_acsnano_2c04756 crossref_primary_10_1016_j_jmbbm_2020_103979 crossref_primary_10_1039_C9RA07481C crossref_primary_10_1016_j_biomaterials_2022_121639 crossref_primary_10_2147_IJN_S368960 crossref_primary_10_3390_pharmaceutics12100934 crossref_primary_10_1007_s11431_020_1635_3 crossref_primary_10_1021_acsbiomaterials_2c01310 crossref_primary_10_1007_s44164_022_00013_0 crossref_primary_10_1063_5_0043014 crossref_primary_10_3390_ijms24010630 crossref_primary_10_3390_pharmaceutics14020441 crossref_primary_10_3390_jfb13030146 crossref_primary_10_3389_fbioe_2023_1110547 crossref_primary_10_1039_D0QM00279H crossref_primary_10_2174_1389450121666200106105633 crossref_primary_10_1039_D0BM02049D crossref_primary_10_3389_fbioe_2021_639765 crossref_primary_10_1016_j_brainres_2019_146492 crossref_primary_10_1016_j_actbio_2021_12_010 crossref_primary_10_1155_2022_3606765 crossref_primary_10_1002_admt_202101633 crossref_primary_10_1007_s13204_021_01914_4 crossref_primary_10_2478_amns_2023_2_01226 crossref_primary_10_3390_pharmaceutics13020164 crossref_primary_10_1016_j_actbio_2020_11_044 crossref_primary_10_3389_fncel_2022_948454 crossref_primary_10_1039_D3BM01055D crossref_primary_10_1016_j_mtbio_2020_100043 crossref_primary_10_3390_pr9040716 crossref_primary_10_1002_adfm_201909146 crossref_primary_10_1166_jmihi_2021_3529 crossref_primary_10_3390_gels6030029 crossref_primary_10_1007_s10517_021_05160_0 crossref_primary_10_1016_j_matlet_2024_136034 crossref_primary_10_3390_polym13101612 crossref_primary_10_1557_mrc_2020_60 crossref_primary_10_1039_D0BM00871K crossref_primary_10_1002_adhm_202301494 crossref_primary_10_3389_fbioe_2021_617141 crossref_primary_10_1016_j_jmbbm_2021_104697 crossref_primary_10_3390_antiox11010072 crossref_primary_10_3390_gels9020105 crossref_primary_10_3390_ma12193218 crossref_primary_10_1021_acsbiomaterials_9b01115 crossref_primary_10_1002_smll_202207331 crossref_primary_10_1016_j_carbpol_2020_116107 crossref_primary_10_3389_fbioe_2022_895406 crossref_primary_10_1016_j_jiec_2022_07_006 crossref_primary_10_3390_gels8110695 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1039/c8bm00422f |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2047-4849 |
ExternalDocumentID | 30255869 |
Genre | Journal Article Review |
GroupedDBID | -JG 0-7 0R~ 4.4 53G 705 AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CGR CUY CVF EBS ECGLT ECM EE0 EF- EIF EJD GGIMP H13 HZ~ H~N J3I NPM O-G O9- OK1 RAOCF RCNCU RPMJG RRC RSCEA RVUXY |
ID | FETCH-LOGICAL-c378t-6cf542ea3961b61529cf9e1dc3c9edc35fd8024f4387bf391ace349f74d1a0782 |
IngestDate | Sat Sep 28 08:39:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-6cf542ea3961b61529cf9e1dc3c9edc35fd8024f4387bf391ace349f74d1a0782 |
PMID | 30255869 |
ParticipantIDs | pubmed_primary_30255869 |
PublicationCentury | 2000 |
PublicationDate | 20181024 |
PublicationDateYYYYMMDD | 2018-10-24 |
PublicationDate_xml | – month: 10 year: 2018 text: 20181024 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biomaterials science |
PublicationTitleAlternate | Biomater Sci |
PublicationYear | 2018 |
SSID | ssj0000779061 |
Score | 2.445926 |
SecondaryResourceType | review_article |
Snippet | Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 2812 |
SubjectTerms | Biocompatible Materials - chemistry Biomimetic Materials - chemistry Brain - physiopathology Humans Nerve Regeneration Neurons - physiology Polymers - chemistry Printing, Three-Dimensional Regenerative Medicine Tissue Engineering - methods Tissue Scaffolds - chemistry |
Title | 3D scaffolds for brain tissue regeneration: architectural challenges |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30255869 |
Volume | 6 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwELVakFZwQMCyfCMfuEWBOE4ThxtqC1xAK21XWk7I8cdSCZqKlAP_nrFdJwEEggMXK7LTKpp5ssfj8XsIHRrFxZTFRchhebHHjGGhWBTyiJOY8EJkxNxGvviTXf1jg2Ey7HS8akbT962ehj7wtbk5-wVv138KHfAMPocWvA7tp_xOB0EluNblnaxcLaYRgQhm1sDBg_pveaZ9SUfrHMEQhXhllerFWe-4hLDWfXswXzGbRLYV-bNZ0XObupkERjF5fFe_Uhdx_37gUqmp75ePwagczxMDFTfynK1K3P5tCXsEK4IUXPPbJx4MwXDTdpKCWMZYdzf6SNnJLDaMEAlz9KR-5k3bACPtaZS52uo383tEDT2qYMW9JS_T7ZfAatN761VqNkrMScB8PPqKa9sPdVEXIicTXPcv64xdZKgZU-I5bml-3HzHEvrhf_tqf2LjlNEqWplvMPCpQ8Ya6qjJOlpu0U7-RAM6wDVGMGAEW4xghxHcxsgJfoEQ3CBkA_09G476F-FcTSMUNGOzMBW6l8SK0zwlBcSxcS50rogUVOQK2p6WDAI2nVCWFZrmhAtFk1xniSTcBJK_0MKknKgthNMU1jmtRKIJTxTJuMgkzWFryiWJwCjbaNOZ4GbqKFNuvHF23h3ZRUsNcPbQogZMq33UreTjgfXDM2KMWEE |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+scaffolds+for+brain+tissue+regeneration%3A+architectural+challenges&rft.jtitle=Biomaterials+science&rft.au=Mahumane%2C+Gillian+Dumsile&rft.au=Kumar%2C+Pradeep&rft.au=du+Toit%2C+Lisa+Claire&rft.au=Choonara%2C+Yahya+Essop&rft.date=2018-10-24&rft.eissn=2047-4849&rft.volume=6&rft.issue=11&rft.spage=2812&rft_id=info:doi/10.1039%2Fc8bm00422f&rft_id=info%3Apmid%2F30255869&rft_id=info%3Apmid%2F30255869&rft.externalDocID=30255869 |