Metal Phthalocyanine Sensitized Photoelectrochemical Cell Assembling with Azide‐Functionalized Reduced Graphene and Quaternary Metal Chalcogenide Composites

Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction...

Full description

Saved in:
Bibliographic Details
Published in:ChemElectroChem Vol. 11; no. 9
Main Authors: Ezgi Varol, Deniz, Uğuz Neli, Özlem, Budak, Özlem, Keskin, Bahadır, Koca, Atıf
Format: Journal Article
Language:English
Published: Weinheim John Wiley & Sons, Inc 02-05-2024
Wiley-VCH
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N3‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm−2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications. Novel photoelectrodes are constructed with the electrodepositing of the azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites which are then sensitized with metal phthalocyanines with the click chemistry reaction. The constructed ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits 7.3 mA cm−2 photocurrent and 3.87 % of applied bias photon to current efficiency in the photoelectrochemical hydrogen evolution reaction.
AbstractList Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N3‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm−2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications.
Abstract Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N3‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm−2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications.
Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N3‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm−2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications. Novel photoelectrodes are constructed with the electrodepositing of the azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites which are then sensitized with metal phthalocyanines with the click chemistry reaction. The constructed ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits 7.3 mA cm−2 photocurrent and 3.87 % of applied bias photon to current efficiency in the photoelectrochemical hydrogen evolution reaction.
Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N 3 ) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N 3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N 3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N 3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N 3 ‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N 3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N 3 ‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N 3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm −2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications.
Author Uğuz Neli, Özlem
Ezgi Varol, Deniz
Keskin, Bahadır
Budak, Özlem
Koca, Atıf
Author_xml – sequence: 1
  givenname: Deniz
  surname: Ezgi Varol
  fullname: Ezgi Varol, Deniz
  organization: Marmara University
– sequence: 2
  givenname: Özlem
  surname: Uğuz Neli
  fullname: Uğuz Neli, Özlem
  organization: Marmara University
– sequence: 3
  givenname: Özlem
  orcidid: 0000-0002-0240-8320
  surname: Budak
  fullname: Budak, Özlem
  organization: Marmara University
– sequence: 4
  givenname: Bahadır
  orcidid: 0000-0001-8502-8982
  surname: Keskin
  fullname: Keskin, Bahadır
  email: bkeskin@yildiz.edu.tr
  organization: Yıldız Technical University
– sequence: 5
  givenname: Atıf
  orcidid: 0000-0003-0141-5817
  surname: Koca
  fullname: Koca, Atıf
  email: denizezgi.varol@gmail.com, ozlem.uguz@marmara.edu.tr, ozlem.budak@marmara.edu.tr, akoca@marmara.edu.tr
  organization: Marmara University
BookMark eNqFkc1uEzEUhUeolShtt6xHYp1ge-z5WUaj_klBQIG15Z87GUeOHWyPqnTFI_AEPBxPgtNBpTtW17LP-e6xzpvixHkHRfEWoyVGiLxXYNWSIEIRQrh9VZwR3NULRHB98uL8uriMcXuUYMSqtj4rfn2AJGz5aUyjsF4dhDMOyi_goknmEXR-8cmDBZWCVyPsjMryHqwtVzHCTlrjNuWDSWO5ejQafv_4eT05lYx3wj4B7kFPKs-bIPYjZLhwuvw8iQTBiXAo5wB9Xq_8BlxmlL3f7X0OAPGiOB2EjXD5d54X366vvva3i_XHm7t-tV6oqmnbhWayqjTCqhaSyEZLgkAq1lFQIAEGNtBhAKlBNUxSVGmQQg41bWnDRJZV58XdzNVebPk-mF2Oxr0w_OnChw0XIRllgStdtVhqgmlHKK2xAIwbBjW0hIGq68x6N7P2wX-fICa-9VP-q428Qoy2pOpYm1XLWaWCjzHA8LwVI36slB8r5c-VZkM3Gx6MhcN_1Ly_Wvf_vH8AdmqsWQ
Cites_doi 10.1002/tcr.202000186
10.1016/j.rser.2020.110503
10.1016/j.jwpe.2022.103008
10.1002/adfm.202102321
10.1039/c3nr04332k
10.1007/s00604-018-3127-5
10.1016/j.enconman.2022.115978
10.1007/s10853-017-1417-7
10.1016/j.electacta.2023.142495
10.1016/j.ijhydene.2021.03.075
10.1021/acsanm.2c04864
10.1016/j.jallcom.2022.166822
10.1063/1.443636
10.1021/acs.energyfuels.0c04089
10.1039/D1CC03880J
10.1007/s10008-021-05083-w
10.1016/j.apt.2023.104051
10.1016/j.renene.2020.07.102
10.1007/s11696-019-00856-0
10.1021/acs.analchem.2c02210
10.1016/j.cej.2019.122783
10.1557/jmr.2015.379
10.1038/238037a0
10.1080/03067319.2019.1700970
10.1016/j.jhazmat.2018.01.027
10.1016/j.apcatb.2022.121711
10.1039/D3TA03285J
10.1039/C4EE03565H
10.1016/j.est.2023.109184
10.1016/j.mtcomm.2023.107122
10.1016/j.electacta.2012.12.112
10.1021/ar980112j
10.1016/j.surfin.2022.102089
10.3390/nano12213874
10.1016/j.solener.2017.05.089
10.1016/j.ijhydene.2021.08.064
10.1039/C8QM00677F
10.1016/j.jphotochem.2021.113291
10.3390/app112311330
10.1016/j.apsusc.2021.150463
10.1016/j.jcis.2021.04.116
10.1016/j.cclet.2022.02.001
10.1021/acscatal.2c01319
10.1016/j.cej.2022.140081
10.1002/celc.202200750
10.1039/D1RA04529F
10.5012/bkcs.2014.35.4.1182
10.1002/asia.201800016
10.1016/j.snb.2013.12.031
10.1016/j.jphotochem.2023.114657
10.1016/j.renene.2020.08.063
10.1016/j.cclet.2020.09.037
ContentType Journal Article
Copyright 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOA
DOI 10.1002/celc.202400018
DatabaseName Wiley Open Access
Wiley Online Library (Open Access Collection)
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage n/a
ExternalDocumentID oai_doaj_org_article_cd381bd214924461ae1175e6e825ec66
10_1002_celc_202400018
CELC202400018
Genre article
GrantInformation_xml – fundername: The Scientific and Technological Research Council of Turkey (TUBITAK)
  funderid: 219M328
– fundername: Scientific Research Projects Commission (BAPKO) of Marmara University
  funderid: FYL-2022-10583
– fundername: Turkish Academy of Sciences (TÜBA)
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BBNVY
BENPR
BGLVJ
BHPHI
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7P
MEWTI
MY~
O9-
P2W
PDBOC
R.K
ROL
TUS
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3788-d5b33d01c6ab2b7db20ebc594ecebeef5f4ffebdec75b403debabf648475a5943
IEDL.DBID 33P
ISSN 2196-0216
IngestDate Tue Oct 22 14:53:43 EDT 2024
Sun Nov 17 06:12:03 EST 2024
Fri Nov 22 03:05:29 EST 2024
Sat Aug 24 00:56:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3788-d5b33d01c6ab2b7db20ebc594ecebeef5f4ffebdec75b403debabf648475a5943
ORCID 0000-0001-8502-8982
0000-0003-0141-5817
0000-0002-0240-8320
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400018
PQID 3054823958
PQPubID 2034587
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_cd381bd214924461ae1175e6e825ec66
proquest_journals_3054823958
crossref_primary_10_1002_celc_202400018
wiley_primary_10_1002_celc_202400018_CELC202400018
PublicationCentury 2000
PublicationDate May 2, 2024
PublicationDateYYYYMMDD 2024-05-02
PublicationDate_xml – month: 05
  year: 2024
  text: May 2, 2024
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2023; 73
2021; 21
2023; 34
2020; 162
2021; 564
2023; 6
2023; 37
2016; 31
2022; 26
2017; 155
2013; 5
2021; 35
2021; 32
2021; 31
2021; 599
2023; 454
2023; 458
2022; 926
2022; 32
2022; 33
2021; 2021
2021; 46
2019; 3
2023; 11
2018; 348
2021; 101
2020; 382
2022; 94
2023; 440
1982; 77
2013; 91
2014; 193
2022; 317
2015; 8
1972; 238
2022; 49
2019; 186
2021; 57
2017; 52
2021; 11
2023
2020; 74
2021; 414
2021; 138
2000; 33
2022; 9
2022; 12
2014; 35
2022; 268
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Heo J. (e_1_2_9_7_1) 2023
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Li P. (e_1_2_9_10_1) 2023
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Jiang H. (e_1_2_9_39_1) 2021; 2021
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_42_1
Ho H.-C. (e_1_2_9_19_1) 2023
e_1_2_9_40_1
Dagar (e_1_2_9_18_1) 2023
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 2021
  start-page: 1
  year: 2021
  end-page: 11
  publication-title: J. Nanomater.
– volume: 101
  start-page: 2255
  issue: 14
  year: 2021
  end-page: 2271
  publication-title: Int. J. Environ. Anal. Chem.
– volume: 414
  year: 2021
  publication-title: J. Photochem. Photobiol. A
– volume: 32
  start-page: 1165
  issue: 3
  year: 2021
  end-page: 1168
  publication-title: Chin. Chem. Lett.
– volume: 458
  year: 2023
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 760
  issue: 3
  year: 2015
  end-page: 775
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 6946
  issue: 12
  year: 2022
  end-page: 6957
  publication-title: ACS Catal.
– volume: 317
  year: 2022
  publication-title: Appl. Catal. B
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– year: 2023
  publication-title: New J. Chem.
– volume: 5
  start-page: 12136
  issue: 24
  year: 2013
  end-page: 12139
  publication-title: Nanoscale
– volume: 162
  start-page: 182
  year: 2020
  end-page: 195
  publication-title: Renewable Energy
– volume: 3
  start-page: 520
  issue: 3
  year: 2019
  end-page: 531
  publication-title: Mater. Chem. Front.
– volume: 138
  year: 2021
  publication-title: Renewable Sustainable Energy Rev.
– volume: 74
  start-page: 89
  year: 2020
  end-page: 98
  publication-title: Chem. Pap.
– volume: 46
  start-page: 19338
  issue: 37
  year: 2021
  end-page: 19346
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 4387
  issue: 5
  year: 2021
  end-page: 4403
  publication-title: Energy Fuels
– volume: 35
  start-page: 1182
  issue: 4
  year: 2014
  end-page: 1190
  publication-title: Bull. Korean Chem. Soc.
– volume: 155
  start-page: 121
  year: 2017
  end-page: 129
  publication-title: Sol. Energy
– volume: 52
  start-page: 13561
  issue: 23
  year: 2017
  end-page: 13571
  publication-title: J. Mater. Sci.
– volume: 440
  year: 2023
  publication-title: J. Photochem. Photobiol. A
– volume: 193
  start-page: 830
  year: 2014
  end-page: 837
  publication-title: Sens. Actuators B
– volume: 6
  start-page: 1898
  issue: 3
  year: 2023
  end-page: 1909
  publication-title: ACS Appl. Nano Mater.
– volume: 348
  start-page: 47
  year: 2018
  end-page: 55
  publication-title: J. Hazard. Mater.
– volume: 186
  start-page: 1
  year: 2019
  end-page: 12
  publication-title: Microchim. Acta
– volume: 73
  year: 2023
  publication-title: J. Energy Storage
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 9
  issue: 18
  year: 2022
  publication-title: ChemElectroChem
– volume: 49
  year: 2022
  publication-title: J. Water Proc. Eng.
– volume: 94
  start-page: 12723
  issue: 37
  year: 2022
  end-page: 12731
  publication-title: Anal. Chem.
– year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 34
  issue: 7
  year: 2023
  publication-title: Adv. Powder Technol.
– volume: 11
  start-page: 11330
  issue: 23
  year: 2021
  publication-title: Appl. Sci.
– volume: 162
  start-page: 1340
  year: 2020
  end-page: 1346
  publication-title: Renewable Energy
– volume: 31
  start-page: 163
  issue: 1
  year: 2016
  end-page: 172
  publication-title: J. Mater. Res.
– volume: 11
  start-page: 21078
  issue: 39
  year: 2023
  end-page: 21088
  publication-title: J. Mater. Chem. A
– year: 2023
  publication-title: ACS Omega
– volume: 32
  year: 2022
  publication-title: Surfaces and Interfaces
– volume: 12
  start-page: 3874
  issue: 21
  year: 2022
  publication-title: Nanomaterials
– volume: 268
  year: 2022
  publication-title: Energy Convers. Manage.
– volume: 33
  start-page: 4669
  issue: 10
  year: 2022
  end-page: 4674
  publication-title: Chin. Chem. Lett.
– volume: 26
  start-page: 245
  year: 2022
  end-page: 255
  publication-title: J. Solid State Electrochem.
– volume: 238
  start-page: 37
  issue: 5358
  year: 1972
  end-page: 38
  publication-title: Nature
– volume: 21
  start-page: 841
  issue: 4
  year: 2021
  end-page: 857
  publication-title: The Chemical Record
– volume: 599
  start-page: 453
  year: 2021
  end-page: 466
  publication-title: J. Colloid Interface Sci.
– volume: 77
  start-page: 168
  issue: 1
  year: 1982
  end-page: 172
  publication-title: J. Chem. Phys.
– volume: 31
  issue: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 1045
  issue: 8
  year: 2018
  end-page: 1052
  publication-title: Chem. Asian J.
– year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 91
  start-page: 158
  year: 2013
  end-page: 165
  publication-title: Electrochim. Acta
– volume: 57
  start-page: 9196
  issue: 73
  year: 2021
  end-page: 9199
  publication-title: Chem. Commun.
– volume: 564
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 37
  year: 2023
  publication-title: Mater. Today Commun.
– volume: 11
  start-page: 27570
  issue: 44
  year: 2021
  end-page: 27582
  publication-title: RSC Adv.
– volume: 33
  start-page: 269
  issue: 5
  year: 2000
  end-page: 277
  publication-title: Acc. Chem. Res.
– volume: 926
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 46
  start-page: 35290
  issue: 71
  year: 2021
  end-page: 35301
  publication-title: Int. J. Hydrogen Energy
– ident: e_1_2_9_14_1
  doi: 10.1002/tcr.202000186
– ident: e_1_2_9_9_1
  doi: 10.1016/j.rser.2020.110503
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jwpe.2022.103008
– ident: e_1_2_9_52_1
  doi: 10.1002/adfm.202102321
– ident: e_1_2_9_21_1
  doi: 10.1039/c3nr04332k
– ident: e_1_2_9_40_1
  doi: 10.1007/s00604-018-3127-5
– ident: e_1_2_9_53_1
  doi: 10.1016/j.enconman.2022.115978
– ident: e_1_2_9_45_1
  doi: 10.1007/s10853-017-1417-7
– ident: e_1_2_9_20_1
  doi: 10.1016/j.electacta.2023.142495
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ijhydene.2021.03.075
– ident: e_1_2_9_16_1
  doi: 10.1021/acsanm.2c04864
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jallcom.2022.166822
– ident: e_1_2_9_26_1
  doi: 10.1063/1.443636
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.energyfuels.0c04089
– ident: e_1_2_9_34_1
  doi: 10.1039/D1CC03880J
– ident: e_1_2_9_23_1
  doi: 10.1007/s10008-021-05083-w
– year: 2023
  ident: e_1_2_9_10_1
  publication-title: Inorg. Chem. Front.
  contributor:
    fullname: Li P.
– ident: e_1_2_9_54_1
  doi: 10.1016/j.apt.2023.104051
– ident: e_1_2_9_25_1
  doi: 10.1016/j.renene.2020.07.102
– ident: e_1_2_9_41_1
  doi: 10.1007/s11696-019-00856-0
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.analchem.2c02210
– ident: e_1_2_9_38_1
  doi: 10.1016/j.cej.2019.122783
– ident: e_1_2_9_47_1
  doi: 10.1557/jmr.2015.379
– ident: e_1_2_9_8_1
  doi: 10.1038/238037a0
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_9_39_1
  publication-title: J. Nanomater.
  contributor:
    fullname: Jiang H.
– ident: e_1_2_9_5_1
  doi: 10.1080/03067319.2019.1700970
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jhazmat.2018.01.027
– ident: e_1_2_9_11_1
  doi: 10.1016/j.apcatb.2022.121711
– ident: e_1_2_9_36_1
  doi: 10.1039/D3TA03285J
– ident: e_1_2_9_3_1
  doi: 10.1039/C4EE03565H
– year: 2023
  ident: e_1_2_9_7_1
  publication-title: ACS Omega
  contributor:
    fullname: Heo J.
– ident: e_1_2_9_48_1
  doi: 10.1016/j.est.2023.109184
– ident: e_1_2_9_57_1
  doi: 10.1016/j.mtcomm.2023.107122
– ident: e_1_2_9_42_1
  doi: 10.1016/j.electacta.2012.12.112
– ident: e_1_2_9_13_1
  doi: 10.1021/ar980112j
– year: 2023
  ident: e_1_2_9_18_1
  publication-title: New J. Chem.
  contributor:
    fullname: Dagar
– ident: e_1_2_9_30_1
  doi: 10.1016/j.surfin.2022.102089
– ident: e_1_2_9_28_1
  doi: 10.3390/nano12213874
– ident: e_1_2_9_29_1
  doi: 10.1016/j.solener.2017.05.089
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ijhydene.2021.08.064
– ident: e_1_2_9_56_1
  doi: 10.1039/C8QM00677F
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jphotochem.2021.113291
– ident: e_1_2_9_49_1
  doi: 10.3390/app112311330
– ident: e_1_2_9_35_1
  doi: 10.1016/j.apsusc.2021.150463
– ident: e_1_2_9_2_1
  doi: 10.1016/j.jcis.2021.04.116
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cclet.2022.02.001
– ident: e_1_2_9_4_1
  doi: 10.1021/acscatal.2c01319
– ident: e_1_2_9_1_1
  doi: 10.1016/j.cej.2022.140081
– ident: e_1_2_9_50_1
  doi: 10.1002/celc.202200750
– ident: e_1_2_9_27_1
  doi: 10.1039/D1RA04529F
– ident: e_1_2_9_44_1
  doi: 10.5012/bkcs.2014.35.4.1182
– ident: e_1_2_9_55_1
  doi: 10.1002/asia.201800016
– ident: e_1_2_9_43_1
  doi: 10.1016/j.snb.2013.12.031
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jphotochem.2023.114657
– ident: e_1_2_9_32_1
  doi: 10.1016/j.renene.2020.08.063
– ident: e_1_2_9_37_1
  doi: 10.1016/j.cclet.2020.09.037
– year: 2023
  ident: e_1_2_9_19_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Ho H.-C.
SSID ssj0001105386
Score 2.3622553
Snippet Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide...
Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N 3 ) and quaternary metal chalcogenide...
Abstract Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Alkynes
Azide-functionalized reduced graphene oxide
Chalcogenides
Charge transfer
Chemical synthesis
click chemistry
Composite materials
Current efficiency
Cycloaddition
Electrodes
Electromagnetic absorption
Graphene
Hydrogen evolution reactions
Indium tin oxides
Metal phthalocyanines
Photoanodes
Photoelectric effect
Photoelectrochemical devices
photoelectrochemical performance
quaternary composite
Sensitizing
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEF4VLuWCaAsiQNEeKvVkYe96becYTEIPbdUWkLit9mcsIgUH4eRATjwCT8DD8STMrJ0oPXHBF8s_2h3tjHe-GY2_YexboiAWtsCwxCb9KE1BRBZxa5SrxBL-lzmE1MVF_vu6OBsSTc6q1RfVhLX0wO3CnTiPPsV6gUgePVGWGCByScgAQxtwWUu2HWdrwVTIriBskEW2ZGmMxYmDCTEWUslkTB0-1rxQIOv_D2Gu49TgaEY7bLtDiHzQSvaJfYD6M_tYLhuzfWHPvwARM_9zM7sx6IoeTI1IkV9QJfpsvACPT6azadffxnWEALyECQ7aNHBr6Q90TglYPliMPbw8Po3Qu7VJwTDAP-JzxfM5sVnjZshN7fnfuQnJw_sH3gpQ4vRuigaIY3DaV6j-C5pddjUaXpY_oq7NQuSITD7yykrp48RlxgqbeytisE71U3CoYahUlVYVWA8uVzaNpQdrbJWl6NeUwdfkHtuspzXsMw7GYrziq0oVMvVgCuibRHjvpZB4JD32fbns-q5l09Atb7LQpCC9UlCPnZJWVm8RC3a4gbahO9vQb9lGjx0tdaq7T7PRuMGlhZB9hXOIoOc3RNHl8Ge5ujp4D8EO2RYNGAonxRHbnN3P4SvbaPz8ONjxK4_4-Pk
  priority: 102
  providerName: Directory of Open Access Journals
Title Metal Phthalocyanine Sensitized Photoelectrochemical Cell Assembling with Azide‐Functionalized Reduced Graphene and Quaternary Metal Chalcogenide Composites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400018
https://www.proquest.com/docview/3054823958
https://doaj.org/article/cd381bd214924461ae1175e6e825ec66
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKL3CB8icWSuVDJU5RYztOsscSduEAVUtB4mb5Z0IrlQRtdg_tiUfgCfpwfZLOONmUPSFBLvm3LXvG881o_JmxfaEhla5Et8SJaZJlIBOHuDUptHCE_1UBMXRxWhx9K9_NiCZnXMXf80OMATfSjDhfk4Jb1x3ckYZ6uCAKQsqBTAWt9kVXIa7hUMd3QRZEDyru9oiKScm2Il8TN6byYLOEDcMU-fs3QOef0DXanvmj_2_1Dns44E5-2AvKY7YFzRN2v1pv9_aUXX8CxOH8-Gx5ZtHAXdoG6-KnlN--PL-CgG_aZTvsmuMHmgFewQUW2nXww9G6dk5hXX54dR7g5tfvOdrMPtQYC_hMLLF4fk8c2TjFctsEfrKyMSS5uOR9Ayqs3rco1lgGp9mKssqge8a-zmdfqg_JsHlD4omiPgnaKRVS4XPrpCuCkyk4r6cZeJQbqHWd1TW4AL7QLktVAGddnWdoLbXFz9Rztt20DbxgHKxDLyjUtS5VFsCWMLVChhCUVHiICXuzHjnzs-foMD0bszTU32bs7wl7SwM7fkXc2vFBu_huBlU1PiCKcUGi74jYJxcWiM4UckBnGnyeT9juWizMoPCdwWkzK6WaaqxDRgH4S1NMNftYjXcv_-WnV-wBXcf0S7nLtpeLFbxm97qw2otqsBcDDLcyrAvZ
link.rule.ids 315,782,786,866,1408,2106,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZoOZQL_4gtBXxA4hQ1seMke1zCLkVsq0KLxM3yz4RWKkm12T20Jx6BJ-DheBJmnGTLnpAQuURxEtuyZ8afR-NvGHuVKIiFLXBbYpNxlKYgIou4NcpVYgn_yxyC6-IkP_pSvJ0STc5kOAvT8UOsHW6kGcFek4KTQ3r_hjXUwQVxEFIQZJwUW-x2mqE00ikOeXzjZkH8IEO-R1RNCrdNsoG6MRb7m1VsLE2BwX8Ddv4JXsPqM7v3H_p9n93toSefdLLygN2C-iHbKYeMb4_Yz0NAKM6Pz5ZnBte4K1NjY_yEQtyX59fg8U2zbPrEOa5nGuAlXGClbQvfLB1t5-TZ5ZPrcw-_vv-Y4bLZeRtDBZ-IKBbv74gmG60sN7XnH1cmeCUXV7zrQInNuwYlG-vgZLAosAzax-zzbHpaHkR9_obIEUt95JWV0seJy4wVNvdWxGCdGqfgUHSgUlVaVWA9uFzZNJYerLEVTmKaK4OfySdsu25qeMo4GIsbIV9VqpCpB1PA2CTCey-FxCsZsdfD1OnLjqZDd4TMQtN46_V4j9gbmtn1V0SvHQqaxVfda6t2HoGM9QK3jwh_ssQAMZpCBrifBpdlI7Y3yIXudb7VaDnTQsixwjZEkIC_dEWX03m5ftr9l59esp2D08O5nr8_-vCM3aHyEI0p9tj2crGC52yr9asXQSd-A7kbDww
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZokYAL_xULLfiAxClqYsdJ9ljS3YIo1UJB4mb5Z9JWapNqs3toTzwCT8DD8STMONmUPSFBLlGcZGzZM57Po_Fnxl4nCmJhC1yW2GQcpSmIyCJujXKVWML_MocQujjOj74V-xOiyRl28Xf8EEPAjSwjzNdk4Je-2r0hDXVwThSElAMZJ8UGu50iFif2fClnN1EWhA8yHPeIlknZtkm2Ym6Mxe66iDXPFAj811Dnn9g1OJ_pg_9v9kN2vweefK_TlEfsFtSP2d1ydd7bE_bzIyAQ57PTxalBD3dlaqyLH1OC--LsGjy-aRZNf2yO63kGeAnnKLRt4cLSxnZOcV2-d33m4df3H1N0ml2sMQj4TDSxeD8gkmycY7mpPf-0NCEmOb_iXQNKrN41qNcog9N0RWll0D5lX6eTL-W7qD-9IXLEUR95ZaX0ceIyY4XNvRUxWKfGKThUHKhUlVYVWA8uVzaNpQdrbJWl6C6Vwc_kFtusmxqeMQ7G4jLIV5UqZOrBFDA2ifDeSyHxSkbszWrk9GVH0qE7Omahqb_10N8j9pYGdviKyLVDQTM_0b2taucRxlgvcPGI4CdLDBCfKWSAq2lwWTZi2yu10L3FtxrnzbQQcqywDhEU4C9N0eXksByenv_LT6_Yndn-VB--P_rwgt2j4pCKKbbZ5mK-hB220frly2ARvwFmiA2y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Phthalocyanine+Sensitized+Photoelectrochemical+Cell+Assembling+with+Azide%E2%80%90Functionalized+Reduced+Graphene+and+Quaternary+Metal+Chalcogenide+Composites&rft.jtitle=ChemElectroChem&rft.au=Ezgi+Varol%2C+Deniz&rft.au=U%C4%9Fuz+Neli%2C+%C3%96zlem&rft.au=Budak%2C+%C3%96zlem&rft.au=Keskin%2C+Bahad%C4%B1r&rft.date=2024-05-02&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=11&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcelc.202400018&rft.externalDBID=10.1002%252Fcelc.202400018&rft.externalDocID=CELC202400018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon