Optimum community energy storage system for PV energy time-shift

•The performance and economic benefits of Pb-acid and Li-ion batteries are compared.•The business case during the decarbonisation pathway is assessed.•The aggregation from a community approach reduced the levelised cost by 37% by 2020.•For a forecast price of 16.3p/kWh Li-ion battery cost must be le...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 137; pp. 576 - 587
Main Authors: Parra, David, Gillott, Mark, Norman, Stuart A., Walker, Gavin S.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-01-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The performance and economic benefits of Pb-acid and Li-ion batteries are compared.•The business case during the decarbonisation pathway is assessed.•The aggregation from a community approach reduced the levelised cost by 37% by 2020.•For a forecast price of 16.3p/kWh Li-ion battery cost must be less than 275£/kWh.•A 10% subsidy will be needed for Li-ion batteries to achieve the 2020 forecast. A novel method has been designed to obtain the optimum community energy storage (CES) systems for end user applications. The method evaluates the optimum performance (including the round trip efficiency and annual discharge), levelised cost (LCOES), the internal rate of return and the levelised value of suitable energy storage technologies. A complimentary methodology was developed including three reference years (2012, 2020 and zero carbon year) to show the evolution of the business case during the low carbon transition. The method follows a community approach and the optimum CES system was calculated as a function of the size of the community. In this work, this method was put in practice with lead-acid (PbA) and lithium-ion battery (Li-ion) technologies when performing PV energy time-shift using real demand data from a single home to a 100-home community. The community approach reduced the LCOES down to 0.30£/kWh and 0.11£/kWh in 2020 and the zero carbon year respectively. These values meant a cost reduction by 37% and 66% regarding a single home. Results demonstrated that PbA batteries needs from 1.5 to 2.5 times more capacity than Li-ion chemistry to reduce the LCOES, the worst case scenario being for the smallest communities, because the more spiky demand profile required proportionately larger PbA battery capacities.
AbstractList A novel method has been designed to obtain the optimum community energy storage (CES) systems for end user applications. The method evaluates the optimum performance (including the round trip efficiency and annual discharge), levelised cost (LCOES), the internal rate of return and the levelised value of suitable energy storage technologies. A complimentary methodology was developed including three reference years (2012, 2020 and zero carbon year) to show the evolution of the business case during the low carbon transition. The method follows a community approach and the optimum CES system was calculated as a function of the size of the community. In this work, this method was put in practice with lead-acid (PbA) and lithium-ion battery (Li-ion) technologies when performing PV energy time-shift using real demand data from a single home to a 100-home community. The community approach reduced the LCOES down to 0.30 pound sterling /kW h and 0.11 pound sterling /kW h in 2020 and the zero carbon year respectively. These values meant a cost reduction by 37% and 66% regarding a single home. Results demonstrated that PbA batteries needs from 1.5 to 2.5 times more capacity than Li-ion chemistry to reduce the LCOES, the worst case scenario being for the smallest communities, because the more spiky demand profile required proportionately larger PbA battery capacities.
•The performance and economic benefits of Pb-acid and Li-ion batteries are compared.•The business case during the decarbonisation pathway is assessed.•The aggregation from a community approach reduced the levelised cost by 37% by 2020.•For a forecast price of 16.3p/kWh Li-ion battery cost must be less than 275£/kWh.•A 10% subsidy will be needed for Li-ion batteries to achieve the 2020 forecast. A novel method has been designed to obtain the optimum community energy storage (CES) systems for end user applications. The method evaluates the optimum performance (including the round trip efficiency and annual discharge), levelised cost (LCOES), the internal rate of return and the levelised value of suitable energy storage technologies. A complimentary methodology was developed including three reference years (2012, 2020 and zero carbon year) to show the evolution of the business case during the low carbon transition. The method follows a community approach and the optimum CES system was calculated as a function of the size of the community. In this work, this method was put in practice with lead-acid (PbA) and lithium-ion battery (Li-ion) technologies when performing PV energy time-shift using real demand data from a single home to a 100-home community. The community approach reduced the LCOES down to 0.30£/kWh and 0.11£/kWh in 2020 and the zero carbon year respectively. These values meant a cost reduction by 37% and 66% regarding a single home. Results demonstrated that PbA batteries needs from 1.5 to 2.5 times more capacity than Li-ion chemistry to reduce the LCOES, the worst case scenario being for the smallest communities, because the more spiky demand profile required proportionately larger PbA battery capacities.
Author Gillott, Mark
Parra, David
Norman, Stuart A.
Walker, Gavin S.
Author_xml – sequence: 1
  givenname: David
  surname: Parra
  fullname: Parra, David
  organization: Infrastructure, Geomatics and Architecture Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
– sequence: 2
  givenname: Mark
  surname: Gillott
  fullname: Gillott, Mark
  organization: Infrastructure, Geomatics and Architecture Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
– sequence: 3
  givenname: Stuart A.
  surname: Norman
  fullname: Norman, Stuart A.
  organization: E.ON Technology Centre, Ratcliffe on Soar, Nottingham NG11 0EE, UK
– sequence: 4
  givenname: Gavin S.
  surname: Walker
  fullname: Walker, Gavin S.
  email: Gavin.Walker@nottingham.ac.uk
  organization: Energy and Sustainability Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
BookMark eNqNkEtPwzAQhC1UJNrCX0A5cknw2ont3IoqXlKlcgCuVnA2xVXzwHaQ8u9JFXoGaaU97Mxo51uQWdM2SMg10AQoiNt9UnTYoNsNCaOQJlQlVNAzMgclWZwDqBmZU05FzATkF2Th_Z5SyoDROVltu2Drvo5MW9d9Y8MQTVmRD60rdhj5wQeso6p10cv76Th6MPaftgqX5LwqDh6vfveSvD3cv66f4s328Xl9t4kNlyrEGZRgUkyNyURaVkwKzvM0q-Q4mErFcfy2VEYi-zBFKTIm86IyNAc0kCrKl-Rmyu1c-9WjD7q23uDhUDTY9l6DyDLJGVfiP1LgMlcSRqmYpMa13jusdOdsXbhBA9VHunqvT3T1ka6mSo90R-NqMuLY-dui095YbAyW1qEJumztXxE_BLGIDA
CitedBy_id crossref_primary_10_1016_j_renene_2020_07_022
crossref_primary_10_1007_s42835_021_00776_8
crossref_primary_10_1016_j_esd_2024_101495
crossref_primary_10_1016_j_egypro_2016_10_096
crossref_primary_10_1016_j_rser_2017_02_075
crossref_primary_10_1016_j_enpol_2018_03_064
crossref_primary_10_1016_j_est_2022_105063
crossref_primary_10_2139_ssrn_4092281
crossref_primary_10_1016_j_apenergy_2018_12_031
crossref_primary_10_1109_ACCESS_2019_2934510
crossref_primary_10_1016_j_apenergy_2016_12_144
crossref_primary_10_1016_j_apenergy_2021_117182
crossref_primary_10_1016_j_apenergy_2022_119080
crossref_primary_10_1016_j_renene_2018_09_099
crossref_primary_10_1016_j_enbuild_2019_04_012
crossref_primary_10_1016_j_solener_2018_03_052
crossref_primary_10_1016_j_ijepes_2023_109361
crossref_primary_10_1016_j_apenergy_2017_10_096
crossref_primary_10_1002_2050_7038_12861
crossref_primary_10_1002_2050_7038_12224
crossref_primary_10_1007_s12667_023_00606_y
crossref_primary_10_1155_2020_1956410
crossref_primary_10_3390_en15114032
crossref_primary_10_1016_j_apenergy_2016_12_016
crossref_primary_10_1016_j_renene_2021_03_122
crossref_primary_10_1016_j_energy_2021_120074
crossref_primary_10_1007_s12398_018_0230_6
crossref_primary_10_1016_j_apenergy_2015_12_037
crossref_primary_10_1016_j_est_2023_108048
crossref_primary_10_1016_j_egyr_2022_12_089
crossref_primary_10_1016_j_egyr_2023_01_110
crossref_primary_10_1016_j_erss_2020_101606
crossref_primary_10_1051_rees_2023003
crossref_primary_10_1109_TIE_2019_2942551
crossref_primary_10_1016_j_egyr_2022_08_187
crossref_primary_10_1016_j_ijepes_2016_12_018
crossref_primary_10_1016_j_apenergy_2018_07_100
crossref_primary_10_1049_oap_cired_2021_0317
crossref_primary_10_1016_j_apenergy_2018_12_050
crossref_primary_10_1016_j_rser_2016_12_066
crossref_primary_10_1016_j_energy_2019_116755
crossref_primary_10_1016_j_est_2021_102855
crossref_primary_10_1016_j_apenergy_2019_113468
crossref_primary_10_3390_en14196292
crossref_primary_10_3390_buildings11100433
crossref_primary_10_1016_j_apenergy_2019_04_001
crossref_primary_10_1016_j_apenergy_2020_116110
crossref_primary_10_1016_j_est_2019_100847
crossref_primary_10_1016_j_apenergy_2017_03_112
crossref_primary_10_1016_j_ijhydene_2015_12_160
crossref_primary_10_1109_ACCESS_2018_2829148
crossref_primary_10_1007_s40565_016_0244_1
crossref_primary_10_1016_j_energy_2017_11_082
crossref_primary_10_1016_j_apenergy_2015_10_102
crossref_primary_10_1016_j_enbuild_2016_01_039
crossref_primary_10_1016_j_est_2018_02_001
crossref_primary_10_1016_j_apenergy_2018_11_080
crossref_primary_10_1016_j_apenergy_2021_117475
crossref_primary_10_1016_j_enconman_2019_112330
crossref_primary_10_1016_j_rser_2017_05_003
crossref_primary_10_1109_TSG_2020_3042190
crossref_primary_10_1016_j_apenergy_2014_11_025
crossref_primary_10_1109_TPEL_2014_2372774
crossref_primary_10_1016_j_enpol_2022_112929
crossref_primary_10_1016_j_ifacol_2017_08_1542
crossref_primary_10_1109_ACCESS_2022_3160239
crossref_primary_10_1016_j_apenergy_2018_03_154
crossref_primary_10_1016_j_apenergy_2022_119160
crossref_primary_10_1016_j_solener_2023_112238
crossref_primary_10_1049_iet_rpg_2018_5190
crossref_primary_10_1016_j_apenergy_2024_123278
crossref_primary_10_1016_j_enpol_2019_111098
crossref_primary_10_1007_s40565_018_0442_0
crossref_primary_10_1002_er_4720
crossref_primary_10_1016_j_rser_2015_12_325
crossref_primary_10_1155_2022_6361243
crossref_primary_10_1016_j_apenergy_2020_116172
crossref_primary_10_1016_j_jclepro_2021_130272
crossref_primary_10_1016_j_ecmx_2024_100533
crossref_primary_10_1016_j_apenergy_2016_04_082
crossref_primary_10_1016_j_enbuild_2018_09_018
crossref_primary_10_3390_en13195154
crossref_primary_10_1016_j_apenergy_2015_11_037
crossref_primary_10_1016_j_apenergy_2018_09_163
crossref_primary_10_1016_j_rser_2021_111263
crossref_primary_10_1016_j_apenergy_2016_01_095
crossref_primary_10_1016_j_apenergy_2020_114969
crossref_primary_10_1016_j_apenergy_2017_05_048
crossref_primary_10_1016_j_solener_2017_11_011
crossref_primary_10_1002_2050_7038_12707
crossref_primary_10_1016_j_est_2021_102709
crossref_primary_10_1007_s40313_021_00691_3
crossref_primary_10_1016_j_rser_2015_11_080
crossref_primary_10_1016_j_enbenv_2023_04_001
crossref_primary_10_1016_j_apenergy_2015_08_117
crossref_primary_10_1016_j_rser_2016_01_129
crossref_primary_10_1109_ACCESS_2021_3103480
crossref_primary_10_1016_j_apenergy_2018_07_027
crossref_primary_10_1016_j_jclepro_2020_124536
crossref_primary_10_1016_j_apenergy_2016_04_050
crossref_primary_10_1016_j_est_2017_06_003
crossref_primary_10_1049_joe_2016_0031
crossref_primary_10_1016_j_energy_2018_09_202
crossref_primary_10_1016_j_esr_2018_08_010
crossref_primary_10_1016_j_solener_2020_04_007
crossref_primary_10_1016_j_enpol_2019_03_041
crossref_primary_10_1016_j_ijhydene_2015_11_109
crossref_primary_10_3390_su12177035
crossref_primary_10_1016_j_apenergy_2017_12_056
crossref_primary_10_1016_j_apenergy_2017_08_186
crossref_primary_10_1016_j_est_2019_101186
crossref_primary_10_1016_j_est_2023_107100
crossref_primary_10_1002_er_4269
crossref_primary_10_1016_j_jpowsour_2019_227011
crossref_primary_10_3390_en13040972
crossref_primary_10_1016_j_apenergy_2018_04_005
crossref_primary_10_1016_j_enpol_2021_112599
crossref_primary_10_1016_j_ijepes_2020_106446
crossref_primary_10_1016_j_apenergy_2018_03_185
crossref_primary_10_1016_j_apenergy_2022_120182
crossref_primary_10_1016_j_seta_2022_102801
crossref_primary_10_3390_en13112892
crossref_primary_10_1016_j_ijhydene_2016_01_098
crossref_primary_10_1016_j_scs_2017_10_023
crossref_primary_10_1016_j_enconman_2018_07_058
Cites_doi 10.1049/iet-rpg:20080021
10.2172/1059147
10.1016/j.ijhydene.2014.01.023
10.1016/j.apenergy.2013.08.069
10.1016/j.apenergy.2013.03.059
10.1016/j.solener.2009.07.007
10.1016/j.solener.2011.06.028
10.1016/j.apenergy.2012.11.016
10.1016/S0378-7753(02)00341-5
10.1016/j.rser.2007.01.023
10.1016/j.enpol.2010.07.045
10.1016/j.apenergy.2014.04.038
10.1016/j.epsr.2008.09.017
10.1016/j.renene.2012.01.108
10.1016/j.enpol.2008.09.037
10.1016/j.scs.2013.04.006
10.2172/1031895
10.2139/ssrn.2335930
10.1109/ICIT.2009.4939609
10.1109/TSTE.2011.2114901
10.1109/ICCEP.2009.5212025
10.1016/j.epsr.2010.07.007
10.1109/JPROC.2011.2116752
10.2172/1027714
10.1016/j.apenergy.2011.09.004
10.1109/TEC.2003.822305
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7SU
7TA
8FD
C1K
F28
FR3
JG9
L7M
7ST
SOI
DOI 10.1016/j.apenergy.2014.08.060
DatabaseName CrossRef
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Materials Business File
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Materials Business File
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList Materials Research Database

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Business
EISSN 1872-9118
EndPage 587
ExternalDocumentID 10_1016_j_apenergy_2014_08_060
S030626191400871X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AAXKI
AAYOK
AAYXX
ABEFU
ABFNM
ABTAH
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
7SP
7SU
7TA
8FD
C1K
F28
FR3
JG9
L7M
7ST
SOI
ID FETCH-LOGICAL-c378t-51d1c4e4cc564df27633945f75f7e4783e187d8c7e2bcad65279afc091ec14803
ISSN 0306-2619
IngestDate Fri Oct 25 21:58:14 EDT 2024
Fri Oct 25 06:52:43 EDT 2024
Thu Sep 26 18:56:57 EDT 2024
Fri Feb 23 02:36:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lead-acid battery
Community energy storage
Lithium-ion battery
PV energy time-shift
Optimization
Business
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-51d1c4e4cc564df27633945f75f7e4783e187d8c7e2bcad65279afc091ec14803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651379871
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1655732386
proquest_miscellaneous_1651379871
crossref_primary_10_1016_j_apenergy_2014_08_060
elsevier_sciencedirect_doi_10_1016_j_apenergy_2014_08_060
PublicationCentury 2000
PublicationDate 2015-01-01
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fernandez-Jimenez, Muñoz-Jimenez, Falces, Mendoza-Villena, Garcia-Garrido, Lara-Santillan (b0030) 2012; 44
Borden E, Schill W-P. Policy efforts for the development of storage technologies in the US and Germany. Tech rep. Discussion papers. DIW Berlin; 2013.
Hung, Mithulananthan, Bansal (b0230) 2014; 113
Freris, Infield (b0050) 2008
G. of the UK, Energy consumption in the UK. Domestic data table 2011 update; September 2011.
Jenkins, Fletcher, Kane (b0080) 2008; 2
Divya, Østergaard (b0180) 2009; 79
Riffonneau Y, Bacha S, Barruel F, Delaille A. Energy flow management in grid connected PV systems with storage-a deterministic approach. In: IEEE international conference on industrial technology, 2009. ICIT 2009. IEEE; 2009. p. 1–6.
McKenna, McManus, Cooper, Thomson (b0100) 2013; 104
Eckroad S, Gyuk I. EPRI-DOE handbook of energy storage for transmission & distribution applications. Electric Power Research Institute, Inc.
Strbac G, Aunedi M, Pudjianto D, Djapic P, Teng F, Sturt A, et al., Strategic assessment of the role and value of energy storage systems in the uk low carbon energy future. Tech rep. Carbon Trust; 2012.
Paatero, Lund (b0065) 2007; 3
E.S. Trust, Feed-in tariffs scheme (fits); March 2013.
Commission (b0005) 2011
Eyer J, Corey G. Energy storage for the electricity grid: benefits and market potential assessment guide. Sandia National Laboratories report, SAND2010-0815, Albuquerque, New Mexico.
Mulder, Six, Claessens, Broes, Omar, Mierlo (b0095) 2013; 111
Wade, Taylor, Lang, Jones (b0055) 2010; 38
Brown A, Müller S, Dobrotková Z. Renewable energy: markets and prospects by technology. IEA information paper.
Widén, Wäckelgård, Lund (b0045) 2009; 83
Nelson P, Bloom K, Dees DI. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Tech. rep. Argonne (IL, United States): Argonne National Laboratory (ANL); 2011.
Hall, Bain (b0185) 2008; 36
Ibrahim, Ilinca, Perron (b0190) 2008; 12
Tsai H-L, Tu C-S, Su Y-J. Development of generalized photovoltaic model using matlab/simulink. In: Proceedings of the world congress on engineering and computer science; 2008. p. 846–51.
Parra, Gillott, Walker (b0110) 2014; 39
D.o.E. HM Government, C. Change, 2050 pathways analysis. Tech rep; July 2010.
Roberts, Sandberg (b0105) 2011; 99
Zucker, Hinchliffe (b0220) 2014; 127
Bolton P. House of commons library. Energy prices, standard. at 19 07-10.
Utley J, Shorrock L. Domestic energy fact file 2008. Watford: Department of Energy and Climate Change, BRE.
Barton, Infield (b0060) 2004; 19
F.I. for solar energy ISE. Photovoltaics report; December 2011.
.
Taylor P, Bolton R, Stone D, Zhang X-P, Martin C, Upham P. Pathways for energy storage in the UK. Report for the centre for low carbon futures, York.
Consulting E. Energy storage. facts and figure. issues, technical solutions and development opportunities. Tech rep. ENEA Consulting; 2013.
Erdinc O, Vural B, Uzunoglu M. A dynamic lithium-ion battery model considering the effects of temperature and capacity fading. In: International conference on clean electrical power, 2009. IEEE; 2009. p. 383–6.
G. of the UK. Weekly solar PV installation and capacity based on registration date; September 2013.
U. Author. Private communication with hitachi; 2014.
Feldman D, Barbose G, Margolis R, Wiser R, Darghouth N, Goodrich A. Photovoltaic (PV) pricing trends: historical, recent, and near-term projections. Tech rep. Golden (CO): National Renewable Energy Laboratory (NREL); 2012.
Matallanas, Castillo-Cagigal, Gutiérrez, Monasterio-Huelin, Caamaño-Martín, Masa (b0225) 2012; 91
Castillo-Cagigal, Caamaño-Martín, Matallanas, Masa-Bote, Gutiérrez, Monasterio-Huelin (b0085) 2011; 85
Cherif, Jraidi, Dhouib (b0125) 2002; 112
Widén, Wäckelgård, Paatero, Lund (b0040) 2010; 80
Braun M, Büdenbender K, Magnor D, Jossen A. Photovoltaic self-consumption in Germany using lithium-ion storage to increase self-consumed photovoltaic energy. ISET, Kassel.
Parra, Walker, Gillott (b0035) 2014; 10
Riffonneau, Bacha, Barruel, Ploix (b0075) 2011; 2
Schoenung S. Energy storage systems cost update. SAND2011-2730.
G.B.D. of Energy, C. Change, The UK low carbon transition plan: national strategy for climate and energy, Act on CO2, Stationery Office; 2009.
UKERC. Milton keynes energy park dwellings; 1990.
Freris (10.1016/j.apenergy.2014.08.060_b0050) 2008
Riffonneau (10.1016/j.apenergy.2014.08.060_b0075) 2011; 2
Divya (10.1016/j.apenergy.2014.08.060_b0180) 2009; 79
Parra (10.1016/j.apenergy.2014.08.060_b0110) 2014; 39
10.1016/j.apenergy.2014.08.060_b0215
10.1016/j.apenergy.2014.08.060_b0115
10.1016/j.apenergy.2014.08.060_b0015
10.1016/j.apenergy.2014.08.060_b0235
Castillo-Cagigal (10.1016/j.apenergy.2014.08.060_b0085) 2011; 85
McKenna (10.1016/j.apenergy.2014.08.060_b0100) 2013; 104
10.1016/j.apenergy.2014.08.060_b0135
10.1016/j.apenergy.2014.08.060_b0145
10.1016/j.apenergy.2014.08.060_b0200
Widén (10.1016/j.apenergy.2014.08.060_b0045) 2009; 83
10.1016/j.apenergy.2014.08.060_b0165
Mulder (10.1016/j.apenergy.2014.08.060_b0095) 2013; 111
10.1016/j.apenergy.2014.08.060_b0120
10.1016/j.apenergy.2014.08.060_b0020
10.1016/j.apenergy.2014.08.060_b0140
10.1016/j.apenergy.2014.08.060_b0160
Cherif (10.1016/j.apenergy.2014.08.060_b0125) 2002; 112
Paatero (10.1016/j.apenergy.2014.08.060_b0065) 2007; 3
Hall (10.1016/j.apenergy.2014.08.060_b0185) 2008; 36
Zucker (10.1016/j.apenergy.2014.08.060_b0220) 2014; 127
Widén (10.1016/j.apenergy.2014.08.060_b0040) 2010; 80
Matallanas (10.1016/j.apenergy.2014.08.060_b0225) 2012; 91
Barton (10.1016/j.apenergy.2014.08.060_b0060) 2004; 19
Wade (10.1016/j.apenergy.2014.08.060_b0055) 2010; 38
Fernandez-Jimenez (10.1016/j.apenergy.2014.08.060_b0030) 2012; 44
Ibrahim (10.1016/j.apenergy.2014.08.060_b0190) 2008; 12
Hung (10.1016/j.apenergy.2014.08.060_b0230) 2014; 113
10.1016/j.apenergy.2014.08.060_b0205
Jenkins (10.1016/j.apenergy.2014.08.060_b0080) 2008; 2
Commission (10.1016/j.apenergy.2014.08.060_b0005) 2011
10.1016/j.apenergy.2014.08.060_b0025
10.1016/j.apenergy.2014.08.060_b0155
10.1016/j.apenergy.2014.08.060_b0210
10.1016/j.apenergy.2014.08.060_b0010
10.1016/j.apenergy.2014.08.060_b0175
10.1016/j.apenergy.2014.08.060_b0130
10.1016/j.apenergy.2014.08.060_b0195
Roberts (10.1016/j.apenergy.2014.08.060_b0105) 2011; 99
10.1016/j.apenergy.2014.08.060_b0150
10.1016/j.apenergy.2014.08.060_b0170
Parra (10.1016/j.apenergy.2014.08.060_b0035) 2014; 10
10.1016/j.apenergy.2014.08.060_b0070
10.1016/j.apenergy.2014.08.060_b0090
References_xml – year: 2008
  ident: b0050
  article-title: Renewable energy in power systems
  contributor:
    fullname: Infield
– volume: 10
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0035
  article-title: Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling
  publication-title: Sust Cities Soc
  contributor:
    fullname: Gillott
– volume: 83
  start-page: 1953
  year: 2009
  end-page: 1966
  ident: b0045
  article-title: Options for improving the load matching capability of distributed photovoltaics: methodology and application to high-latitude data
  publication-title: Sol Energy
  contributor:
    fullname: Lund
– volume: 19
  start-page: 441
  year: 2004
  end-page: 448
  ident: b0060
  article-title: Energy storage and its use with intermittent renewable energy
  publication-title: IEEE Trans Energy Convers
  contributor:
    fullname: Infield
– volume: 2
  start-page: 309
  year: 2011
  end-page: 320
  ident: b0075
  article-title: Optimal power flow management for grid connected PV systems with batteries
  publication-title: IEEE Trans Sust Energy
  contributor:
    fullname: Ploix
– volume: 113
  start-page: 1162
  year: 2014
  end-page: 1170
  ident: b0230
  article-title: Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability
  publication-title: Appl Energy
  contributor:
    fullname: Bansal
– volume: 80
  start-page: 1562
  year: 2010
  end-page: 1571
  ident: b0040
  article-title: Impacts of distributed photovoltaics on network voltages: stochastic simulations of three swedish low-voltage distribution grids
  publication-title: Electr Power Syst Res
  contributor:
    fullname: Lund
– start-page: 112
  year: 2011
  ident: b0005
  article-title: A roadmap for moving to a competitive low carbon economy in 2050
  publication-title: COM
  contributor:
    fullname: Commission
– volume: 112
  start-page: 49
  year: 2002
  end-page: 53
  ident: b0125
  article-title: A battery ageing model used in stand alone PV systems
  publication-title: J Power Sources
  contributor:
    fullname: Dhouib
– volume: 36
  start-page: 4352
  year: 2008
  end-page: 4355
  ident: b0185
  article-title: Energy-storage technologies and electricity generation
  publication-title: Energy policy
  contributor:
    fullname: Bain
– volume: 104
  start-page: 239
  year: 2013
  end-page: 249
  ident: b0100
  article-title: Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems
  publication-title: Appl Energy
  contributor:
    fullname: Thomson
– volume: 2
  start-page: 191
  year: 2008
  end-page: 200
  ident: b0080
  article-title: Lifetime prediction and sizing of lead-acid batteries for microgeneration storage applications
  publication-title: Renew Power Gener IET
  contributor:
    fullname: Kane
– volume: 111
  start-page: 1126
  year: 2013
  end-page: 1135
  ident: b0095
  article-title: The dimensioning of PV-battery systems depending on the incentive and selling price conditions
  publication-title: Appl Energy
  contributor:
    fullname: Mierlo
– volume: 99
  start-page: 1139
  year: 2011
  end-page: 1144
  ident: b0105
  article-title: The role of energy storage in development of smart grids
  publication-title: Proc IEEE
  contributor:
    fullname: Sandberg
– volume: 38
  start-page: 7180
  year: 2010
  end-page: 7188
  ident: b0055
  article-title: Evaluating the benefits of an electrical energy storage system in a future smart grid
  publication-title: Energy Policy
  contributor:
    fullname: Jones
– volume: 85
  start-page: 2338
  year: 2011
  end-page: 2348
  ident: b0085
  article-title: PV self-consumption optimization with storage and active DSM for the residential sector
  publication-title: Sol Energy
  contributor:
    fullname: Monasterio-Huelin
– volume: 91
  start-page: 90
  year: 2012
  end-page: 97
  ident: b0225
  article-title: Neural network controller for active demand-side management with PV energy in the residential sector
  publication-title: Appl Energy
  contributor:
    fullname: Masa
– volume: 79
  start-page: 511
  year: 2009
  end-page: 520
  ident: b0180
  article-title: Battery energy storage technology for power system. an overview
  publication-title: Electr Power Syst Res
  contributor:
    fullname: Østergaard
– volume: 44
  start-page: 311
  year: 2012
  end-page: 317
  ident: b0030
  article-title: Short-term power forecasting system for photovoltaic plants
  publication-title: Renew Energy
  contributor:
    fullname: Lara-Santillan
– volume: 3
  start-page: 31
  year: 2007
  end-page: 45
  ident: b0065
  article-title: Impacts of energy storage in distribution grids with high penetration of photovoltaic power
  publication-title: Int J Distrib Energy Resour
  contributor:
    fullname: Lund
– volume: 39
  start-page: 4158
  year: 2014
  end-page: 4169
  ident: b0110
  article-title: The role of hydrogen in achieving the decarbonization targets for the uk domestic sector
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Walker
– volume: 127
  start-page: 141
  year: 2014
  end-page: 155
  ident: b0220
  article-title: Optimum sizing of PV-attached electricity storage according to power market signals. a case study for Germany and Italy
  publication-title: Appl Energy
  contributor:
    fullname: Hinchliffe
– volume: 12
  start-page: 1221
  year: 2008
  end-page: 1250
  ident: b0190
  article-title: Energy storage systems. characteristics and comparisons
  publication-title: Renew Sust Energy Rev
  contributor:
    fullname: Perron
– volume: 2
  start-page: 191
  issue: 3
  year: 2008
  ident: 10.1016/j.apenergy.2014.08.060_b0080
  article-title: Lifetime prediction and sizing of lead-acid batteries for microgeneration storage applications
  publication-title: Renew Power Gener IET
  doi: 10.1049/iet-rpg:20080021
  contributor:
    fullname: Jenkins
– ident: 10.1016/j.apenergy.2014.08.060_b0215
– ident: 10.1016/j.apenergy.2014.08.060_b0175
  doi: 10.2172/1059147
– volume: 39
  start-page: 4158
  issue: 9
  year: 2014
  ident: 10.1016/j.apenergy.2014.08.060_b0110
  article-title: The role of hydrogen in achieving the decarbonization targets for the uk domestic sector
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.023
  contributor:
    fullname: Parra
– volume: 113
  start-page: 1162
  year: 2014
  ident: 10.1016/j.apenergy.2014.08.060_b0230
  article-title: Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.08.069
  contributor:
    fullname: Hung
– volume: 111
  start-page: 1126
  year: 2013
  ident: 10.1016/j.apenergy.2014.08.060_b0095
  article-title: The dimensioning of PV-battery systems depending on the incentive and selling price conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.03.059
  contributor:
    fullname: Mulder
– volume: 83
  start-page: 1953
  issue: 11
  year: 2009
  ident: 10.1016/j.apenergy.2014.08.060_b0045
  article-title: Options for improving the load matching capability of distributed photovoltaics: methodology and application to high-latitude data
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2009.07.007
  contributor:
    fullname: Widén
– volume: 85
  start-page: 2338
  issue: 9
  year: 2011
  ident: 10.1016/j.apenergy.2014.08.060_b0085
  article-title: PV self-consumption optimization with storage and active DSM for the residential sector
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.06.028
  contributor:
    fullname: Castillo-Cagigal
– volume: 104
  start-page: 239
  year: 2013
  ident: 10.1016/j.apenergy.2014.08.060_b0100
  article-title: Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.11.016
  contributor:
    fullname: McKenna
– volume: 112
  start-page: 49
  issue: 1
  year: 2002
  ident: 10.1016/j.apenergy.2014.08.060_b0125
  article-title: A battery ageing model used in stand alone PV systems
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00341-5
  contributor:
    fullname: Cherif
– ident: 10.1016/j.apenergy.2014.08.060_b0160
– ident: 10.1016/j.apenergy.2014.08.060_b0145
– ident: 10.1016/j.apenergy.2014.08.060_b0015
– volume: 12
  start-page: 1221
  issue: 5
  year: 2008
  ident: 10.1016/j.apenergy.2014.08.060_b0190
  article-title: Energy storage systems. characteristics and comparisons
  publication-title: Renew Sust Energy Rev
  doi: 10.1016/j.rser.2007.01.023
  contributor:
    fullname: Ibrahim
– volume: 38
  start-page: 7180
  issue: 11
  year: 2010
  ident: 10.1016/j.apenergy.2014.08.060_b0055
  article-title: Evaluating the benefits of an electrical energy storage system in a future smart grid
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.07.045
  contributor:
    fullname: Wade
– ident: 10.1016/j.apenergy.2014.08.060_b0200
– ident: 10.1016/j.apenergy.2014.08.060_b0020
– ident: 10.1016/j.apenergy.2014.08.060_b0135
– volume: 127
  start-page: 141
  issue: 0
  year: 2014
  ident: 10.1016/j.apenergy.2014.08.060_b0220
  article-title: Optimum sizing of PV-attached electricity storage according to power market signals. a case study for Germany and Italy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.038
  contributor:
    fullname: Zucker
– volume: 79
  start-page: 511
  issue: 4
  year: 2009
  ident: 10.1016/j.apenergy.2014.08.060_b0180
  article-title: Battery energy storage technology for power system. an overview
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2008.09.017
  contributor:
    fullname: Divya
– ident: 10.1016/j.apenergy.2014.08.060_b0025
– volume: 44
  start-page: 311
  year: 2012
  ident: 10.1016/j.apenergy.2014.08.060_b0030
  article-title: Short-term power forecasting system for photovoltaic plants
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.01.108
  contributor:
    fullname: Fernandez-Jimenez
– ident: 10.1016/j.apenergy.2014.08.060_b0155
– volume: 36
  start-page: 4352
  issue: 12
  year: 2008
  ident: 10.1016/j.apenergy.2014.08.060_b0185
  article-title: Energy-storage technologies and electricity generation
  publication-title: Energy policy
  doi: 10.1016/j.enpol.2008.09.037
  contributor:
    fullname: Hall
– volume: 10
  start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2014.08.060_b0035
  article-title: Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling
  publication-title: Sust Cities Soc
  doi: 10.1016/j.scs.2013.04.006
  contributor:
    fullname: Parra
– ident: 10.1016/j.apenergy.2014.08.060_b0140
  doi: 10.2172/1031895
– ident: 10.1016/j.apenergy.2014.08.060_b0235
  doi: 10.2139/ssrn.2335930
– ident: 10.1016/j.apenergy.2014.08.060_b0070
  doi: 10.1109/ICIT.2009.4939609
– ident: 10.1016/j.apenergy.2014.08.060_b0210
– ident: 10.1016/j.apenergy.2014.08.060_b0165
– ident: 10.1016/j.apenergy.2014.08.060_b0010
– volume: 2
  start-page: 309
  issue: 3
  year: 2011
  ident: 10.1016/j.apenergy.2014.08.060_b0075
  article-title: Optimal power flow management for grid connected PV systems with batteries
  publication-title: IEEE Trans Sust Energy
  doi: 10.1109/TSTE.2011.2114901
  contributor:
    fullname: Riffonneau
– ident: 10.1016/j.apenergy.2014.08.060_b0170
– ident: 10.1016/j.apenergy.2014.08.060_b0120
– year: 2008
  ident: 10.1016/j.apenergy.2014.08.060_b0050
  contributor:
    fullname: Freris
– ident: 10.1016/j.apenergy.2014.08.060_b0130
  doi: 10.1109/ICCEP.2009.5212025
– ident: 10.1016/j.apenergy.2014.08.060_b0205
– ident: 10.1016/j.apenergy.2014.08.060_b0195
– volume: 80
  start-page: 1562
  issue: 12
  year: 2010
  ident: 10.1016/j.apenergy.2014.08.060_b0040
  article-title: Impacts of distributed photovoltaics on network voltages: stochastic simulations of three swedish low-voltage distribution grids
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2010.07.007
  contributor:
    fullname: Widén
– ident: 10.1016/j.apenergy.2014.08.060_b0090
– volume: 99
  start-page: 1139
  issue: 6
  year: 2011
  ident: 10.1016/j.apenergy.2014.08.060_b0105
  article-title: The role of energy storage in development of smart grids
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2011.2116752
  contributor:
    fullname: Roberts
– ident: 10.1016/j.apenergy.2014.08.060_b0150
  doi: 10.2172/1027714
– start-page: 112
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2014.08.060_b0005
  article-title: A roadmap for moving to a competitive low carbon economy in 2050
  publication-title: COM
  contributor:
    fullname: Commission
– volume: 91
  start-page: 90
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2014.08.060_b0225
  article-title: Neural network controller for active demand-side management with PV energy in the residential sector
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.09.004
  contributor:
    fullname: Matallanas
– volume: 19
  start-page: 441
  issue: 2
  year: 2004
  ident: 10.1016/j.apenergy.2014.08.060_b0060
  article-title: Energy storage and its use with intermittent renewable energy
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2003.822305
  contributor:
    fullname: Barton
– volume: 3
  start-page: 31
  issue: 1
  year: 2007
  ident: 10.1016/j.apenergy.2014.08.060_b0065
  article-title: Impacts of energy storage in distribution grids with high penetration of photovoltaic power
  publication-title: Int J Distrib Energy Resour
  contributor:
    fullname: Paatero
– ident: 10.1016/j.apenergy.2014.08.060_b0115
SSID ssj0002120
Score 2.5366652
Snippet •The performance and economic benefits of Pb-acid and Li-ion batteries are compared.•The business case during the decarbonisation pathway is assessed.•The...
A novel method has been designed to obtain the optimum community energy storage (CES) systems for end user applications. The method evaluates the optimum...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 576
SubjectTerms Business
Carbon
Communities
Community energy storage
Demand
Energy storage
Evolution
Lead-acid battery
Lithium batteries
Lithium-ion battery
Optimization
PV energy time-shift
Title Optimum community energy storage system for PV energy time-shift
URI https://dx.doi.org/10.1016/j.apenergy.2014.08.060
https://search.proquest.com/docview/1651379871
https://search.proquest.com/docview/1655732386
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6xTULwMI3CxNiGgsQbSskS23HeVkFg8DAmbUx9sxLbEUxbN7Xr_89dbCdZ-S2EVEWVkziW78vd-fLdGeAlM43ITFHHnMs6ZtZksbQ5ZQEXhaZ6Y6YtX3x0mh9P5duSlT11qG_7r5LGNpQ1Zc7-hbS7TrEB_6PM8YhSx-Mfyf0T6oCr5RVxxSnzA31s69L7iAZJBB1Xu7mlF56ch5O0xXy8-PK1uROqDy6qu6j_2jSfVyt8eNqJ_PIykD8G-T_HbVaC45MRf_TVZDyI4XtKx3vsCNXMeBiCOOArIYguN6YnIrX5WImIaX3mLI1TrxJhgOpV3tG_ruqL16A8FwNjzJ01_k7Pu5DDxbi6cTNAHD3marEmvWXr-IanNBgaCy4nE1wiTtdgI0XNhIpxY_KhnH7sjHfqK3mGwQ-Syn_8tJ_5MyuWvXVXzrZg068zookDyCO4Z2cjuB_SHEbwcFCIcgTbZZ_viHd5hb94DIceTlEHp8gNLvJwihycIoRTdHIeTvZwegKf35Vnb45iv-lGrLNc3sYc307NLNOaC3yRU7Q_WcF4k-PPslxmFoVopM5tWuvKCI7zWDUa3U6rcWmdZNuwPrue2acQoW9fYyeiEXXChKgqm8hGS4q6G5NmZgdeh6lTN662igqkwwsVJlvRZCvaK1UkO1CEGVbeQ3Sen0Jg_PbeF0EkClUofRerZvZ6uVAHgiMGC8TFL6_heYb-rXj2D2PYhQf9-7MH67fzpd2HtYVZPvdA_AbBa6N3
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+community+energy+storage+system+for+PV+energy+time-shift&rft.jtitle=Applied+energy&rft.au=Parra%2C+David&rft.au=Gillott%2C+Mark&rft.au=Norman%2C+Stuart+A.&rft.au=Walker%2C+Gavin+S.&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=137&rft.spage=576&rft.epage=587&rft_id=info:doi/10.1016%2Fj.apenergy.2014.08.060&rft.externalDocID=S030626191400871X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon