Machine learning aided design of single-atom alloy catalysts for methane cracking
The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH 4 cracking can be achieved at 450 °C over a Re/Ni single-...
Saved in:
Published in: | Nature communications Vol. 15; no. 1; pp. 6036 - 9 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
18-07-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The process of CH
4
cracking into H
2
and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH
4
cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH
2
gcat
–1
h
–1
with 99.9% selectivity and 7.75% CH
4
conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH
4
conversion clearly and sustained CH
4
cracking over 240 h is achieved, significantly surpassing other approaches in the literature.
The process of CH
4
cracking into H
2
and carbon has garnered significant attention for hydrogen production, but traditional catalytic methods are hampered by severe carbon deposition. Here, a machine-learning model has been developed to expedite the screening of CH
4
cracking catalysts from 10,950 types of single-atom alloy surfaces. |
---|---|
AbstractList | Abstract The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat–1 h–1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature. The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat–1 h–1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature.The process of CH4 cracking into H2 and carbon has garnered significant attention for hydrogen production, but traditional catalytic methods are hampered by severe carbon deposition. Here, a machine-learning model has been developed to expedite the screening of CH4 cracking catalysts from 10,950 types of single-atom alloy surfaces. The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH 4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH 2 gcat –1 h –1 with 99.9% selectivity and 7.75% CH 4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH 4 conversion clearly and sustained CH 4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature. The process of CH 4 cracking into H 2 and carbon has garnered significant attention for hydrogen production, but traditional catalytic methods are hampered by severe carbon deposition. Here, a machine-learning model has been developed to expedite the screening of CH 4 cracking catalysts from 10,950 types of single-atom alloy surfaces. The process of CH cracking into H and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C-H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH gcat h with 99.9% selectivity and 7.75% CH conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH conversion clearly and sustained CH cracking over 240 h is achieved, significantly surpassing other approaches in the literature. The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C-H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat-1 h-1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature.The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C-H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat-1 h-1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature. The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH 4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C–H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH 2 gcat –1 h –1 with 99.9% selectivity and 7.75% CH 4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH 4 conversion clearly and sustained CH 4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature. |
ArticleNumber | 6036 |
Author | Yang, Hongyan Deng, Weiqiao Ci, Xiuqin Xu, Yuchun Zhai, Dong Sun, Jikai Yu, Tie Tu, Rui |
Author_xml | – sequence: 1 givenname: Jikai surname: Sun fullname: Sun, Jikai organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University – sequence: 2 givenname: Rui surname: Tu fullname: Tu, Rui organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University – sequence: 3 givenname: Yuchun surname: Xu fullname: Xu, Yuchun organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University – sequence: 4 givenname: Hongyan surname: Yang fullname: Yang, Hongyan organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University – sequence: 5 givenname: Tie orcidid: 0000-0003-4895-3639 surname: Yu fullname: Yu, Tie email: yutie@sdu.edu.cn organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University – sequence: 6 givenname: Dong orcidid: 0000-0003-3155-4607 surname: Zhai fullname: Zhai, Dong organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University – sequence: 7 givenname: Xiuqin surname: Ci fullname: Ci, Xiuqin organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University – sequence: 8 givenname: Weiqiao orcidid: 0000-0002-3671-5951 surname: Deng fullname: Deng, Weiqiao email: dengwq@sdu.edu.cn organization: Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39019940$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt9vFCEQx4mpsbX2H_DBbOKLL6v82gWejGlsbVJjTPpO5thhb08OKuyZ3H8vva219UEIYTJ85sswzEtyFFNEQl4z-p5RoT8UyWSvWspl21HJVKuekRNerZYpLo4e2cfkrJQNrUMYpqV8QY6FocwYSU_I96_g1lPEJiDkOMWxgWnAoRmwTGNskm9KdQZsYU7bBkJI-8bBDGFf5tL4lJstzmuoAi6D-1HZV-S5h1Dw7H4_JTcXn2_Ov7TX3y6vzj9dt04oPbfCOy9kx70HxhzC0FOpVrzng-Guq2lzjo5RqRm6OtXAJe9Mr3sGIHonTsnVIjsk2NjbPG0h722CyR4cKY8W8jy5gFb0WoFbMd8bL_uV08YpQCqo915ruNP6uGjd7lZbHBzGOUN4Ivr0JE5rO6ZfljHedUKYqvDuXiGnnzsss91OxWEItTJpV6ygmtcljK7o23_QTdrlWEt1oCgTNbNK8YVyOZWS0T9kw6i9awC7NICtDWAPDWBVDXrz-B0PIX--uwJiAUo9iiPmv3f_R_Y3P_a9cA |
Cites_doi | 10.1038/s41467-021-22048-9 10.1016/j.susc.2013.08.004 10.1038/s41586-020-2242-8 10.1039/D1CP02022F 10.1039/D2CP02225G 10.1002/jcc.21759 10.1126/sciadv.aaz4301 10.1039/D1NJ04525C 10.1002/anie.202117851 10.1021/acs.iecr.1c01679 10.1063/1.480097 10.1039/D0TA00375A 10.1016/j.ijhydene.2015.06.005 10.1063/1.2770708 10.1021/acs.jpclett.9b03392 10.1039/c3cs35468g 10.1021/jacs.9b11084 10.1103/PhysRevB.13.5188 10.1063/1.1329672 10.1063/1.447334 10.1016/j.rser.2014.12.025 10.1103/PhysRevB.54.11169 10.1038/s41929-018-0142-1 10.1039/D0MH00081G 10.1016/j.ijhydene.2016.01.134 10.1016/0927-0256(96)00008-0 10.1002/anie.202112095 10.1016/j.ijhydene.2014.07.031 10.1016/j.ijhydene.2010.11.035 10.1016/j.rser.2020.110465 10.1103/PhysRevB.59.1758 10.1021/acs.jpcc.0c05491 10.1126/science.aao5023 10.1007/s00214-005-0655-y 10.1039/C9NJ04723A 10.1103/PhysRevB.54.1703 10.1038/s41467-017-01673-3 10.1016/j.apsusc.2015.03.013 10.1063/1.2408420 10.1016/j.cpc.2004.12.014 10.1103/PhysRevB.58.3641 10.1038/s41467-023-38050-2 10.1002/wcms.1159 10.3389/fchem.2021.736801 10.1007/s10311-022-01449-2 10.1103/PhysRevB.50.17953 10.1038/s41565-020-00809-9 10.1016/j.joule.2021.01.009 10.1021/acs.jpcc.0c05964 10.1007/s12274-023-5898-1 10.1007/s00894-019-4071-y 10.1126/science.adh8872 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-50417-7 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health Medical collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_3687acb1f69f46bc89c7ae030fff88ac 10_1038_s41467_024_50417_7 39019940 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology) grantid: 2022YFA1503104 funderid: https://doi.org/10.13039/501100002855 – fundername: SDU | Independent Innovation Foundation of Shandong University grantid: 62460082064083 funderid: https://doi.org/10.13039/501100010084 – fundername: SDU | Independent Innovation Foundation of Shandong University grantid: 62460082064083 – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology) grantid: 2022YFA1503104 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PQEST PQUKI RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c378t-3fcf3452ffa11cead6047b262d92c572322ec10481ecece7d242596861aa36c3 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:11:26 EDT 2024 Tue Sep 17 21:28:26 EDT 2024 Sat Oct 26 04:38:04 EDT 2024 Thu Oct 10 22:05:19 EDT 2024 Fri Nov 22 02:53:35 EST 2024 Sat Nov 02 11:58:28 EDT 2024 Fri Oct 11 20:55:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-3fcf3452ffa11cead6047b262d92c572322ec10481ecece7d242596861aa36c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4895-3639 0000-0002-3671-5951 0000-0003-3155-4607 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255339/ |
PMID | 39019940 |
PQID | 3082013030 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3687acb1f69f46bc89c7ae030fff88ac pubmedcentral_primary_oai_pubmedcentral_nih_gov_11255339 proquest_miscellaneous_3082308398 proquest_journals_3082013030 crossref_primary_10_1038_s41467_024_50417_7 pubmed_primary_39019940 springer_journals_10_1038_s41467_024_50417_7 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-18 |
PublicationDateYYYYMMDD | 2024-07-18 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li, Jiao, Wang, Wu (CR30) 2013; 617 VandeVondele (CR47) 2005; 167 Sánchez-Bastardo, Schlögl, Ruland (CR9) 2021; 60 Barnett (CR1) 2020; 6 Bussi, Donadio, Parrinello (CR52) 2007; 126 Kresse, Furthmüller (CR35) 1996; 6 Monkhorst, Pack (CR42) 1976; 13 Pham (CR32) 2022; 20 Alves, Pereira, Lagarteira, Mendes (CR13) 2021; 137 Krack (CR50) 2005; 114 Al-Hassani, Abbas, Wan Daud (CR12) 2014; 39 Goedecker, Teter, Hutter (CR48) 1996; 54 Ashik, Wan Daud, Abbas (CR10) 2015; 44 CR2 Bhati, Dhumal, Joshi (CR19) 2022; 46 Zhong (CR7) 2020; 581 Fung, Hu, Sumpter (CR16) 2020; 8 Han (CR6) 2021; 12 Zhang, Duan, Ling, Wang (CR31) 2015; 341 Reichle, Felderhoff, Schüth (CR25) 2021; 60 Naikoo (CR34) 2021; 9 Baláž (CR28) 2013; 42 Zhu (CR4) 2019; 10 CR40 Grimme, Ehrlich, Goerigk (CR41) 2011; 32 Hartwigsen, Goedecker, Hutter (CR49) 1998; 58 Bayat, Rezaei, Meshkani (CR14) 2016; 41 Fanourgakis, Gkagkas, Tylianakis, Froudakis (CR3) 2020; 142 CR18 Sun (CR22) 2022; 24 Szczęśniak, Borysiuk, Choma, Jaroniec (CR29) 2020; 7 Han (CR26) 2021; 16 Amin, Croiset, Epling (CR33) 2011; 36 Kresse, Furthmüller (CR36) 1996; 54 Fanourgakis, Gkagkas, Tylianakis, Froudakis (CR5) 2020; 124 Upham (CR17) 2017; 358 Kresse, Joubert (CR38) 1999; 59 Henkelman, Jónsson (CR44) 1999; 111 Nosé (CR51) 1984; 81 Liu (CR39) 2017; 8 Tran, Ulissi (CR8) 2018; 1 VandeVondele, Hutter (CR46) 2007; 127 Felderhoff (CR24) 2021; 5 Ren, Liu, Zhang, Shen (CR20) 2021; 23 Hutter, Iannuzzi, Schiffmann, VandeVondele (CR45) 2014; 4 CR21 Kim (CR23) 2023; 14 Han (CR27) 2022; 61 Henkelman, Uberuaga, Jónsson (CR43) 2000; 113 Dong (CR11) 2015; 40 Meng (CR15) 2020; 44 Blöchl (CR37) 1994; 50 J Sun (50417_CR22) 2022; 24 G Kresse (50417_CR38) 1999; 59 J-H Kim (50417_CR23) 2023; 14 50417_CR40 UPM Ashik (50417_CR10) 2015; 44 G Bussi (50417_CR52) 2007; 126 G-F Han (50417_CR26) 2021; 16 S Grimme (50417_CR41) 2011; 32 HJ Monkhorst (50417_CR42) 1976; 13 G Henkelman (50417_CR44) 1999; 111 J Hutter (50417_CR45) 2014; 4 DC Upham (50417_CR17) 2017; 358 CQ Pham (50417_CR32) 2022; 20 S Goedecker (50417_CR48) 1996; 54 M Zhong (50417_CR7) 2020; 581 R Zhang (50417_CR31) 2015; 341 V Fung (50417_CR16) 2020; 8 J VandeVondele (50417_CR47) 2005; 167 X Zhu (50417_CR4) 2019; 10 L Dong (50417_CR11) 2015; 40 G Henkelman (50417_CR43) 2000; 113 50417_CR18 50417_CR2 JW Barnett (50417_CR1) 2020; 6 GA Naikoo (50417_CR34) 2021; 9 GS Fanourgakis (50417_CR5) 2020; 124 AA Al-Hassani (50417_CR12) 2014; 39 50417_CR21 Y Ren (50417_CR20) 2021; 23 PE Blöchl (50417_CR37) 1994; 50 K Li (50417_CR30) 2013; 617 L Alves (50417_CR13) 2021; 137 Y Meng (50417_CR15) 2020; 44 Q Liu (50417_CR39) 2017; 8 S Reichle (50417_CR25) 2021; 60 J VandeVondele (50417_CR46) 2007; 127 G Han (50417_CR27) 2022; 61 GS Fanourgakis (50417_CR3) 2020; 142 M Krack (50417_CR50) 2005; 114 C Hartwigsen (50417_CR49) 1998; 58 N Bayat (50417_CR14) 2016; 41 AM Amin (50417_CR33) 2011; 36 G Kresse (50417_CR36) 1996; 54 M Felderhoff (50417_CR24) 2021; 5 K Tran (50417_CR8) 2018; 1 N Sánchez-Bastardo (50417_CR9) 2021; 60 S Nosé (50417_CR51) 1984; 81 M Bhati (50417_CR19) 2022; 46 G Kresse (50417_CR35) 1996; 6 Z-K Han (50417_CR6) 2021; 12 B Szczęśniak (50417_CR29) 2020; 7 P Baláž (50417_CR28) 2013; 42 |
References_xml | – volume: 12 year: 2021 ident: CR6 article-title: Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence publication-title: Nat. Commun. doi: 10.1038/s41467-021-22048-9 contributor: fullname: Han – volume: 617 start-page: 149 year: 2013 end-page: 155 ident: CR30 article-title: CH dissociation on NiM(111) (M=Co, Rh, Ir) surface: A first-principles study publication-title: Surf. Sci. doi: 10.1016/j.susc.2013.08.004 contributor: fullname: Wu – volume: 581 start-page: 178 year: 2020 end-page: 183 ident: CR7 article-title: Accelerated discovery of CO electrocatalysts using active machine learning publication-title: Nature doi: 10.1038/s41586-020-2242-8 contributor: fullname: Zhong – volume: 23 start-page: 15564 year: 2021 end-page: 15573 ident: CR20 article-title: Methane activation on single-atom Ir-doped metal nanoparticles from first principles publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP02022F contributor: fullname: Shen – volume: 24 start-page: 19938 year: 2022 end-page: 19947 ident: CR22 article-title: First-principles study of CO hydrogenation to formic acid on single-atom catalysts supported on SiO publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP02225G contributor: fullname: Sun – volume: 32 start-page: 1456 year: 2011 end-page: 1465 ident: CR41 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 contributor: fullname: Goerigk – volume: 6 start-page: eaaz4301 year: 2020 ident: CR1 article-title: Designing exceptional gas-separation polymer membranes using machine learning publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz4301 contributor: fullname: Barnett – volume: 46 start-page: 70 year: 2022 end-page: 74 ident: CR19 article-title: Lowering the C–H bond activation barrier of methane by means of SAC@Cu(111): periodic DFT investigations publication-title: N. J. Chem. doi: 10.1039/D1NJ04525C contributor: fullname: Joshi – ident: CR21 – volume: 61 start-page: e202117851 year: 2022 ident: CR27 article-title: Extreme enhancement of carbon hydrogasification via mechanochemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202117851 contributor: fullname: Han – volume: 60 start-page: 11855 year: 2021 end-page: 11881 ident: CR9 article-title: Methane pyrolysis for zero-emission hydrogen production: a potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c01679 contributor: fullname: Ruland – volume: 111 start-page: 14 year: 1999 ident: CR44 article-title: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives publication-title: J. Chem. Phys. doi: 10.1063/1.480097 contributor: fullname: Jónsson – volume: 8 start-page: 6057 year: 2020 end-page: 6066 ident: CR16 article-title: Electronic band contraction induced low temperature methane activation on metal alloys publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00375A contributor: fullname: Sumpter – volume: 40 start-page: 9670 year: 2015 end-page: 9676 ident: CR11 article-title: The effect of CH decomposition temperature on the property of deposited carbon over Ni/SiO catalyst publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.06.005 contributor: fullname: Dong – volume: 127 start-page: 114105 year: 2007 ident: CR46 article-title: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases publication-title: J. Chem. Phys. doi: 10.1063/1.2770708 contributor: fullname: Hutter – volume: 10 start-page: 7760 year: 2019 end-page: 7766 ident: CR4 article-title: Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: a combined density functional theory and machine learning study publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03392 contributor: fullname: Zhu – volume: 42 start-page: 7571 year: 2013 end-page: 7637 ident: CR28 article-title: Hallmarks of mechanochemistry: From nanoparticles to technology publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35468g contributor: fullname: Baláž – volume: 142 start-page: 3814 year: 2020 end-page: 3822 ident: CR3 article-title: A universal machine learning algorithm for large-scale screening of materials publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11084 contributor: fullname: Froudakis – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR42 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 contributor: fullname: Pack – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR43 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 contributor: fullname: Jónsson – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: CR51 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 contributor: fullname: Nosé – volume: 44 start-page: 221 year: 2015 end-page: 256 ident: CR10 article-title: Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.12.025 contributor: fullname: Abbas – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR36 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 contributor: fullname: Furthmüller – volume: 1 start-page: 696 year: 2018 end-page: 703 ident: CR8 article-title: Active learning across intermetallics to guide discovery of electrocatalysts for CO reduction and H evolution publication-title: Nat. Catal. doi: 10.1038/s41929-018-0142-1 contributor: fullname: Ulissi – volume: 7 start-page: 1457 year: 2020 end-page: 1473 ident: CR29 article-title: Mechanochemical synthesis of highly porous materials publication-title: Mater. Horiz. doi: 10.1039/D0MH00081G contributor: fullname: Jaroniec – volume: 41 start-page: 5494 year: 2016 end-page: 5503 ident: CR14 article-title: Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni–Pd/Al O catalyst publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.01.134 contributor: fullname: Meshkani – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR35 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 contributor: fullname: Furthmüller – volume: 60 start-page: 26385 year: 2021 end-page: 26389 ident: CR25 article-title: Mechanocatalytic room‐temperature synthesis of ammonia from its elements down to atmospheric pressure publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112095 contributor: fullname: Schüth – ident: CR18 – volume: 39 start-page: 14783 year: 2014 end-page: 14791 ident: CR12 article-title: Production of CO -free hydrogen by the thermal decomposition of methane over activated carbon: Catalyst deactivation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.07.031 contributor: fullname: Wan Daud – ident: CR2 – volume: 36 start-page: 2904 year: 2011 end-page: 2935 ident: CR33 article-title: Review of methane catalytic cracking for hydrogen production publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.11.035 contributor: fullname: Epling – volume: 137 start-page: 110465 year: 2021 ident: CR13 article-title: Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110465 contributor: fullname: Mendes – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR38 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 contributor: fullname: Joubert – volume: 124 start-page: 19639 year: 2020 end-page: 19648 ident: CR5 article-title: Fast screening of large databases for top performing nanomaterials using a self-consistent, machine learning based approach publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c05491 contributor: fullname: Froudakis – volume: 358 start-page: 917 year: 2017 end-page: 921 ident: CR17 article-title: Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon publication-title: Science doi: 10.1126/science.aao5023 contributor: fullname: Upham – volume: 114 start-page: 145 year: 2005 end-page: 152 ident: CR50 article-title: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0655-y contributor: fullname: Krack – volume: 44 start-page: 3922 year: 2020 end-page: 3929 ident: CR15 article-title: Theoretical research on a coke-resistant catalyst for the partial oxidation of methane: Pt/Cu single-atom alloys publication-title: N. J. Chem. doi: 10.1039/C9NJ04723A contributor: fullname: Meng – volume: 54 start-page: 1703 year: 1996 end-page: 1710 ident: CR48 article-title: Separable dual-space Gaussian pseudopotentials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.1703 contributor: fullname: Hutter – volume: 8 year: 2017 ident: CR39 article-title: Direct catalytic hydrogenation of CO to formate over a Schiff-base-mediated gold nanocatalyst publication-title: Nat. Commun. doi: 10.1038/s41467-017-01673-3 contributor: fullname: Liu – ident: CR40 – volume: 341 start-page: 100 year: 2015 end-page: 108 ident: CR31 article-title: CH dehydrogenation on Cu(111), Cu@Cu(111), Rh@Cu(111) and RhCu(111) surfaces: A comparison studies of catalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.013 contributor: fullname: Wang – volume: 126 start-page: 014101 year: 2007 ident: CR52 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 contributor: fullname: Parrinello – volume: 167 start-page: 103 year: 2005 end-page: 128 ident: CR47 article-title: Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2004.12.014 contributor: fullname: VandeVondele – volume: 58 start-page: 3641 year: 1998 end-page: 3662 ident: CR49 article-title: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.3641 contributor: fullname: Hutter – volume: 14 year: 2023 ident: CR23 article-title: Achieving volatile potassium promoted ammonia synthesis via mechanochemistry publication-title: Nat. Commun. doi: 10.1038/s41467-023-38050-2 contributor: fullname: Kim – volume: 4 start-page: 15 year: 2014 end-page: 25 ident: CR45 article-title: cp2k: atomistic simulations of condensed matter systems: cp2k Simulation Software publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1159 contributor: fullname: VandeVondele – volume: 9 start-page: 736801 year: 2021 ident: CR34 article-title: Thermocatalytic hydrogen production through decomposition of methane-a review publication-title: Front. Chem. doi: 10.3389/fchem.2021.736801 contributor: fullname: Naikoo – volume: 20 start-page: 2339 year: 2022 end-page: 2359 ident: CR32 article-title: Production of hydrogen and value-added carbon materials by catalytic methane decomposition: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-022-01449-2 contributor: fullname: Pham – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR37 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 contributor: fullname: Blöchl – volume: 16 start-page: 325 year: 2021 end-page: 330 ident: CR26 article-title: Mechanochemistry for ammonia synthesis under mild conditions publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00809-9 contributor: fullname: Han – volume: 5 start-page: 297 year: 2021 end-page: 299 ident: CR24 article-title: Ammonia synthesis and mechanochemistry publication-title: Joule doi: 10.1016/j.joule.2021.01.009 contributor: fullname: Felderhoff – volume: 24 start-page: 19938 year: 2022 ident: 50417_CR22 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP02225G contributor: fullname: J Sun – volume: 127 start-page: 114105 year: 2007 ident: 50417_CR46 publication-title: J. Chem. Phys. doi: 10.1063/1.2770708 contributor: fullname: J VandeVondele – volume: 46 start-page: 70 year: 2022 ident: 50417_CR19 publication-title: N. J. Chem. doi: 10.1039/D1NJ04525C contributor: fullname: M Bhati – volume: 114 start-page: 145 year: 2005 ident: 50417_CR50 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0655-y contributor: fullname: M Krack – volume: 50 start-page: 17953 year: 1994 ident: 50417_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 contributor: fullname: PE Blöchl – volume: 61 start-page: e202117851 year: 2022 ident: 50417_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202117851 contributor: fullname: G Han – volume: 20 start-page: 2339 year: 2022 ident: 50417_CR32 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-022-01449-2 contributor: fullname: CQ Pham – volume: 13 start-page: 5188 year: 1976 ident: 50417_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 contributor: fullname: HJ Monkhorst – volume: 341 start-page: 100 year: 2015 ident: 50417_CR31 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.013 contributor: fullname: R Zhang – volume: 581 start-page: 178 year: 2020 ident: 50417_CR7 publication-title: Nature doi: 10.1038/s41586-020-2242-8 contributor: fullname: M Zhong – ident: 50417_CR2 doi: 10.1021/acs.jpcc.0c05964 – volume: 8 year: 2017 ident: 50417_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01673-3 contributor: fullname: Q Liu – volume: 137 start-page: 110465 year: 2021 ident: 50417_CR13 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110465 contributor: fullname: L Alves – volume: 81 start-page: 511 year: 1984 ident: 50417_CR51 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 contributor: fullname: S Nosé – volume: 58 start-page: 3641 year: 1998 ident: 50417_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.3641 contributor: fullname: C Hartwigsen – volume: 16 start-page: 325 year: 2021 ident: 50417_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00809-9 contributor: fullname: G-F Han – volume: 44 start-page: 221 year: 2015 ident: 50417_CR10 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.12.025 contributor: fullname: UPM Ashik – volume: 54 start-page: 1703 year: 1996 ident: 50417_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.1703 contributor: fullname: S Goedecker – volume: 126 start-page: 014101 year: 2007 ident: 50417_CR52 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 contributor: fullname: G Bussi – volume: 4 start-page: 15 year: 2014 ident: 50417_CR45 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1159 contributor: fullname: J Hutter – volume: 6 start-page: 15 year: 1996 ident: 50417_CR35 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 contributor: fullname: G Kresse – volume: 113 start-page: 9901 year: 2000 ident: 50417_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 contributor: fullname: G Henkelman – ident: 50417_CR21 doi: 10.1007/s12274-023-5898-1 – volume: 60 start-page: 26385 year: 2021 ident: 50417_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112095 contributor: fullname: S Reichle – volume: 5 start-page: 297 year: 2021 ident: 50417_CR24 publication-title: Joule doi: 10.1016/j.joule.2021.01.009 contributor: fullname: M Felderhoff – volume: 617 start-page: 149 year: 2013 ident: 50417_CR30 publication-title: Surf. Sci. doi: 10.1016/j.susc.2013.08.004 contributor: fullname: K Li – volume: 41 start-page: 5494 year: 2016 ident: 50417_CR14 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.01.134 contributor: fullname: N Bayat – volume: 14 year: 2023 ident: 50417_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38050-2 contributor: fullname: J-H Kim – ident: 50417_CR40 doi: 10.1007/s00894-019-4071-y – volume: 167 start-page: 103 year: 2005 ident: 50417_CR47 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2004.12.014 contributor: fullname: J VandeVondele – volume: 9 start-page: 736801 year: 2021 ident: 50417_CR34 publication-title: Front. Chem. doi: 10.3389/fchem.2021.736801 contributor: fullname: GA Naikoo – volume: 36 start-page: 2904 year: 2011 ident: 50417_CR33 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.11.035 contributor: fullname: AM Amin – volume: 40 start-page: 9670 year: 2015 ident: 50417_CR11 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.06.005 contributor: fullname: L Dong – volume: 59 start-page: 1758 year: 1999 ident: 50417_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 contributor: fullname: G Kresse – volume: 60 start-page: 11855 year: 2021 ident: 50417_CR9 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c01679 contributor: fullname: N Sánchez-Bastardo – volume: 23 start-page: 15564 year: 2021 ident: 50417_CR20 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP02022F contributor: fullname: Y Ren – ident: 50417_CR18 doi: 10.1126/science.adh8872 – volume: 39 start-page: 14783 year: 2014 ident: 50417_CR12 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.07.031 contributor: fullname: AA Al-Hassani – volume: 1 start-page: 696 year: 2018 ident: 50417_CR8 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0142-1 contributor: fullname: K Tran – volume: 7 start-page: 1457 year: 2020 ident: 50417_CR29 publication-title: Mater. Horiz. doi: 10.1039/D0MH00081G contributor: fullname: B Szczęśniak – volume: 12 year: 2021 ident: 50417_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22048-9 contributor: fullname: Z-K Han – volume: 44 start-page: 3922 year: 2020 ident: 50417_CR15 publication-title: N. J. Chem. doi: 10.1039/C9NJ04723A contributor: fullname: Y Meng – volume: 8 start-page: 6057 year: 2020 ident: 50417_CR16 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00375A contributor: fullname: V Fung – volume: 6 start-page: eaaz4301 year: 2020 ident: 50417_CR1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz4301 contributor: fullname: JW Barnett – volume: 124 start-page: 19639 year: 2020 ident: 50417_CR5 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c05491 contributor: fullname: GS Fanourgakis – volume: 42 start-page: 7571 year: 2013 ident: 50417_CR28 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35468g contributor: fullname: P Baláž – volume: 54 start-page: 11169 year: 1996 ident: 50417_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 contributor: fullname: G Kresse – volume: 111 start-page: 14 year: 1999 ident: 50417_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.480097 contributor: fullname: G Henkelman – volume: 10 start-page: 7760 year: 2019 ident: 50417_CR4 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03392 contributor: fullname: X Zhu – volume: 32 start-page: 1456 year: 2011 ident: 50417_CR41 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 contributor: fullname: S Grimme – volume: 142 start-page: 3814 year: 2020 ident: 50417_CR3 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11084 contributor: fullname: GS Fanourgakis – volume: 358 start-page: 917 year: 2017 ident: 50417_CR17 publication-title: Science doi: 10.1126/science.aao5023 contributor: fullname: DC Upham |
SSID | ssj0000391844 |
Score | 2.5001135 |
Snippet | The process of CH
4
cracking into H
2
and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid... The process of CH cracking into H and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid... The process of CH 4 cracking into H 2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid... The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid... Abstract The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 6036 |
SubjectTerms | 119/118 140/133 140/146 147/135 147/143 147/3 639/638/77/885 639/638/77/887 639/925/357/537 Ball milling Carbon Catalysis Catalysts Catalytic converters Catalytic cracking Deposition Energy of dissociation Free energy Heat of formation Humanities and Social Sciences Hydrogen Hydrogen production Learning algorithms Machine learning Methane multidisciplinary Noble metals Rhenium Science Science (multidisciplinary) Single atom catalysts Transition metal alloys Transition metals |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BJSQuiEeB0BYZiVtr1bEdP45AW_UCUtUeuFmOH4AEu1Wze9h_37GT3bI8xAVFucR2ZH0z9ozt8TcAb4NvOcdBRllUikrOIu1bb2lnbU6569HKl8vJ55f602dzclpocjapvkpM2EgPPAJ3LJTRPvRtVjZL1Qdjg_YJVTPnbIwPdfZl6qfFVJ2DhcWli5xuyTBhjgdZ5wQ0SbRjEqdmvWWJKmH_n7zM34MlfzkxrYbo7DE8mjxI8m7s-RO4l2ZP4cGYU3L1DC4-1vDIRKZ8EF9IIYGMJNZQDTLPpOwOfE8UV9s_SDl2X5G6h7MaFgNBF5aUpNIefxBufCgb6btwdXZ69eGcTnkTaBDaLKjIIQvZ8Zx92wZUFcWk7rni0fLQafSheAptIYpJAR8dy7LDKqNa74UK4jnszOaz9BJIttlKwbPiupdesx4b28hSp3IszDYNHK4hdNcjO4arp9rCuBFwh4C7CrjTDbwvKG9qFmbr-gHl7SZ5u3_Ju4H9tYzcNNwGJ6ojg9aYNfBmU4wDpZx-IGLz5VgHX2FNAy9GkW56UjZ-rJXY2mwJe6ur2yWzb18rGTf6qx26zLaBo7Ve3PXr71i8-h9Y7MFDXhS68HyafdhZ3CzTAdwf4vJ1HQ63bYgNug priority: 102 providerName: Directory of Open Access Journals |
Title | Machine learning aided design of single-atom alloy catalysts for methane cracking |
URI | https://link.springer.com/article/10.1038/s41467-024-50417-7 https://www.ncbi.nlm.nih.gov/pubmed/39019940 https://www.proquest.com/docview/3082013030 https://www.proquest.com/docview/3082308398 https://pubmed.ncbi.nlm.nih.gov/PMC11255339 https://doaj.org/article/3687acb1f69f46bc89c7ae030fff88ac |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlZC4IMozbalciRukm9iJH0foQ70UgeiBm-X4USp1s9Vm97D_nrGTLF0olyrKJXaS0XjseXj8DcAHa0pKcZLlheM8r2jh8qY0Kq-VCj7UDWr5eDj54of4-lOenkWYHD6ehUlJ-7a5OW5vZ8ftza-UW3k3s9MxT2z67fIEbYQazRQ1ncAEjcN7Pnpaf5lCt6UaTsgUTE67Kq0HqI7yuqhwWY6l96Kzr1QMetxTSAm3_yFj89-cyb82TpM-On8BzwdDknzuCd6FJ759CU_70pLrV_D9MmVJejKUhbgmEQvSEZcyNsg8kBgkuPU5Ot0zEnff1ySFctbdsiNoyZJYW9rgB-zC2BhPfw1X52dXJxf5UD4ht0zIZc6CDayqaQimLC1KDC8q0VBOnaK2FmhKUW_LiBfjLV7CRe9DcclLYxi37A3stPPWvwMSVFAVo4FT0VRGFA2-rFzhax5cBLjJ4OPIQn3Xg2TotLnNpO55r5H3OvFeiwy-RC5vekaA6_RgvrjWwzBrxqUwtikDV6HijZXKCuNxRQohSGlsBgfjGOlh1nWaJXsGlXKRwdGmGedL3ARBjs1XfR-8mZIZvO2HdEPJKBIZyK3B3iJ1uwVFNGFyjyKZwadRLv7Q9X9e7D3-T_vwjEaJjiCf8gB2louVfw-Tzq0OU2DhMM2K3116DjA |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgSX8qaBAkbiBukmduLHEUqrRXQrEHvgZjmOXSp1s9Vm97D_nrGTLF0elyrKJc7D8cx4Hh5_A_DWmpxSFLI0qzlPC5rVaZUblZZKeefLCrV82Jw8_i7OfshPxwEmhw97YWLSvq0uDpvL2WFz8TPmVl7N7GjIExt9nRyhjVCimaJGO3AbBTbLrnnpcQZmCh2Xot8jkzE5aos4I6BCSsuswIk5FN8L7r5SIexxTSVF5P5_mZt_Z03-sXQaNdLJ_Zv-ywPY621Q8qFrfwi3XPMI7nRVKdeP4dskJlg60leUOCcBRrImdUz2IHNPQnzh0qXor89IWLhfkxgFWrfLlqARTEJZaoMvsAtjQyj-CUxPjqdH47SvvJBaJuQyZd56VpTUe5PnFpmNZ4WoKKe1orYUaIVRZ_MANeMsHqIOjovikufGMG7ZU9ht5o3bB-KVVwWjnlNRFUZkFT6s6syV3NcBGyeBd8PY66sOX0PHdXEmdUc0jUTTkWhaJPAxkGdzZ8DGjhfmi3Pdj6pmXApjq9xz5QteWamsMA4nM--9lMYmcDAQV_cC22oWTSHU51kCbzbNKGph_QRHbL7q7sGTKZnAs44XNj0ZeCkBucUlW13dbkGOiHDeAwck8H5gqN_9-v9YPL_5l17D3fF0cqpPP599eQH3aBCLgBUqD2B3uVi5l7DT1qtXUah-AWDhIvE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhCX8qaBAkbiBmkSO_GDG7RdFUGrInrgZjmOXSp1H9rsHvbfM3aSpcvjAopySZzEmYdnxh5_A_DamoJSVLI0bzhPS5o3aV0YlVZKeeerGq182Jx8_FWcfpOHRwEm592wFyYm7dv6cn9yNd6fXH6PuZWzsc2GPLHs7OQAfYQK3RSVzRqfbcFNVNqcXovU4yjMFAYvZb9PJmcya8s4KqBRSqu8xME5FOALIb9SYerjmlmK6P1_cjl_z5z8Zfk0WqXR3f_5n3uw0_ui5H3X5j7ccJMHcKurTrl6CF9OYqKlI31liQsS4CQb0sSkDzL1JMwzXLkU4_YxCQv4KxJng1btoiXoDJNQntrgC-zc2DAl_wjOR0fnB8dpX4EhtUzIRcq89aysqPemKCwKHc9LUVNOG0VtJdAbo84WAXLGWTxEEwIYxSUvjGHcssewPZlO3C4Qr7wqGfWciro0Iq_xYdXkruK-CRg5CbwZ6K9nHc6GjuvjTOqOcRoZpyPjtEjgQ2DRumXAyI4XpvML3VNWMy6FsXXhufIlr61UVhiHg5r3XkpjE9gbGKx7xW01iy4R2vU8gVfr26hyYR0FKTZddm3wZEom8KSTh3VPBnlKQG5IykZXN--gVERY70EKEng7CNXPfv2dFk___Usv4fbZ4Uh__nj66RncoUEzAmSo3IPtxXzpnsNW2yxfRL36AZYrJXE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+aided+design+of+single-atom+alloy+catalysts+for+methane+cracking&rft.jtitle=Nature+communications&rft.au=Sun%2C+Jikai&rft.au=Tu%2C+Rui&rft.au=Xu%2C+Yuchun&rft.au=Yang%2C+Hongyan&rft.date=2024-07-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-50417-7&rft.externalDocID=10_1038_s41467_024_50417_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |