Machine learning aided design of single-atom alloy catalysts for methane cracking

The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH 4 cracking can be achieved at 450 °C over a Re/Ni single-...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 15; no. 1; pp. 6036 - 9
Main Authors: Sun, Jikai, Tu, Rui, Xu, Yuchun, Yang, Hongyan, Yu, Tie, Zhai, Dong, Ci, Xiuqin, Deng, Weiqiao
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 18-07-2024
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH 4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH 2 gcat –1 h –1 with 99.9% selectivity and 7.75% CH 4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH 4 conversion clearly and sustained CH 4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature. The process of CH 4 cracking into H 2 and carbon has garnered significant attention for hydrogen production, but traditional catalytic methods are hampered by severe carbon deposition. Here, a machine-learning model has been developed to expedite the screening of CH 4 cracking catalysts from 10,950 types of single-atom alloy surfaces.
AbstractList Abstract The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat–1 h–1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature.
The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat–1 h–1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature.The process of CH4 cracking into H2 and carbon has garnered significant attention for hydrogen production, but traditional catalytic methods are hampered by severe carbon deposition. Here, a machine-learning model has been developed to expedite the screening of CH4 cracking catalysts from 10,950 types of single-atom alloy surfaces.
The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH 4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH 2 gcat –1 h –1 with 99.9% selectivity and 7.75% CH 4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH 4 conversion clearly and sustained CH 4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature. The process of CH 4 cracking into H 2 and carbon has garnered significant attention for hydrogen production, but traditional catalytic methods are hampered by severe carbon deposition. Here, a machine-learning model has been developed to expedite the screening of CH 4 cracking catalysts from 10,950 types of single-atom alloy surfaces.
The process of CH cracking into H and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C-H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH gcat h with 99.9% selectivity and 7.75% CH conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH conversion clearly and sustained CH cracking over 240 h is achieved, significantly surpassing other approaches in the literature.
The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C-H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat-1 h-1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature.The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C-H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat-1 h-1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature.
The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH 4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH 2 gcat –1 h –1 with 99.9% selectivity and 7.75% CH 4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH 4 conversion clearly and sustained CH 4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature.
ArticleNumber 6036
Author Yang, Hongyan
Deng, Weiqiao
Ci, Xiuqin
Xu, Yuchun
Zhai, Dong
Sun, Jikai
Yu, Tie
Tu, Rui
Author_xml – sequence: 1
  givenname: Jikai
  surname: Sun
  fullname: Sun, Jikai
  organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University
– sequence: 2
  givenname: Rui
  surname: Tu
  fullname: Tu, Rui
  organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University
– sequence: 3
  givenname: Yuchun
  surname: Xu
  fullname: Xu, Yuchun
  organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University
– sequence: 4
  givenname: Hongyan
  surname: Yang
  fullname: Yang, Hongyan
  organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University
– sequence: 5
  givenname: Tie
  orcidid: 0000-0003-4895-3639
  surname: Yu
  fullname: Yu, Tie
  email: yutie@sdu.edu.cn
  organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University
– sequence: 6
  givenname: Dong
  orcidid: 0000-0003-3155-4607
  surname: Zhai
  fullname: Zhai, Dong
  organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University
– sequence: 7
  givenname: Xiuqin
  surname: Ci
  fullname: Ci, Xiuqin
  organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University
– sequence: 8
  givenname: Weiqiao
  orcidid: 0000-0002-3671-5951
  surname: Deng
  fullname: Deng, Weiqiao
  email: dengwq@sdu.edu.cn
  organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39019940$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9vFCEQx4mpsbX2H_DBbOKLL6v82gWejGlsbVJjTPpO5thhb08OKuyZ3H8vva219UEIYTJ85sswzEtyFFNEQl4z-p5RoT8UyWSvWspl21HJVKuekRNerZYpLo4e2cfkrJQNrUMYpqV8QY6FocwYSU_I96_g1lPEJiDkOMWxgWnAoRmwTGNskm9KdQZsYU7bBkJI-8bBDGFf5tL4lJstzmuoAi6D-1HZV-S5h1Dw7H4_JTcXn2_Ov7TX3y6vzj9dt04oPbfCOy9kx70HxhzC0FOpVrzng-Guq2lzjo5RqRm6OtXAJe9Mr3sGIHonTsnVIjsk2NjbPG0h722CyR4cKY8W8jy5gFb0WoFbMd8bL_uV08YpQCqo915ruNP6uGjd7lZbHBzGOUN4Ivr0JE5rO6ZfljHedUKYqvDuXiGnnzsss91OxWEItTJpV6ygmtcljK7o23_QTdrlWEt1oCgTNbNK8YVyOZWS0T9kw6i9awC7NICtDWAPDWBVDXrz-B0PIX--uwJiAUo9iiPmv3f_R_Y3P_a9cA
Cites_doi 10.1038/s41467-021-22048-9
10.1016/j.susc.2013.08.004
10.1038/s41586-020-2242-8
10.1039/D1CP02022F
10.1039/D2CP02225G
10.1002/jcc.21759
10.1126/sciadv.aaz4301
10.1039/D1NJ04525C
10.1002/anie.202117851
10.1021/acs.iecr.1c01679
10.1063/1.480097
10.1039/D0TA00375A
10.1016/j.ijhydene.2015.06.005
10.1063/1.2770708
10.1021/acs.jpclett.9b03392
10.1039/c3cs35468g
10.1021/jacs.9b11084
10.1103/PhysRevB.13.5188
10.1063/1.1329672
10.1063/1.447334
10.1016/j.rser.2014.12.025
10.1103/PhysRevB.54.11169
10.1038/s41929-018-0142-1
10.1039/D0MH00081G
10.1016/j.ijhydene.2016.01.134
10.1016/0927-0256(96)00008-0
10.1002/anie.202112095
10.1016/j.ijhydene.2014.07.031
10.1016/j.ijhydene.2010.11.035
10.1016/j.rser.2020.110465
10.1103/PhysRevB.59.1758
10.1021/acs.jpcc.0c05491
10.1126/science.aao5023
10.1007/s00214-005-0655-y
10.1039/C9NJ04723A
10.1103/PhysRevB.54.1703
10.1038/s41467-017-01673-3
10.1016/j.apsusc.2015.03.013
10.1063/1.2408420
10.1016/j.cpc.2004.12.014
10.1103/PhysRevB.58.3641
10.1038/s41467-023-38050-2
10.1002/wcms.1159
10.3389/fchem.2021.736801
10.1007/s10311-022-01449-2
10.1103/PhysRevB.50.17953
10.1038/s41565-020-00809-9
10.1016/j.joule.2021.01.009
10.1021/acs.jpcc.0c05964
10.1007/s12274-023-5898-1
10.1007/s00894-019-4071-y
10.1126/science.adh8872
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-50417-7
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_3687acb1f69f46bc89c7ae030fff88ac
10_1038_s41467_024_50417_7
39019940
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2022YFA1503104
  funderid: https://doi.org/10.13039/501100002855
– fundername: SDU | Independent Innovation Foundation of Shandong University
  grantid: 62460082064083
  funderid: https://doi.org/10.13039/501100010084
– fundername: SDU | Independent Innovation Foundation of Shandong University
  grantid: 62460082064083
– fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2022YFA1503104
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
NPM
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PQEST
PQUKI
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c378t-3fcf3452ffa11cead6047b262d92c572322ec10481ecece7d242596861aa36c3
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 15:11:26 EDT 2024
Tue Sep 17 21:28:26 EDT 2024
Sat Oct 26 04:38:04 EDT 2024
Thu Oct 10 22:05:19 EDT 2024
Fri Nov 22 02:53:35 EST 2024
Sat Nov 02 11:58:28 EDT 2024
Fri Oct 11 20:55:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-3fcf3452ffa11cead6047b262d92c572322ec10481ecece7d242596861aa36c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4895-3639
0000-0002-3671-5951
0000-0003-3155-4607
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255339/
PMID 39019940
PQID 3082013030
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_3687acb1f69f46bc89c7ae030fff88ac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11255339
proquest_miscellaneous_3082308398
proquest_journals_3082013030
crossref_primary_10_1038_s41467_024_50417_7
pubmed_primary_39019940
springer_journals_10_1038_s41467_024_50417_7
PublicationCentury 2000
PublicationDate 2024-07-18
PublicationDateYYYYMMDD 2024-07-18
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li, Jiao, Wang, Wu (CR30) 2013; 617
VandeVondele (CR47) 2005; 167
Sánchez-Bastardo, Schlögl, Ruland (CR9) 2021; 60
Barnett (CR1) 2020; 6
Bussi, Donadio, Parrinello (CR52) 2007; 126
Kresse, Furthmüller (CR35) 1996; 6
Monkhorst, Pack (CR42) 1976; 13
Pham (CR32) 2022; 20
Alves, Pereira, Lagarteira, Mendes (CR13) 2021; 137
Krack (CR50) 2005; 114
Al-Hassani, Abbas, Wan Daud (CR12) 2014; 39
Goedecker, Teter, Hutter (CR48) 1996; 54
Ashik, Wan Daud, Abbas (CR10) 2015; 44
CR2
Bhati, Dhumal, Joshi (CR19) 2022; 46
Zhong (CR7) 2020; 581
Fung, Hu, Sumpter (CR16) 2020; 8
Han (CR6) 2021; 12
Zhang, Duan, Ling, Wang (CR31) 2015; 341
Reichle, Felderhoff, Schüth (CR25) 2021; 60
Naikoo (CR34) 2021; 9
Baláž (CR28) 2013; 42
Zhu (CR4) 2019; 10
CR40
Grimme, Ehrlich, Goerigk (CR41) 2011; 32
Hartwigsen, Goedecker, Hutter (CR49) 1998; 58
Bayat, Rezaei, Meshkani (CR14) 2016; 41
Fanourgakis, Gkagkas, Tylianakis, Froudakis (CR3) 2020; 142
CR18
Sun (CR22) 2022; 24
Szczęśniak, Borysiuk, Choma, Jaroniec (CR29) 2020; 7
Han (CR26) 2021; 16
Amin, Croiset, Epling (CR33) 2011; 36
Kresse, Furthmüller (CR36) 1996; 54
Fanourgakis, Gkagkas, Tylianakis, Froudakis (CR5) 2020; 124
Upham (CR17) 2017; 358
Kresse, Joubert (CR38) 1999; 59
Henkelman, Jónsson (CR44) 1999; 111
Nosé (CR51) 1984; 81
Liu (CR39) 2017; 8
Tran, Ulissi (CR8) 2018; 1
VandeVondele, Hutter (CR46) 2007; 127
Felderhoff (CR24) 2021; 5
Ren, Liu, Zhang, Shen (CR20) 2021; 23
Hutter, Iannuzzi, Schiffmann, VandeVondele (CR45) 2014; 4
CR21
Kim (CR23) 2023; 14
Han (CR27) 2022; 61
Henkelman, Uberuaga, Jónsson (CR43) 2000; 113
Dong (CR11) 2015; 40
Meng (CR15) 2020; 44
Blöchl (CR37) 1994; 50
J Sun (50417_CR22) 2022; 24
G Kresse (50417_CR38) 1999; 59
J-H Kim (50417_CR23) 2023; 14
50417_CR40
UPM Ashik (50417_CR10) 2015; 44
G Bussi (50417_CR52) 2007; 126
G-F Han (50417_CR26) 2021; 16
S Grimme (50417_CR41) 2011; 32
HJ Monkhorst (50417_CR42) 1976; 13
G Henkelman (50417_CR44) 1999; 111
J Hutter (50417_CR45) 2014; 4
DC Upham (50417_CR17) 2017; 358
CQ Pham (50417_CR32) 2022; 20
S Goedecker (50417_CR48) 1996; 54
M Zhong (50417_CR7) 2020; 581
R Zhang (50417_CR31) 2015; 341
V Fung (50417_CR16) 2020; 8
J VandeVondele (50417_CR47) 2005; 167
X Zhu (50417_CR4) 2019; 10
L Dong (50417_CR11) 2015; 40
G Henkelman (50417_CR43) 2000; 113
50417_CR18
50417_CR2
JW Barnett (50417_CR1) 2020; 6
GA Naikoo (50417_CR34) 2021; 9
GS Fanourgakis (50417_CR5) 2020; 124
AA Al-Hassani (50417_CR12) 2014; 39
50417_CR21
Y Ren (50417_CR20) 2021; 23
PE Blöchl (50417_CR37) 1994; 50
K Li (50417_CR30) 2013; 617
L Alves (50417_CR13) 2021; 137
Y Meng (50417_CR15) 2020; 44
Q Liu (50417_CR39) 2017; 8
S Reichle (50417_CR25) 2021; 60
J VandeVondele (50417_CR46) 2007; 127
G Han (50417_CR27) 2022; 61
GS Fanourgakis (50417_CR3) 2020; 142
M Krack (50417_CR50) 2005; 114
C Hartwigsen (50417_CR49) 1998; 58
N Bayat (50417_CR14) 2016; 41
AM Amin (50417_CR33) 2011; 36
G Kresse (50417_CR36) 1996; 54
M Felderhoff (50417_CR24) 2021; 5
K Tran (50417_CR8) 2018; 1
N Sánchez-Bastardo (50417_CR9) 2021; 60
S Nosé (50417_CR51) 1984; 81
M Bhati (50417_CR19) 2022; 46
G Kresse (50417_CR35) 1996; 6
Z-K Han (50417_CR6) 2021; 12
B Szczęśniak (50417_CR29) 2020; 7
P Baláž (50417_CR28) 2013; 42
References_xml – volume: 12
  year: 2021
  ident: CR6
  article-title: Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22048-9
  contributor:
    fullname: Han
– volume: 617
  start-page: 149
  year: 2013
  end-page: 155
  ident: CR30
  article-title: CH dissociation on NiM(111) (M=Co, Rh, Ir) surface: A first-principles study
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2013.08.004
  contributor:
    fullname: Wu
– volume: 581
  start-page: 178
  year: 2020
  end-page: 183
  ident: CR7
  article-title: Accelerated discovery of CO electrocatalysts using active machine learning
  publication-title: Nature
  doi: 10.1038/s41586-020-2242-8
  contributor:
    fullname: Zhong
– volume: 23
  start-page: 15564
  year: 2021
  end-page: 15573
  ident: CR20
  article-title: Methane activation on single-atom Ir-doped metal nanoparticles from first principles
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP02022F
  contributor:
    fullname: Shen
– volume: 24
  start-page: 19938
  year: 2022
  end-page: 19947
  ident: CR22
  article-title: First-principles study of CO hydrogenation to formic acid on single-atom catalysts supported on SiO
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP02225G
  contributor:
    fullname: Sun
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  ident: CR41
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
  contributor:
    fullname: Goerigk
– volume: 6
  start-page: eaaz4301
  year: 2020
  ident: CR1
  article-title: Designing exceptional gas-separation polymer membranes using machine learning
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz4301
  contributor:
    fullname: Barnett
– volume: 46
  start-page: 70
  year: 2022
  end-page: 74
  ident: CR19
  article-title: Lowering the C–H bond activation barrier of methane by means of SAC@Cu(111): periodic DFT investigations
  publication-title: N. J. Chem.
  doi: 10.1039/D1NJ04525C
  contributor:
    fullname: Joshi
– ident: CR21
– volume: 61
  start-page: e202117851
  year: 2022
  ident: CR27
  article-title: Extreme enhancement of carbon hydrogasification via mechanochemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202117851
  contributor:
    fullname: Han
– volume: 60
  start-page: 11855
  year: 2021
  end-page: 11881
  ident: CR9
  article-title: Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c01679
  contributor:
    fullname: Ruland
– volume: 111
  start-page: 14
  year: 1999
  ident: CR44
  article-title: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480097
  contributor:
    fullname: Jónsson
– volume: 8
  start-page: 6057
  year: 2020
  end-page: 6066
  ident: CR16
  article-title: Electronic band contraction induced low temperature methane activation on metal alloys
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00375A
  contributor:
    fullname: Sumpter
– volume: 40
  start-page: 9670
  year: 2015
  end-page: 9676
  ident: CR11
  article-title: The effect of CH decomposition temperature on the property of deposited carbon over Ni/SiO catalyst
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.06.005
  contributor:
    fullname: Dong
– volume: 127
  start-page: 114105
  year: 2007
  ident: CR46
  article-title: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2770708
  contributor:
    fullname: Hutter
– volume: 10
  start-page: 7760
  year: 2019
  end-page: 7766
  ident: CR4
  article-title: Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: a combined density functional theory and machine learning study
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03392
  contributor:
    fullname: Zhu
– volume: 42
  start-page: 7571
  year: 2013
  end-page: 7637
  ident: CR28
  article-title: Hallmarks of mechanochemistry: From nanoparticles to technology
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35468g
  contributor:
    fullname: Baláž
– volume: 142
  start-page: 3814
  year: 2020
  end-page: 3822
  ident: CR3
  article-title: A universal machine learning algorithm for large-scale screening of materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11084
  contributor:
    fullname: Froudakis
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR42
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
  contributor:
    fullname: Pack
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR43
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
  contributor:
    fullname: Jónsson
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: CR51
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
  contributor:
    fullname: Nosé
– volume: 44
  start-page: 221
  year: 2015
  end-page: 256
  ident: CR10
  article-title: Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.12.025
  contributor:
    fullname: Abbas
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR36
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Furthmüller
– volume: 1
  start-page: 696
  year: 2018
  end-page: 703
  ident: CR8
  article-title: Active learning across intermetallics to guide discovery of electrocatalysts for CO reduction and H evolution
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0142-1
  contributor:
    fullname: Ulissi
– volume: 7
  start-page: 1457
  year: 2020
  end-page: 1473
  ident: CR29
  article-title: Mechanochemical synthesis of highly porous materials
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH00081G
  contributor:
    fullname: Jaroniec
– volume: 41
  start-page: 5494
  year: 2016
  end-page: 5503
  ident: CR14
  article-title: Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni–Pd/Al O catalyst
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.01.134
  contributor:
    fullname: Meshkani
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR35
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: Furthmüller
– volume: 60
  start-page: 26385
  year: 2021
  end-page: 26389
  ident: CR25
  article-title: Mechanocatalytic room‐temperature synthesis of ammonia from its elements down to atmospheric pressure
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112095
  contributor:
    fullname: Schüth
– ident: CR18
– volume: 39
  start-page: 14783
  year: 2014
  end-page: 14791
  ident: CR12
  article-title: Production of CO -free hydrogen by the thermal decomposition of methane over activated carbon: Catalyst deactivation
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.07.031
  contributor:
    fullname: Wan Daud
– ident: CR2
– volume: 36
  start-page: 2904
  year: 2011
  end-page: 2935
  ident: CR33
  article-title: Review of methane catalytic cracking for hydrogen production
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.11.035
  contributor:
    fullname: Epling
– volume: 137
  start-page: 110465
  year: 2021
  ident: CR13
  article-title: Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110465
  contributor:
    fullname: Mendes
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR38
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
  contributor:
    fullname: Joubert
– volume: 124
  start-page: 19639
  year: 2020
  end-page: 19648
  ident: CR5
  article-title: Fast screening of large databases for top performing nanomaterials using a self-consistent, machine learning based approach
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.0c05491
  contributor:
    fullname: Froudakis
– volume: 358
  start-page: 917
  year: 2017
  end-page: 921
  ident: CR17
  article-title: Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon
  publication-title: Science
  doi: 10.1126/science.aao5023
  contributor:
    fullname: Upham
– volume: 114
  start-page: 145
  year: 2005
  end-page: 152
  ident: CR50
  article-title: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0655-y
  contributor:
    fullname: Krack
– volume: 44
  start-page: 3922
  year: 2020
  end-page: 3929
  ident: CR15
  article-title: Theoretical research on a coke-resistant catalyst for the partial oxidation of methane: Pt/Cu single-atom alloys
  publication-title: N. J. Chem.
  doi: 10.1039/C9NJ04723A
  contributor:
    fullname: Meng
– volume: 54
  start-page: 1703
  year: 1996
  end-page: 1710
  ident: CR48
  article-title: Separable dual-space Gaussian pseudopotentials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.1703
  contributor:
    fullname: Hutter
– volume: 8
  year: 2017
  ident: CR39
  article-title: Direct catalytic hydrogenation of CO to formate over a Schiff-base-mediated gold nanocatalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01673-3
  contributor:
    fullname: Liu
– ident: CR40
– volume: 341
  start-page: 100
  year: 2015
  end-page: 108
  ident: CR31
  article-title: CH dehydrogenation on Cu(111), Cu@Cu(111), Rh@Cu(111) and RhCu(111) surfaces: A comparison studies of catalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.013
  contributor:
    fullname: Wang
– volume: 126
  start-page: 014101
  year: 2007
  ident: CR52
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
  contributor:
    fullname: Parrinello
– volume: 167
  start-page: 103
  year: 2005
  end-page: 128
  ident: CR47
  article-title: Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2004.12.014
  contributor:
    fullname: VandeVondele
– volume: 58
  start-page: 3641
  year: 1998
  end-page: 3662
  ident: CR49
  article-title: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.3641
  contributor:
    fullname: Hutter
– volume: 14
  year: 2023
  ident: CR23
  article-title: Achieving volatile potassium promoted ammonia synthesis via mechanochemistry
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38050-2
  contributor:
    fullname: Kim
– volume: 4
  start-page: 15
  year: 2014
  end-page: 25
  ident: CR45
  article-title: cp2k: atomistic simulations of condensed matter systems: cp2k Simulation Software
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1159
  contributor:
    fullname: VandeVondele
– volume: 9
  start-page: 736801
  year: 2021
  ident: CR34
  article-title: Thermocatalytic hydrogen production through decomposition of methane-a review
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.736801
  contributor:
    fullname: Naikoo
– volume: 20
  start-page: 2339
  year: 2022
  end-page: 2359
  ident: CR32
  article-title: Production of hydrogen and value-added carbon materials by catalytic methane decomposition: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-022-01449-2
  contributor:
    fullname: Pham
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR37
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blöchl
– volume: 16
  start-page: 325
  year: 2021
  end-page: 330
  ident: CR26
  article-title: Mechanochemistry for ammonia synthesis under mild conditions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00809-9
  contributor:
    fullname: Han
– volume: 5
  start-page: 297
  year: 2021
  end-page: 299
  ident: CR24
  article-title: Ammonia synthesis and mechanochemistry
  publication-title: Joule
  doi: 10.1016/j.joule.2021.01.009
  contributor:
    fullname: Felderhoff
– volume: 24
  start-page: 19938
  year: 2022
  ident: 50417_CR22
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP02225G
  contributor:
    fullname: J Sun
– volume: 127
  start-page: 114105
  year: 2007
  ident: 50417_CR46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2770708
  contributor:
    fullname: J VandeVondele
– volume: 46
  start-page: 70
  year: 2022
  ident: 50417_CR19
  publication-title: N. J. Chem.
  doi: 10.1039/D1NJ04525C
  contributor:
    fullname: M Bhati
– volume: 114
  start-page: 145
  year: 2005
  ident: 50417_CR50
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0655-y
  contributor:
    fullname: M Krack
– volume: 50
  start-page: 17953
  year: 1994
  ident: 50417_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: PE Blöchl
– volume: 61
  start-page: e202117851
  year: 2022
  ident: 50417_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202117851
  contributor:
    fullname: G Han
– volume: 20
  start-page: 2339
  year: 2022
  ident: 50417_CR32
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-022-01449-2
  contributor:
    fullname: CQ Pham
– volume: 13
  start-page: 5188
  year: 1976
  ident: 50417_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
  contributor:
    fullname: HJ Monkhorst
– volume: 341
  start-page: 100
  year: 2015
  ident: 50417_CR31
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.013
  contributor:
    fullname: R Zhang
– volume: 581
  start-page: 178
  year: 2020
  ident: 50417_CR7
  publication-title: Nature
  doi: 10.1038/s41586-020-2242-8
  contributor:
    fullname: M Zhong
– ident: 50417_CR2
  doi: 10.1021/acs.jpcc.0c05964
– volume: 8
  year: 2017
  ident: 50417_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01673-3
  contributor:
    fullname: Q Liu
– volume: 137
  start-page: 110465
  year: 2021
  ident: 50417_CR13
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110465
  contributor:
    fullname: L Alves
– volume: 81
  start-page: 511
  year: 1984
  ident: 50417_CR51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
  contributor:
    fullname: S Nosé
– volume: 58
  start-page: 3641
  year: 1998
  ident: 50417_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.3641
  contributor:
    fullname: C Hartwigsen
– volume: 16
  start-page: 325
  year: 2021
  ident: 50417_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00809-9
  contributor:
    fullname: G-F Han
– volume: 44
  start-page: 221
  year: 2015
  ident: 50417_CR10
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.12.025
  contributor:
    fullname: UPM Ashik
– volume: 54
  start-page: 1703
  year: 1996
  ident: 50417_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.1703
  contributor:
    fullname: S Goedecker
– volume: 126
  start-page: 014101
  year: 2007
  ident: 50417_CR52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
  contributor:
    fullname: G Bussi
– volume: 4
  start-page: 15
  year: 2014
  ident: 50417_CR45
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1159
  contributor:
    fullname: J Hutter
– volume: 6
  start-page: 15
  year: 1996
  ident: 50417_CR35
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: G Kresse
– volume: 113
  start-page: 9901
  year: 2000
  ident: 50417_CR43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
  contributor:
    fullname: G Henkelman
– ident: 50417_CR21
  doi: 10.1007/s12274-023-5898-1
– volume: 60
  start-page: 26385
  year: 2021
  ident: 50417_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112095
  contributor:
    fullname: S Reichle
– volume: 5
  start-page: 297
  year: 2021
  ident: 50417_CR24
  publication-title: Joule
  doi: 10.1016/j.joule.2021.01.009
  contributor:
    fullname: M Felderhoff
– volume: 617
  start-page: 149
  year: 2013
  ident: 50417_CR30
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2013.08.004
  contributor:
    fullname: K Li
– volume: 41
  start-page: 5494
  year: 2016
  ident: 50417_CR14
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.01.134
  contributor:
    fullname: N Bayat
– volume: 14
  year: 2023
  ident: 50417_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38050-2
  contributor:
    fullname: J-H Kim
– ident: 50417_CR40
  doi: 10.1007/s00894-019-4071-y
– volume: 167
  start-page: 103
  year: 2005
  ident: 50417_CR47
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2004.12.014
  contributor:
    fullname: J VandeVondele
– volume: 9
  start-page: 736801
  year: 2021
  ident: 50417_CR34
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.736801
  contributor:
    fullname: GA Naikoo
– volume: 36
  start-page: 2904
  year: 2011
  ident: 50417_CR33
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.11.035
  contributor:
    fullname: AM Amin
– volume: 40
  start-page: 9670
  year: 2015
  ident: 50417_CR11
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.06.005
  contributor:
    fullname: L Dong
– volume: 59
  start-page: 1758
  year: 1999
  ident: 50417_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
  contributor:
    fullname: G Kresse
– volume: 60
  start-page: 11855
  year: 2021
  ident: 50417_CR9
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c01679
  contributor:
    fullname: N Sánchez-Bastardo
– volume: 23
  start-page: 15564
  year: 2021
  ident: 50417_CR20
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP02022F
  contributor:
    fullname: Y Ren
– ident: 50417_CR18
  doi: 10.1126/science.adh8872
– volume: 39
  start-page: 14783
  year: 2014
  ident: 50417_CR12
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.07.031
  contributor:
    fullname: AA Al-Hassani
– volume: 1
  start-page: 696
  year: 2018
  ident: 50417_CR8
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0142-1
  contributor:
    fullname: K Tran
– volume: 7
  start-page: 1457
  year: 2020
  ident: 50417_CR29
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH00081G
  contributor:
    fullname: B Szczęśniak
– volume: 12
  year: 2021
  ident: 50417_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22048-9
  contributor:
    fullname: Z-K Han
– volume: 44
  start-page: 3922
  year: 2020
  ident: 50417_CR15
  publication-title: N. J. Chem.
  doi: 10.1039/C9NJ04723A
  contributor:
    fullname: Y Meng
– volume: 8
  start-page: 6057
  year: 2020
  ident: 50417_CR16
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00375A
  contributor:
    fullname: V Fung
– volume: 6
  start-page: eaaz4301
  year: 2020
  ident: 50417_CR1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz4301
  contributor:
    fullname: JW Barnett
– volume: 124
  start-page: 19639
  year: 2020
  ident: 50417_CR5
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.0c05491
  contributor:
    fullname: GS Fanourgakis
– volume: 42
  start-page: 7571
  year: 2013
  ident: 50417_CR28
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35468g
  contributor:
    fullname: P Baláž
– volume: 54
  start-page: 11169
  year: 1996
  ident: 50417_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: G Kresse
– volume: 111
  start-page: 14
  year: 1999
  ident: 50417_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480097
  contributor:
    fullname: G Henkelman
– volume: 10
  start-page: 7760
  year: 2019
  ident: 50417_CR4
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03392
  contributor:
    fullname: X Zhu
– volume: 32
  start-page: 1456
  year: 2011
  ident: 50417_CR41
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
  contributor:
    fullname: S Grimme
– volume: 142
  start-page: 3814
  year: 2020
  ident: 50417_CR3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11084
  contributor:
    fullname: GS Fanourgakis
– volume: 358
  start-page: 917
  year: 2017
  ident: 50417_CR17
  publication-title: Science
  doi: 10.1126/science.aao5023
  contributor:
    fullname: DC Upham
SSID ssj0000391844
Score 2.5001135
Snippet The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid...
The process of CH cracking into H and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid...
The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid...
The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid...
Abstract The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6036
SubjectTerms 119/118
140/133
140/146
147/135
147/143
147/3
639/638/77/885
639/638/77/887
639/925/357/537
Ball milling
Carbon
Catalysis
Catalysts
Catalytic converters
Catalytic cracking
Deposition
Energy of dissociation
Free energy
Heat of formation
Humanities and Social Sciences
Hydrogen
Hydrogen production
Learning algorithms
Machine learning
Methane
multidisciplinary
Noble metals
Rhenium
Science
Science (multidisciplinary)
Single atom catalysts
Transition metal alloys
Transition metals
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BJSQuiEeB0BYZiVtr1bEdP45AW_UCUtUeuFmOH4AEu1Wze9h_37GT3bI8xAVFucR2ZH0z9ozt8TcAb4NvOcdBRllUikrOIu1bb2lnbU6569HKl8vJ55f602dzclpocjapvkpM2EgPPAJ3LJTRPvRtVjZL1Qdjg_YJVTPnbIwPdfZl6qfFVJ2DhcWli5xuyTBhjgdZ5wQ0SbRjEqdmvWWJKmH_n7zM34MlfzkxrYbo7DE8mjxI8m7s-RO4l2ZP4cGYU3L1DC4-1vDIRKZ8EF9IIYGMJNZQDTLPpOwOfE8UV9s_SDl2X5G6h7MaFgNBF5aUpNIefxBufCgb6btwdXZ69eGcTnkTaBDaLKjIIQvZ8Zx92wZUFcWk7rni0fLQafSheAptIYpJAR8dy7LDKqNa74UK4jnszOaz9BJIttlKwbPiupdesx4b28hSp3IszDYNHK4hdNcjO4arp9rCuBFwh4C7CrjTDbwvKG9qFmbr-gHl7SZ5u3_Ju4H9tYzcNNwGJ6ojg9aYNfBmU4wDpZx-IGLz5VgHX2FNAy9GkW56UjZ-rJXY2mwJe6ur2yWzb18rGTf6qx26zLaBo7Ve3PXr71i8-h9Y7MFDXhS68HyafdhZ3CzTAdwf4vJ1HQ63bYgNug
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine learning aided design of single-atom alloy catalysts for methane cracking
URI https://link.springer.com/article/10.1038/s41467-024-50417-7
https://www.ncbi.nlm.nih.gov/pubmed/39019940
https://www.proquest.com/docview/3082013030
https://www.proquest.com/docview/3082308398
https://pubmed.ncbi.nlm.nih.gov/PMC11255339
https://doaj.org/article/3687acb1f69f46bc89c7ae030fff88ac
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlZC4IMozbalciRukm9iJH0foQ70UgeiBm-X4USp1s9Vm97D_nrGTLF0olyrKJXaS0XjseXj8DcAHa0pKcZLlheM8r2jh8qY0Kq-VCj7UDWr5eDj54of4-lOenkWYHD6ehUlJ-7a5OW5vZ8ftza-UW3k3s9MxT2z67fIEbYQazRQ1ncAEjcN7Pnpaf5lCt6UaTsgUTE67Kq0HqI7yuqhwWY6l96Kzr1QMetxTSAm3_yFj89-cyb82TpM-On8BzwdDknzuCd6FJ759CU_70pLrV_D9MmVJejKUhbgmEQvSEZcyNsg8kBgkuPU5Ot0zEnff1ySFctbdsiNoyZJYW9rgB-zC2BhPfw1X52dXJxf5UD4ht0zIZc6CDayqaQimLC1KDC8q0VBOnaK2FmhKUW_LiBfjLV7CRe9DcclLYxi37A3stPPWvwMSVFAVo4FT0VRGFA2-rFzhax5cBLjJ4OPIQn3Xg2TotLnNpO55r5H3OvFeiwy-RC5vekaA6_RgvrjWwzBrxqUwtikDV6HijZXKCuNxRQohSGlsBgfjGOlh1nWaJXsGlXKRwdGmGedL3ARBjs1XfR-8mZIZvO2HdEPJKBIZyK3B3iJ1uwVFNGFyjyKZwadRLv7Q9X9e7D3-T_vwjEaJjiCf8gB2louVfw-Tzq0OU2DhMM2K3116DjA
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgSX8qaBAkbiBukmduLHEUqrRXQrEHvgZjmOXSp1s9Vm97D_nrGTLF0elyrKJc7D8cx4Hh5_A_DWmpxSFLI0qzlPC5rVaZUblZZKeefLCrV82Jw8_i7OfshPxwEmhw97YWLSvq0uDpvL2WFz8TPmVl7N7GjIExt9nRyhjVCimaJGO3AbBTbLrnnpcQZmCh2Xot8jkzE5aos4I6BCSsuswIk5FN8L7r5SIexxTSVF5P5_mZt_Z03-sXQaNdLJ_Zv-ywPY621Q8qFrfwi3XPMI7nRVKdeP4dskJlg60leUOCcBRrImdUz2IHNPQnzh0qXor89IWLhfkxgFWrfLlqARTEJZaoMvsAtjQyj-CUxPjqdH47SvvJBaJuQyZd56VpTUe5PnFpmNZ4WoKKe1orYUaIVRZ_MANeMsHqIOjovikufGMG7ZU9ht5o3bB-KVVwWjnlNRFUZkFT6s6syV3NcBGyeBd8PY66sOX0PHdXEmdUc0jUTTkWhaJPAxkGdzZ8DGjhfmi3Pdj6pmXApjq9xz5QteWamsMA4nM--9lMYmcDAQV_cC22oWTSHU51kCbzbNKGph_QRHbL7q7sGTKZnAs44XNj0ZeCkBucUlW13dbkGOiHDeAwck8H5gqN_9-v9YPL_5l17D3fF0cqpPP599eQH3aBCLgBUqD2B3uVi5l7DT1qtXUah-AWDhIvE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhCX8qaBAkbiBmkSO_GDG7RdFUGrInrgZjmOXSp1H9rsHvbfM3aSpcvjAopySZzEmYdnxh5_A_DamoJSVLI0bzhPS5o3aV0YlVZKeeerGq182Jx8_FWcfpOHRwEm592wFyYm7dv6cn9yNd6fXH6PuZWzsc2GPLHs7OQAfYQK3RSVzRqfbcFNVNqcXovU4yjMFAYvZb9PJmcya8s4KqBRSqu8xME5FOALIb9SYerjmlmK6P1_cjl_z5z8Zfk0WqXR3f_5n3uw0_ui5H3X5j7ccJMHcKurTrl6CF9OYqKlI31liQsS4CQb0sSkDzL1JMwzXLkU4_YxCQv4KxJng1btoiXoDJNQntrgC-zc2DAl_wjOR0fnB8dpX4EhtUzIRcq89aysqPemKCwKHc9LUVNOG0VtJdAbo84WAXLGWTxEEwIYxSUvjGHcssewPZlO3C4Qr7wqGfWciro0Iq_xYdXkruK-CRg5CbwZ6K9nHc6GjuvjTOqOcRoZpyPjtEjgQ2DRumXAyI4XpvML3VNWMy6FsXXhufIlr61UVhiHg5r3XkpjE9gbGKx7xW01iy4R2vU8gVfr26hyYR0FKTZddm3wZEom8KSTh3VPBnlKQG5IykZXN--gVERY70EKEng7CNXPfv2dFk___Usv4fbZ4Uh__nj66RncoUEzAmSo3IPtxXzpnsNW2yxfRL36AZYrJXE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+aided+design+of+single-atom+alloy+catalysts+for+methane+cracking&rft.jtitle=Nature+communications&rft.au=Sun%2C+Jikai&rft.au=Tu%2C+Rui&rft.au=Xu%2C+Yuchun&rft.au=Yang%2C+Hongyan&rft.date=2024-07-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-50417-7&rft.externalDocID=10_1038_s41467_024_50417_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon