Optimum community energy storage system for PV energy time-shift
•The performance and economic benefits of Pb-acid and Li-ion batteries are compared.•The business case during the decarbonisation pathway is assessed.•The aggregation from a community approach reduced the levelised cost by 37% by 2020.•For a forecast price of 16.3p/kWh Li-ion battery cost must be le...
Saved in:
Published in: | Applied energy Vol. 137; pp. 576 - 587 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-01-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •The performance and economic benefits of Pb-acid and Li-ion batteries are compared.•The business case during the decarbonisation pathway is assessed.•The aggregation from a community approach reduced the levelised cost by 37% by 2020.•For a forecast price of 16.3p/kWh Li-ion battery cost must be less than 275£/kWh.•A 10% subsidy will be needed for Li-ion batteries to achieve the 2020 forecast.
A novel method has been designed to obtain the optimum community energy storage (CES) systems for end user applications. The method evaluates the optimum performance (including the round trip efficiency and annual discharge), levelised cost (LCOES), the internal rate of return and the levelised value of suitable energy storage technologies. A complimentary methodology was developed including three reference years (2012, 2020 and zero carbon year) to show the evolution of the business case during the low carbon transition. The method follows a community approach and the optimum CES system was calculated as a function of the size of the community. In this work, this method was put in practice with lead-acid (PbA) and lithium-ion battery (Li-ion) technologies when performing PV energy time-shift using real demand data from a single home to a 100-home community. The community approach reduced the LCOES down to 0.30£/kWh and 0.11£/kWh in 2020 and the zero carbon year respectively. These values meant a cost reduction by 37% and 66% regarding a single home. Results demonstrated that PbA batteries needs from 1.5 to 2.5 times more capacity than Li-ion chemistry to reduce the LCOES, the worst case scenario being for the smallest communities, because the more spiky demand profile required proportionately larger PbA battery capacities. |
---|---|
AbstractList | A novel method has been designed to obtain the optimum community energy storage (CES) systems for end user applications. The method evaluates the optimum performance (including the round trip efficiency and annual discharge), levelised cost (LCOES), the internal rate of return and the levelised value of suitable energy storage technologies. A complimentary methodology was developed including three reference years (2012, 2020 and zero carbon year) to show the evolution of the business case during the low carbon transition. The method follows a community approach and the optimum CES system was calculated as a function of the size of the community. In this work, this method was put in practice with lead-acid (PbA) and lithium-ion battery (Li-ion) technologies when performing PV energy time-shift using real demand data from a single home to a 100-home community. The community approach reduced the LCOES down to 0.30 pound sterling /kW h and 0.11 pound sterling /kW h in 2020 and the zero carbon year respectively. These values meant a cost reduction by 37% and 66% regarding a single home. Results demonstrated that PbA batteries needs from 1.5 to 2.5 times more capacity than Li-ion chemistry to reduce the LCOES, the worst case scenario being for the smallest communities, because the more spiky demand profile required proportionately larger PbA battery capacities. •The performance and economic benefits of Pb-acid and Li-ion batteries are compared.•The business case during the decarbonisation pathway is assessed.•The aggregation from a community approach reduced the levelised cost by 37% by 2020.•For a forecast price of 16.3p/kWh Li-ion battery cost must be less than 275£/kWh.•A 10% subsidy will be needed for Li-ion batteries to achieve the 2020 forecast. A novel method has been designed to obtain the optimum community energy storage (CES) systems for end user applications. The method evaluates the optimum performance (including the round trip efficiency and annual discharge), levelised cost (LCOES), the internal rate of return and the levelised value of suitable energy storage technologies. A complimentary methodology was developed including three reference years (2012, 2020 and zero carbon year) to show the evolution of the business case during the low carbon transition. The method follows a community approach and the optimum CES system was calculated as a function of the size of the community. In this work, this method was put in practice with lead-acid (PbA) and lithium-ion battery (Li-ion) technologies when performing PV energy time-shift using real demand data from a single home to a 100-home community. The community approach reduced the LCOES down to 0.30£/kWh and 0.11£/kWh in 2020 and the zero carbon year respectively. These values meant a cost reduction by 37% and 66% regarding a single home. Results demonstrated that PbA batteries needs from 1.5 to 2.5 times more capacity than Li-ion chemistry to reduce the LCOES, the worst case scenario being for the smallest communities, because the more spiky demand profile required proportionately larger PbA battery capacities. |
Author | Gillott, Mark Parra, David Norman, Stuart A. Walker, Gavin S. |
Author_xml | – sequence: 1 givenname: David surname: Parra fullname: Parra, David organization: Infrastructure, Geomatics and Architecture Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK – sequence: 2 givenname: Mark surname: Gillott fullname: Gillott, Mark organization: Infrastructure, Geomatics and Architecture Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK – sequence: 3 givenname: Stuart A. surname: Norman fullname: Norman, Stuart A. organization: E.ON Technology Centre, Ratcliffe on Soar, Nottingham NG11 0EE, UK – sequence: 4 givenname: Gavin S. surname: Walker fullname: Walker, Gavin S. email: Gavin.Walker@nottingham.ac.uk organization: Energy and Sustainability Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK |
BookMark | eNqNkEtPwzAQhC1UJNrCX0A5cknw2ont3IoqXlKlcgCuVnA2xVXzwHaQ8u9JFXoGaaU97Mxo51uQWdM2SMg10AQoiNt9UnTYoNsNCaOQJlQlVNAzMgclWZwDqBmZU05FzATkF2Th_Z5SyoDROVltu2Drvo5MW9d9Y8MQTVmRD60rdhj5wQeso6p10cv76Th6MPaftgqX5LwqDh6vfveSvD3cv66f4s328Xl9t4kNlyrEGZRgUkyNyURaVkwKzvM0q-Q4mErFcfy2VEYi-zBFKTIm86IyNAc0kCrKl-Rmyu1c-9WjD7q23uDhUDTY9l6DyDLJGVfiP1LgMlcSRqmYpMa13jusdOdsXbhBA9VHunqvT3T1ka6mSo90R-NqMuLY-dui095YbAyW1qEJumztXxE_BLGIDA |
CitedBy_id | crossref_primary_10_1016_j_renene_2020_07_022 crossref_primary_10_1007_s42835_021_00776_8 crossref_primary_10_1016_j_esd_2024_101495 crossref_primary_10_1016_j_egypro_2016_10_096 crossref_primary_10_1016_j_rser_2017_02_075 crossref_primary_10_1016_j_enpol_2018_03_064 crossref_primary_10_1016_j_est_2022_105063 crossref_primary_10_2139_ssrn_4092281 crossref_primary_10_1016_j_apenergy_2018_12_031 crossref_primary_10_1109_ACCESS_2019_2934510 crossref_primary_10_1016_j_apenergy_2016_12_144 crossref_primary_10_1016_j_apenergy_2021_117182 crossref_primary_10_1016_j_apenergy_2022_119080 crossref_primary_10_1016_j_renene_2018_09_099 crossref_primary_10_1016_j_enbuild_2019_04_012 crossref_primary_10_1016_j_solener_2018_03_052 crossref_primary_10_1016_j_ijepes_2023_109361 crossref_primary_10_1016_j_apenergy_2017_10_096 crossref_primary_10_1002_2050_7038_12861 crossref_primary_10_1002_2050_7038_12224 crossref_primary_10_1007_s12667_023_00606_y crossref_primary_10_1155_2020_1956410 crossref_primary_10_3390_en15114032 crossref_primary_10_1016_j_apenergy_2016_12_016 crossref_primary_10_1016_j_renene_2021_03_122 crossref_primary_10_1016_j_energy_2021_120074 crossref_primary_10_1007_s12398_018_0230_6 crossref_primary_10_1016_j_apenergy_2015_12_037 crossref_primary_10_1016_j_est_2023_108048 crossref_primary_10_1016_j_egyr_2022_12_089 crossref_primary_10_1016_j_egyr_2023_01_110 crossref_primary_10_1016_j_erss_2020_101606 crossref_primary_10_1051_rees_2023003 crossref_primary_10_1109_TIE_2019_2942551 crossref_primary_10_1016_j_egyr_2022_08_187 crossref_primary_10_1016_j_ijepes_2016_12_018 crossref_primary_10_1016_j_apenergy_2018_07_100 crossref_primary_10_1049_oap_cired_2021_0317 crossref_primary_10_1016_j_apenergy_2018_12_050 crossref_primary_10_1016_j_rser_2016_12_066 crossref_primary_10_1016_j_energy_2019_116755 crossref_primary_10_1016_j_est_2021_102855 crossref_primary_10_1016_j_apenergy_2019_113468 crossref_primary_10_3390_en14196292 crossref_primary_10_3390_buildings11100433 crossref_primary_10_1016_j_apenergy_2019_04_001 crossref_primary_10_1016_j_apenergy_2020_116110 crossref_primary_10_1016_j_est_2019_100847 crossref_primary_10_1016_j_apenergy_2017_03_112 crossref_primary_10_1016_j_ijhydene_2015_12_160 crossref_primary_10_1109_ACCESS_2018_2829148 crossref_primary_10_1007_s40565_016_0244_1 crossref_primary_10_1016_j_energy_2017_11_082 crossref_primary_10_1016_j_apenergy_2015_10_102 crossref_primary_10_1016_j_enbuild_2016_01_039 crossref_primary_10_1016_j_est_2018_02_001 crossref_primary_10_1016_j_apenergy_2018_11_080 crossref_primary_10_1016_j_apenergy_2021_117475 crossref_primary_10_1016_j_enconman_2019_112330 crossref_primary_10_1016_j_rser_2017_05_003 crossref_primary_10_1109_TSG_2020_3042190 crossref_primary_10_1016_j_apenergy_2014_11_025 crossref_primary_10_1109_TPEL_2014_2372774 crossref_primary_10_1016_j_enpol_2022_112929 crossref_primary_10_1016_j_ifacol_2017_08_1542 crossref_primary_10_1109_ACCESS_2022_3160239 crossref_primary_10_1016_j_apenergy_2018_03_154 crossref_primary_10_1016_j_apenergy_2022_119160 crossref_primary_10_1016_j_solener_2023_112238 crossref_primary_10_1049_iet_rpg_2018_5190 crossref_primary_10_1016_j_apenergy_2024_123278 crossref_primary_10_1016_j_enpol_2019_111098 crossref_primary_10_1007_s40565_018_0442_0 crossref_primary_10_1002_er_4720 crossref_primary_10_1016_j_rser_2015_12_325 crossref_primary_10_1155_2022_6361243 crossref_primary_10_1016_j_apenergy_2020_116172 crossref_primary_10_1016_j_jclepro_2021_130272 crossref_primary_10_1016_j_ecmx_2024_100533 crossref_primary_10_1016_j_apenergy_2016_04_082 crossref_primary_10_1016_j_enbuild_2018_09_018 crossref_primary_10_3390_en13195154 crossref_primary_10_1016_j_apenergy_2015_11_037 crossref_primary_10_1016_j_apenergy_2018_09_163 crossref_primary_10_1016_j_rser_2021_111263 crossref_primary_10_1016_j_apenergy_2016_01_095 crossref_primary_10_1016_j_apenergy_2020_114969 crossref_primary_10_1016_j_apenergy_2017_05_048 crossref_primary_10_1016_j_solener_2017_11_011 crossref_primary_10_1002_2050_7038_12707 crossref_primary_10_1016_j_est_2021_102709 crossref_primary_10_1007_s40313_021_00691_3 crossref_primary_10_1016_j_rser_2015_11_080 crossref_primary_10_1016_j_enbenv_2023_04_001 crossref_primary_10_1016_j_apenergy_2015_08_117 crossref_primary_10_1016_j_rser_2016_01_129 crossref_primary_10_1109_ACCESS_2021_3103480 crossref_primary_10_1016_j_apenergy_2018_07_027 crossref_primary_10_1016_j_jclepro_2020_124536 crossref_primary_10_1016_j_apenergy_2016_04_050 crossref_primary_10_1016_j_est_2017_06_003 crossref_primary_10_1049_joe_2016_0031 crossref_primary_10_1016_j_energy_2018_09_202 crossref_primary_10_1016_j_esr_2018_08_010 crossref_primary_10_1016_j_solener_2020_04_007 crossref_primary_10_1016_j_enpol_2019_03_041 crossref_primary_10_1016_j_ijhydene_2015_11_109 crossref_primary_10_3390_su12177035 crossref_primary_10_1016_j_apenergy_2017_12_056 crossref_primary_10_1016_j_apenergy_2017_08_186 crossref_primary_10_1016_j_est_2019_101186 crossref_primary_10_1016_j_est_2023_107100 crossref_primary_10_1002_er_4269 crossref_primary_10_1016_j_jpowsour_2019_227011 crossref_primary_10_3390_en13040972 crossref_primary_10_1016_j_apenergy_2018_04_005 crossref_primary_10_1016_j_enpol_2021_112599 crossref_primary_10_1016_j_ijepes_2020_106446 crossref_primary_10_1016_j_apenergy_2018_03_185 crossref_primary_10_1016_j_apenergy_2022_120182 crossref_primary_10_1016_j_seta_2022_102801 crossref_primary_10_3390_en13112892 crossref_primary_10_1016_j_ijhydene_2016_01_098 crossref_primary_10_1016_j_scs_2017_10_023 crossref_primary_10_1016_j_enconman_2018_07_058 |
Cites_doi | 10.1049/iet-rpg:20080021 10.2172/1059147 10.1016/j.ijhydene.2014.01.023 10.1016/j.apenergy.2013.08.069 10.1016/j.apenergy.2013.03.059 10.1016/j.solener.2009.07.007 10.1016/j.solener.2011.06.028 10.1016/j.apenergy.2012.11.016 10.1016/S0378-7753(02)00341-5 10.1016/j.rser.2007.01.023 10.1016/j.enpol.2010.07.045 10.1016/j.apenergy.2014.04.038 10.1016/j.epsr.2008.09.017 10.1016/j.renene.2012.01.108 10.1016/j.enpol.2008.09.037 10.1016/j.scs.2013.04.006 10.2172/1031895 10.2139/ssrn.2335930 10.1109/ICIT.2009.4939609 10.1109/TSTE.2011.2114901 10.1109/ICCEP.2009.5212025 10.1016/j.epsr.2010.07.007 10.1109/JPROC.2011.2116752 10.2172/1027714 10.1016/j.apenergy.2011.09.004 10.1109/TEC.2003.822305 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SP 7SU 7TA 8FD C1K F28 FR3 JG9 L7M 7ST SOI |
DOI | 10.1016/j.apenergy.2014.08.060 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environmental Engineering Abstracts Materials Business File Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Electronics & Communications Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Materials Business File Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Business |
EISSN | 1872-9118 |
EndPage | 587 |
ExternalDocumentID | 10_1016_j_apenergy_2014_08_060 S030626191400871X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AAXKI AAYOK AAYXX ABEFU ABFNM ABTAH ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 7SP 7SU 7TA 8FD C1K F28 FR3 JG9 L7M 7ST SOI |
ID | FETCH-LOGICAL-c378t-51d1c4e4cc564df27633945f75f7e4783e187d8c7e2bcad65279afc091ec14803 |
ISSN | 0306-2619 |
IngestDate | Fri Oct 25 21:58:14 EDT 2024 Fri Oct 25 06:52:43 EDT 2024 Thu Sep 26 18:56:57 EDT 2024 Fri Feb 23 02:36:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lead-acid battery Community energy storage Lithium-ion battery PV energy time-shift Optimization Business |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-51d1c4e4cc564df27633945f75f7e4783e187d8c7e2bcad65279afc091ec14803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1651379871 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1655732386 proquest_miscellaneous_1651379871 crossref_primary_10_1016_j_apenergy_2014_08_060 elsevier_sciencedirect_doi_10_1016_j_apenergy_2014_08_060 |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied energy |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fernandez-Jimenez, Muñoz-Jimenez, Falces, Mendoza-Villena, Garcia-Garrido, Lara-Santillan (b0030) 2012; 44 Borden E, Schill W-P. Policy efforts for the development of storage technologies in the US and Germany. Tech rep. Discussion papers. DIW Berlin; 2013. Hung, Mithulananthan, Bansal (b0230) 2014; 113 Freris, Infield (b0050) 2008 G. of the UK, Energy consumption in the UK. Domestic data table 2011 update; September 2011. Jenkins, Fletcher, Kane (b0080) 2008; 2 Divya, Østergaard (b0180) 2009; 79 Riffonneau Y, Bacha S, Barruel F, Delaille A. Energy flow management in grid connected PV systems with storage-a deterministic approach. In: IEEE international conference on industrial technology, 2009. ICIT 2009. IEEE; 2009. p. 1–6. McKenna, McManus, Cooper, Thomson (b0100) 2013; 104 Eckroad S, Gyuk I. EPRI-DOE handbook of energy storage for transmission & distribution applications. Electric Power Research Institute, Inc. Strbac G, Aunedi M, Pudjianto D, Djapic P, Teng F, Sturt A, et al., Strategic assessment of the role and value of energy storage systems in the uk low carbon energy future. Tech rep. Carbon Trust; 2012. Paatero, Lund (b0065) 2007; 3 E.S. Trust, Feed-in tariffs scheme (fits); March 2013. Commission (b0005) 2011 Eyer J, Corey G. Energy storage for the electricity grid: benefits and market potential assessment guide. Sandia National Laboratories report, SAND2010-0815, Albuquerque, New Mexico. Mulder, Six, Claessens, Broes, Omar, Mierlo (b0095) 2013; 111 Wade, Taylor, Lang, Jones (b0055) 2010; 38 Brown A, Müller S, Dobrotková Z. Renewable energy: markets and prospects by technology. IEA information paper. Widén, Wäckelgård, Lund (b0045) 2009; 83 Nelson P, Bloom K, Dees DI. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Tech. rep. Argonne (IL, United States): Argonne National Laboratory (ANL); 2011. Hall, Bain (b0185) 2008; 36 Ibrahim, Ilinca, Perron (b0190) 2008; 12 Tsai H-L, Tu C-S, Su Y-J. Development of generalized photovoltaic model using matlab/simulink. In: Proceedings of the world congress on engineering and computer science; 2008. p. 846–51. Parra, Gillott, Walker (b0110) 2014; 39 D.o.E. HM Government, C. Change, 2050 pathways analysis. Tech rep; July 2010. Roberts, Sandberg (b0105) 2011; 99 Zucker, Hinchliffe (b0220) 2014; 127 Bolton P. House of commons library. Energy prices, standard. at 19 07-10. Utley J, Shorrock L. Domestic energy fact file 2008. Watford: Department of Energy and Climate Change, BRE. Barton, Infield (b0060) 2004; 19 F.I. for solar energy ISE. Photovoltaics report; December 2011. . Taylor P, Bolton R, Stone D, Zhang X-P, Martin C, Upham P. Pathways for energy storage in the UK. Report for the centre for low carbon futures, York. Consulting E. Energy storage. facts and figure. issues, technical solutions and development opportunities. Tech rep. ENEA Consulting; 2013. Erdinc O, Vural B, Uzunoglu M. A dynamic lithium-ion battery model considering the effects of temperature and capacity fading. In: International conference on clean electrical power, 2009. IEEE; 2009. p. 383–6. G. of the UK. Weekly solar PV installation and capacity based on registration date; September 2013. U. Author. Private communication with hitachi; 2014. Feldman D, Barbose G, Margolis R, Wiser R, Darghouth N, Goodrich A. Photovoltaic (PV) pricing trends: historical, recent, and near-term projections. Tech rep. Golden (CO): National Renewable Energy Laboratory (NREL); 2012. Matallanas, Castillo-Cagigal, Gutiérrez, Monasterio-Huelin, Caamaño-Martín, Masa (b0225) 2012; 91 Castillo-Cagigal, Caamaño-Martín, Matallanas, Masa-Bote, Gutiérrez, Monasterio-Huelin (b0085) 2011; 85 Cherif, Jraidi, Dhouib (b0125) 2002; 112 Widén, Wäckelgård, Paatero, Lund (b0040) 2010; 80 Braun M, Büdenbender K, Magnor D, Jossen A. Photovoltaic self-consumption in Germany using lithium-ion storage to increase self-consumed photovoltaic energy. ISET, Kassel. Parra, Walker, Gillott (b0035) 2014; 10 Riffonneau, Bacha, Barruel, Ploix (b0075) 2011; 2 Schoenung S. Energy storage systems cost update. SAND2011-2730. G.B.D. of Energy, C. Change, The UK low carbon transition plan: national strategy for climate and energy, Act on CO2, Stationery Office; 2009. UKERC. Milton keynes energy park dwellings; 1990. Freris (10.1016/j.apenergy.2014.08.060_b0050) 2008 Riffonneau (10.1016/j.apenergy.2014.08.060_b0075) 2011; 2 Divya (10.1016/j.apenergy.2014.08.060_b0180) 2009; 79 Parra (10.1016/j.apenergy.2014.08.060_b0110) 2014; 39 10.1016/j.apenergy.2014.08.060_b0215 10.1016/j.apenergy.2014.08.060_b0115 10.1016/j.apenergy.2014.08.060_b0015 10.1016/j.apenergy.2014.08.060_b0235 Castillo-Cagigal (10.1016/j.apenergy.2014.08.060_b0085) 2011; 85 McKenna (10.1016/j.apenergy.2014.08.060_b0100) 2013; 104 10.1016/j.apenergy.2014.08.060_b0135 10.1016/j.apenergy.2014.08.060_b0145 10.1016/j.apenergy.2014.08.060_b0200 Widén (10.1016/j.apenergy.2014.08.060_b0045) 2009; 83 10.1016/j.apenergy.2014.08.060_b0165 Mulder (10.1016/j.apenergy.2014.08.060_b0095) 2013; 111 10.1016/j.apenergy.2014.08.060_b0120 10.1016/j.apenergy.2014.08.060_b0020 10.1016/j.apenergy.2014.08.060_b0140 10.1016/j.apenergy.2014.08.060_b0160 Cherif (10.1016/j.apenergy.2014.08.060_b0125) 2002; 112 Paatero (10.1016/j.apenergy.2014.08.060_b0065) 2007; 3 Hall (10.1016/j.apenergy.2014.08.060_b0185) 2008; 36 Zucker (10.1016/j.apenergy.2014.08.060_b0220) 2014; 127 Widén (10.1016/j.apenergy.2014.08.060_b0040) 2010; 80 Matallanas (10.1016/j.apenergy.2014.08.060_b0225) 2012; 91 Barton (10.1016/j.apenergy.2014.08.060_b0060) 2004; 19 Wade (10.1016/j.apenergy.2014.08.060_b0055) 2010; 38 Fernandez-Jimenez (10.1016/j.apenergy.2014.08.060_b0030) 2012; 44 Ibrahim (10.1016/j.apenergy.2014.08.060_b0190) 2008; 12 Hung (10.1016/j.apenergy.2014.08.060_b0230) 2014; 113 10.1016/j.apenergy.2014.08.060_b0205 Jenkins (10.1016/j.apenergy.2014.08.060_b0080) 2008; 2 Commission (10.1016/j.apenergy.2014.08.060_b0005) 2011 10.1016/j.apenergy.2014.08.060_b0025 10.1016/j.apenergy.2014.08.060_b0155 10.1016/j.apenergy.2014.08.060_b0210 10.1016/j.apenergy.2014.08.060_b0010 10.1016/j.apenergy.2014.08.060_b0175 10.1016/j.apenergy.2014.08.060_b0130 10.1016/j.apenergy.2014.08.060_b0195 Roberts (10.1016/j.apenergy.2014.08.060_b0105) 2011; 99 10.1016/j.apenergy.2014.08.060_b0150 10.1016/j.apenergy.2014.08.060_b0170 Parra (10.1016/j.apenergy.2014.08.060_b0035) 2014; 10 10.1016/j.apenergy.2014.08.060_b0070 10.1016/j.apenergy.2014.08.060_b0090 |
References_xml | – year: 2008 ident: b0050 article-title: Renewable energy in power systems contributor: fullname: Infield – volume: 10 start-page: 1 year: 2014 end-page: 10 ident: b0035 article-title: Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling publication-title: Sust Cities Soc contributor: fullname: Gillott – volume: 83 start-page: 1953 year: 2009 end-page: 1966 ident: b0045 article-title: Options for improving the load matching capability of distributed photovoltaics: methodology and application to high-latitude data publication-title: Sol Energy contributor: fullname: Lund – volume: 19 start-page: 441 year: 2004 end-page: 448 ident: b0060 article-title: Energy storage and its use with intermittent renewable energy publication-title: IEEE Trans Energy Convers contributor: fullname: Infield – volume: 2 start-page: 309 year: 2011 end-page: 320 ident: b0075 article-title: Optimal power flow management for grid connected PV systems with batteries publication-title: IEEE Trans Sust Energy contributor: fullname: Ploix – volume: 113 start-page: 1162 year: 2014 end-page: 1170 ident: b0230 article-title: Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability publication-title: Appl Energy contributor: fullname: Bansal – volume: 80 start-page: 1562 year: 2010 end-page: 1571 ident: b0040 article-title: Impacts of distributed photovoltaics on network voltages: stochastic simulations of three swedish low-voltage distribution grids publication-title: Electr Power Syst Res contributor: fullname: Lund – start-page: 112 year: 2011 ident: b0005 article-title: A roadmap for moving to a competitive low carbon economy in 2050 publication-title: COM contributor: fullname: Commission – volume: 112 start-page: 49 year: 2002 end-page: 53 ident: b0125 article-title: A battery ageing model used in stand alone PV systems publication-title: J Power Sources contributor: fullname: Dhouib – volume: 36 start-page: 4352 year: 2008 end-page: 4355 ident: b0185 article-title: Energy-storage technologies and electricity generation publication-title: Energy policy contributor: fullname: Bain – volume: 104 start-page: 239 year: 2013 end-page: 249 ident: b0100 article-title: Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems publication-title: Appl Energy contributor: fullname: Thomson – volume: 2 start-page: 191 year: 2008 end-page: 200 ident: b0080 article-title: Lifetime prediction and sizing of lead-acid batteries for microgeneration storage applications publication-title: Renew Power Gener IET contributor: fullname: Kane – volume: 111 start-page: 1126 year: 2013 end-page: 1135 ident: b0095 article-title: The dimensioning of PV-battery systems depending on the incentive and selling price conditions publication-title: Appl Energy contributor: fullname: Mierlo – volume: 99 start-page: 1139 year: 2011 end-page: 1144 ident: b0105 article-title: The role of energy storage in development of smart grids publication-title: Proc IEEE contributor: fullname: Sandberg – volume: 38 start-page: 7180 year: 2010 end-page: 7188 ident: b0055 article-title: Evaluating the benefits of an electrical energy storage system in a future smart grid publication-title: Energy Policy contributor: fullname: Jones – volume: 85 start-page: 2338 year: 2011 end-page: 2348 ident: b0085 article-title: PV self-consumption optimization with storage and active DSM for the residential sector publication-title: Sol Energy contributor: fullname: Monasterio-Huelin – volume: 91 start-page: 90 year: 2012 end-page: 97 ident: b0225 article-title: Neural network controller for active demand-side management with PV energy in the residential sector publication-title: Appl Energy contributor: fullname: Masa – volume: 79 start-page: 511 year: 2009 end-page: 520 ident: b0180 article-title: Battery energy storage technology for power system. an overview publication-title: Electr Power Syst Res contributor: fullname: Østergaard – volume: 44 start-page: 311 year: 2012 end-page: 317 ident: b0030 article-title: Short-term power forecasting system for photovoltaic plants publication-title: Renew Energy contributor: fullname: Lara-Santillan – volume: 3 start-page: 31 year: 2007 end-page: 45 ident: b0065 article-title: Impacts of energy storage in distribution grids with high penetration of photovoltaic power publication-title: Int J Distrib Energy Resour contributor: fullname: Lund – volume: 39 start-page: 4158 year: 2014 end-page: 4169 ident: b0110 article-title: The role of hydrogen in achieving the decarbonization targets for the uk domestic sector publication-title: Int J Hydrogen Energy contributor: fullname: Walker – volume: 127 start-page: 141 year: 2014 end-page: 155 ident: b0220 article-title: Optimum sizing of PV-attached electricity storage according to power market signals. a case study for Germany and Italy publication-title: Appl Energy contributor: fullname: Hinchliffe – volume: 12 start-page: 1221 year: 2008 end-page: 1250 ident: b0190 article-title: Energy storage systems. characteristics and comparisons publication-title: Renew Sust Energy Rev contributor: fullname: Perron – volume: 2 start-page: 191 issue: 3 year: 2008 ident: 10.1016/j.apenergy.2014.08.060_b0080 article-title: Lifetime prediction and sizing of lead-acid batteries for microgeneration storage applications publication-title: Renew Power Gener IET doi: 10.1049/iet-rpg:20080021 contributor: fullname: Jenkins – ident: 10.1016/j.apenergy.2014.08.060_b0215 – ident: 10.1016/j.apenergy.2014.08.060_b0175 doi: 10.2172/1059147 – volume: 39 start-page: 4158 issue: 9 year: 2014 ident: 10.1016/j.apenergy.2014.08.060_b0110 article-title: The role of hydrogen in achieving the decarbonization targets for the uk domestic sector publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.023 contributor: fullname: Parra – volume: 113 start-page: 1162 year: 2014 ident: 10.1016/j.apenergy.2014.08.060_b0230 article-title: Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.08.069 contributor: fullname: Hung – volume: 111 start-page: 1126 year: 2013 ident: 10.1016/j.apenergy.2014.08.060_b0095 article-title: The dimensioning of PV-battery systems depending on the incentive and selling price conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.03.059 contributor: fullname: Mulder – volume: 83 start-page: 1953 issue: 11 year: 2009 ident: 10.1016/j.apenergy.2014.08.060_b0045 article-title: Options for improving the load matching capability of distributed photovoltaics: methodology and application to high-latitude data publication-title: Sol Energy doi: 10.1016/j.solener.2009.07.007 contributor: fullname: Widén – volume: 85 start-page: 2338 issue: 9 year: 2011 ident: 10.1016/j.apenergy.2014.08.060_b0085 article-title: PV self-consumption optimization with storage and active DSM for the residential sector publication-title: Sol Energy doi: 10.1016/j.solener.2011.06.028 contributor: fullname: Castillo-Cagigal – volume: 104 start-page: 239 year: 2013 ident: 10.1016/j.apenergy.2014.08.060_b0100 article-title: Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.11.016 contributor: fullname: McKenna – volume: 112 start-page: 49 issue: 1 year: 2002 ident: 10.1016/j.apenergy.2014.08.060_b0125 article-title: A battery ageing model used in stand alone PV systems publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00341-5 contributor: fullname: Cherif – ident: 10.1016/j.apenergy.2014.08.060_b0160 – ident: 10.1016/j.apenergy.2014.08.060_b0145 – ident: 10.1016/j.apenergy.2014.08.060_b0015 – volume: 12 start-page: 1221 issue: 5 year: 2008 ident: 10.1016/j.apenergy.2014.08.060_b0190 article-title: Energy storage systems. characteristics and comparisons publication-title: Renew Sust Energy Rev doi: 10.1016/j.rser.2007.01.023 contributor: fullname: Ibrahim – volume: 38 start-page: 7180 issue: 11 year: 2010 ident: 10.1016/j.apenergy.2014.08.060_b0055 article-title: Evaluating the benefits of an electrical energy storage system in a future smart grid publication-title: Energy Policy doi: 10.1016/j.enpol.2010.07.045 contributor: fullname: Wade – ident: 10.1016/j.apenergy.2014.08.060_b0200 – ident: 10.1016/j.apenergy.2014.08.060_b0020 – ident: 10.1016/j.apenergy.2014.08.060_b0135 – volume: 127 start-page: 141 issue: 0 year: 2014 ident: 10.1016/j.apenergy.2014.08.060_b0220 article-title: Optimum sizing of PV-attached electricity storage according to power market signals. a case study for Germany and Italy publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.038 contributor: fullname: Zucker – volume: 79 start-page: 511 issue: 4 year: 2009 ident: 10.1016/j.apenergy.2014.08.060_b0180 article-title: Battery energy storage technology for power system. an overview publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2008.09.017 contributor: fullname: Divya – ident: 10.1016/j.apenergy.2014.08.060_b0025 – volume: 44 start-page: 311 year: 2012 ident: 10.1016/j.apenergy.2014.08.060_b0030 article-title: Short-term power forecasting system for photovoltaic plants publication-title: Renew Energy doi: 10.1016/j.renene.2012.01.108 contributor: fullname: Fernandez-Jimenez – ident: 10.1016/j.apenergy.2014.08.060_b0155 – volume: 36 start-page: 4352 issue: 12 year: 2008 ident: 10.1016/j.apenergy.2014.08.060_b0185 article-title: Energy-storage technologies and electricity generation publication-title: Energy policy doi: 10.1016/j.enpol.2008.09.037 contributor: fullname: Hall – volume: 10 start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2014.08.060_b0035 article-title: Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling publication-title: Sust Cities Soc doi: 10.1016/j.scs.2013.04.006 contributor: fullname: Parra – ident: 10.1016/j.apenergy.2014.08.060_b0140 doi: 10.2172/1031895 – ident: 10.1016/j.apenergy.2014.08.060_b0235 doi: 10.2139/ssrn.2335930 – ident: 10.1016/j.apenergy.2014.08.060_b0070 doi: 10.1109/ICIT.2009.4939609 – ident: 10.1016/j.apenergy.2014.08.060_b0210 – ident: 10.1016/j.apenergy.2014.08.060_b0165 – ident: 10.1016/j.apenergy.2014.08.060_b0010 – volume: 2 start-page: 309 issue: 3 year: 2011 ident: 10.1016/j.apenergy.2014.08.060_b0075 article-title: Optimal power flow management for grid connected PV systems with batteries publication-title: IEEE Trans Sust Energy doi: 10.1109/TSTE.2011.2114901 contributor: fullname: Riffonneau – ident: 10.1016/j.apenergy.2014.08.060_b0170 – ident: 10.1016/j.apenergy.2014.08.060_b0120 – year: 2008 ident: 10.1016/j.apenergy.2014.08.060_b0050 contributor: fullname: Freris – ident: 10.1016/j.apenergy.2014.08.060_b0130 doi: 10.1109/ICCEP.2009.5212025 – ident: 10.1016/j.apenergy.2014.08.060_b0205 – ident: 10.1016/j.apenergy.2014.08.060_b0195 – volume: 80 start-page: 1562 issue: 12 year: 2010 ident: 10.1016/j.apenergy.2014.08.060_b0040 article-title: Impacts of distributed photovoltaics on network voltages: stochastic simulations of three swedish low-voltage distribution grids publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2010.07.007 contributor: fullname: Widén – ident: 10.1016/j.apenergy.2014.08.060_b0090 – volume: 99 start-page: 1139 issue: 6 year: 2011 ident: 10.1016/j.apenergy.2014.08.060_b0105 article-title: The role of energy storage in development of smart grids publication-title: Proc IEEE doi: 10.1109/JPROC.2011.2116752 contributor: fullname: Roberts – ident: 10.1016/j.apenergy.2014.08.060_b0150 doi: 10.2172/1027714 – start-page: 112 issue: 4 year: 2011 ident: 10.1016/j.apenergy.2014.08.060_b0005 article-title: A roadmap for moving to a competitive low carbon economy in 2050 publication-title: COM contributor: fullname: Commission – volume: 91 start-page: 90 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2014.08.060_b0225 article-title: Neural network controller for active demand-side management with PV energy in the residential sector publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.09.004 contributor: fullname: Matallanas – volume: 19 start-page: 441 issue: 2 year: 2004 ident: 10.1016/j.apenergy.2014.08.060_b0060 article-title: Energy storage and its use with intermittent renewable energy publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2003.822305 contributor: fullname: Barton – volume: 3 start-page: 31 issue: 1 year: 2007 ident: 10.1016/j.apenergy.2014.08.060_b0065 article-title: Impacts of energy storage in distribution grids with high penetration of photovoltaic power publication-title: Int J Distrib Energy Resour contributor: fullname: Paatero – ident: 10.1016/j.apenergy.2014.08.060_b0115 |
SSID | ssj0002120 |
Score | 2.5366652 |
Snippet | •The performance and economic benefits of Pb-acid and Li-ion batteries are compared.•The business case during the decarbonisation pathway is assessed.•The... A novel method has been designed to obtain the optimum community energy storage (CES) systems for end user applications. The method evaluates the optimum... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 576 |
SubjectTerms | Business Carbon Communities Community energy storage Demand Energy storage Evolution Lead-acid battery Lithium batteries Lithium-ion battery Optimization PV energy time-shift |
Title | Optimum community energy storage system for PV energy time-shift |
URI | https://dx.doi.org/10.1016/j.apenergy.2014.08.060 https://search.proquest.com/docview/1651379871 https://search.proquest.com/docview/1655732386 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6xTULwMI3CxNiGgsQbSskS23HeVkFg8DAmbUx9sxLbEUxbN7Xr_89dbCdZ-S2EVEWVkziW78vd-fLdGeAlM43ITFHHnMs6ZtZksbQ5ZQEXhaZ6Y6YtX3x0mh9P5duSlT11qG_7r5LGNpQ1Zc7-hbS7TrEB_6PM8YhSx-Mfyf0T6oCr5RVxxSnzA31s69L7iAZJBB1Xu7mlF56ch5O0xXy8-PK1uROqDy6qu6j_2jSfVyt8eNqJ_PIykD8G-T_HbVaC45MRf_TVZDyI4XtKx3vsCNXMeBiCOOArIYguN6YnIrX5WImIaX3mLI1TrxJhgOpV3tG_ruqL16A8FwNjzJ01_k7Pu5DDxbi6cTNAHD3marEmvWXr-IanNBgaCy4nE1wiTtdgI0XNhIpxY_KhnH7sjHfqK3mGwQ-Syn_8tJ_5MyuWvXVXzrZg068zookDyCO4Z2cjuB_SHEbwcFCIcgTbZZ_viHd5hb94DIceTlEHp8gNLvJwihycIoRTdHIeTvZwegKf35Vnb45iv-lGrLNc3sYc307NLNOaC3yRU7Q_WcF4k-PPslxmFoVopM5tWuvKCI7zWDUa3U6rcWmdZNuwPrue2acQoW9fYyeiEXXChKgqm8hGS4q6G5NmZgdeh6lTN662igqkwwsVJlvRZCvaK1UkO1CEGVbeQ3Sen0Jg_PbeF0EkClUofRerZvZ6uVAHgiMGC8TFL6_heYb-rXj2D2PYhQf9-7MH67fzpd2HtYVZPvdA_AbBa6N3 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+community+energy+storage+system+for+PV+energy+time-shift&rft.jtitle=Applied+energy&rft.au=Parra%2C+David&rft.au=Gillott%2C+Mark&rft.au=Norman%2C+Stuart+A.&rft.au=Walker%2C+Gavin+S.&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=137&rft.spage=576&rft.epage=587&rft_id=info:doi/10.1016%2Fj.apenergy.2014.08.060&rft.externalDocID=S030626191400871X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |