Metal Phthalocyanine Sensitized Photoelectrochemical Cell Assembling with Azide‐Functionalized Reduced Graphene and Quaternary Metal Chalcogenide Composites
Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction...
Saved in:
Published in: | ChemElectroChem Vol. 11; no. 9 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
John Wiley & Sons, Inc
02-05-2024
Wiley-VCH |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N3‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm−2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications.
Novel photoelectrodes are constructed with the electrodepositing of the azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites which are then sensitized with metal phthalocyanines with the click chemistry reaction. The constructed ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits 7.3 mA cm−2 photocurrent and 3.87 % of applied bias photon to current efficiency in the photoelectrochemical hydrogen evolution reaction. |
---|---|
AbstractList | Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N3‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm−2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications. Abstract Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N3‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm−2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications. Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N3‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm−2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications. Novel photoelectrodes are constructed with the electrodepositing of the azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide (CdZnNiSSe) composites which are then sensitized with metal phthalocyanines with the click chemistry reaction. The constructed ITO/CdZnNiSSe/RGO‐N3‐ZnPc electrode exhibits 7.3 mA cm−2 photocurrent and 3.87 % of applied bias photon to current efficiency in the photoelectrochemical hydrogen evolution reaction. Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N 3 ) and quaternary metal chalcogenide (CdZnNiSSe) composites sensitized with metal phthalocyanines (MPc, M: Co, Zn, Ti) are developed and then tested in hydrogen evolution reaction (HER). CdZnNiSSe/RGO‐N 3 composite is deposited on an indium tin oxide (ITO) electrode through a facile electrodeposition technique and ITO/CdZnNiSSe/RGO‐N 3 photoelectrode is constructed. Then, MPcs bearing terminal alkyne groups are connected to RGO‐N 3 via the copper(I)‐catalyzed azide‐alkyne cycloaddition (click chemistry) technique to produce ITO/CdZnNiSSe/RGO‐N 3 ‐MPc structures. Decoration of ITO/CdZnNiSSe/RGO‐N 3 with MPcs is proposed to improve the charge transfer capability of the photoelectrode due to wide light absorption of MPcs from UV toward the IR region of the light spectrum. PECHER responses indicate that among the photoanodes bearing ZnPc, CoPc, and TiOPc, ITO/CdZnNiSSe/RGO‐N 3 ‐ZnPc electrode exhibits the highest PECHER performance owing to the suitability of band structure of ZnPc. Sensitizing ITO/CdZnNiSSe/RGO‐N 3 with ZnPc increases the photocurrent density from 5.0 to 7.3 mA cm −2 at 0.8 V vs. RHE and the applied bias photon to current efficiency (ABPE) enhances from 3.18 % to 3.87 %. This study provides a new approach for increasing the performance of photoanodes via sensitization with MPcs in photoelectrochemical hydrogen evolution processes for future applications. |
Author | Uğuz Neli, Özlem Ezgi Varol, Deniz Keskin, Bahadır Budak, Özlem Koca, Atıf |
Author_xml | – sequence: 1 givenname: Deniz surname: Ezgi Varol fullname: Ezgi Varol, Deniz organization: Marmara University – sequence: 2 givenname: Özlem surname: Uğuz Neli fullname: Uğuz Neli, Özlem organization: Marmara University – sequence: 3 givenname: Özlem orcidid: 0000-0002-0240-8320 surname: Budak fullname: Budak, Özlem organization: Marmara University – sequence: 4 givenname: Bahadır orcidid: 0000-0001-8502-8982 surname: Keskin fullname: Keskin, Bahadır email: bkeskin@yildiz.edu.tr organization: Yıldız Technical University – sequence: 5 givenname: Atıf orcidid: 0000-0003-0141-5817 surname: Koca fullname: Koca, Atıf email: denizezgi.varol@gmail.com, ozlem.uguz@marmara.edu.tr, ozlem.budak@marmara.edu.tr, akoca@marmara.edu.tr organization: Marmara University |
BookMark | eNqFkc1uEzEUhUeolShtt6xHYp1ge-z5WUaj_klBQIG15Z87GUeOHWyPqnTFI_AEPBxPgtNBpTtW17LP-e6xzpvixHkHRfEWoyVGiLxXYNWSIEIRQrh9VZwR3NULRHB98uL8uriMcXuUYMSqtj4rfn2AJGz5aUyjsF4dhDMOyi_goknmEXR-8cmDBZWCVyPsjMryHqwtVzHCTlrjNuWDSWO5ejQafv_4eT05lYx3wj4B7kFPKs-bIPYjZLhwuvw8iQTBiXAo5wB9Xq_8BlxmlL3f7X0OAPGiOB2EjXD5d54X366vvva3i_XHm7t-tV6oqmnbhWayqjTCqhaSyEZLgkAq1lFQIAEGNtBhAKlBNUxSVGmQQg41bWnDRJZV58XdzNVebPk-mF2Oxr0w_OnChw0XIRllgStdtVhqgmlHKK2xAIwbBjW0hIGq68x6N7P2wX-fICa-9VP-q428Qoy2pOpYm1XLWaWCjzHA8LwVI36slB8r5c-VZkM3Gx6MhcN_1Ly_Wvf_vH8AdmqsWQ |
Cites_doi | 10.1002/tcr.202000186 10.1016/j.rser.2020.110503 10.1016/j.jwpe.2022.103008 10.1002/adfm.202102321 10.1039/c3nr04332k 10.1007/s00604-018-3127-5 10.1016/j.enconman.2022.115978 10.1007/s10853-017-1417-7 10.1016/j.electacta.2023.142495 10.1016/j.ijhydene.2021.03.075 10.1021/acsanm.2c04864 10.1016/j.jallcom.2022.166822 10.1063/1.443636 10.1021/acs.energyfuels.0c04089 10.1039/D1CC03880J 10.1007/s10008-021-05083-w 10.1016/j.apt.2023.104051 10.1016/j.renene.2020.07.102 10.1007/s11696-019-00856-0 10.1021/acs.analchem.2c02210 10.1016/j.cej.2019.122783 10.1557/jmr.2015.379 10.1038/238037a0 10.1080/03067319.2019.1700970 10.1016/j.jhazmat.2018.01.027 10.1016/j.apcatb.2022.121711 10.1039/D3TA03285J 10.1039/C4EE03565H 10.1016/j.est.2023.109184 10.1016/j.mtcomm.2023.107122 10.1016/j.electacta.2012.12.112 10.1021/ar980112j 10.1016/j.surfin.2022.102089 10.3390/nano12213874 10.1016/j.solener.2017.05.089 10.1016/j.ijhydene.2021.08.064 10.1039/C8QM00677F 10.1016/j.jphotochem.2021.113291 10.3390/app112311330 10.1016/j.apsusc.2021.150463 10.1016/j.jcis.2021.04.116 10.1016/j.cclet.2022.02.001 10.1021/acscatal.2c01319 10.1016/j.cej.2022.140081 10.1002/celc.202200750 10.1039/D1RA04529F 10.5012/bkcs.2014.35.4.1182 10.1002/asia.201800016 10.1016/j.snb.2013.12.031 10.1016/j.jphotochem.2023.114657 10.1016/j.renene.2020.08.063 10.1016/j.cclet.2020.09.037 |
ContentType | Journal Article |
Copyright | 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7SR 8BQ 8FD JG9 DOA |
DOI | 10.1002/celc.202400018 |
DatabaseName | Wiley Open Access Wiley Online Library (Open Access Collection) CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_cd381bd214924461ae1175e6e825ec66 10_1002_celc_202400018 CELC202400018 |
Genre | article |
GrantInformation_xml | – fundername: The Scientific and Technological Research Council of Turkey (TUBITAK) funderid: 219M328 – fundername: Scientific Research Projects Commission (BAPKO) of Marmara University funderid: FYL-2022-10583 – fundername: Turkish Academy of Sciences (TÜBA) |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BBNVY BENPR BGLVJ BHPHI BMXJE BRXPI CCPQU DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7P MEWTI MY~ O9- P2W PDBOC R.K ROL TUS WBKPD WIN WOHZO WXSBR WYJ ZZTAW AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c3788-d5b33d01c6ab2b7db20ebc594ecebeef5f4ffebdec75b403debabf648475a5943 |
IEDL.DBID | 33P |
ISSN | 2196-0216 |
IngestDate | Tue Oct 22 14:53:43 EDT 2024 Sun Nov 17 06:12:03 EST 2024 Fri Nov 22 03:05:29 EST 2024 Sat Aug 24 00:56:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3788-d5b33d01c6ab2b7db20ebc594ecebeef5f4ffebdec75b403debabf648475a5943 |
ORCID | 0000-0001-8502-8982 0000-0003-0141-5817 0000-0002-0240-8320 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400018 |
PQID | 3054823958 |
PQPubID | 2034587 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cd381bd214924461ae1175e6e825ec66 proquest_journals_3054823958 crossref_primary_10_1002_celc_202400018 wiley_primary_10_1002_celc_202400018_CELC202400018 |
PublicationCentury | 2000 |
PublicationDate | May 2, 2024 |
PublicationDateYYYYMMDD | 2024-05-02 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2, 2024 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2023; 73 2021; 21 2023; 34 2020; 162 2021; 564 2023; 6 2023; 37 2016; 31 2022; 26 2017; 155 2013; 5 2021; 35 2021; 32 2021; 31 2021; 599 2023; 454 2023; 458 2022; 926 2022; 32 2022; 33 2021; 2021 2021; 46 2019; 3 2023; 11 2018; 348 2021; 101 2020; 382 2022; 94 2023; 440 1982; 77 2013; 91 2014; 193 2022; 317 2015; 8 1972; 238 2022; 49 2019; 186 2021; 57 2017; 52 2021; 11 2023 2020; 74 2021; 414 2021; 138 2000; 33 2022; 9 2022; 12 2014; 35 2022; 268 2018; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Heo J. (e_1_2_9_7_1) 2023 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Li P. (e_1_2_9_10_1) 2023 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Jiang H. (e_1_2_9_39_1) 2021; 2021 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_42_1 Ho H.-C. (e_1_2_9_19_1) 2023 e_1_2_9_40_1 Dagar (e_1_2_9_18_1) 2023 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 2021 start-page: 1 year: 2021 end-page: 11 publication-title: J. Nanomater. – volume: 101 start-page: 2255 issue: 14 year: 2021 end-page: 2271 publication-title: Int. J. Environ. Anal. Chem. – volume: 414 year: 2021 publication-title: J. Photochem. Photobiol. A – volume: 32 start-page: 1165 issue: 3 year: 2021 end-page: 1168 publication-title: Chin. Chem. Lett. – volume: 458 year: 2023 publication-title: Electrochim. Acta – volume: 8 start-page: 760 issue: 3 year: 2015 end-page: 775 publication-title: Energy Environ. Sci. – volume: 12 start-page: 6946 issue: 12 year: 2022 end-page: 6957 publication-title: ACS Catal. – volume: 317 year: 2022 publication-title: Appl. Catal. B – volume: 382 year: 2020 publication-title: Chem. Eng. J. – year: 2023 publication-title: New J. Chem. – volume: 5 start-page: 12136 issue: 24 year: 2013 end-page: 12139 publication-title: Nanoscale – volume: 162 start-page: 182 year: 2020 end-page: 195 publication-title: Renewable Energy – volume: 3 start-page: 520 issue: 3 year: 2019 end-page: 531 publication-title: Mater. Chem. Front. – volume: 138 year: 2021 publication-title: Renewable Sustainable Energy Rev. – volume: 74 start-page: 89 year: 2020 end-page: 98 publication-title: Chem. Pap. – volume: 46 start-page: 19338 issue: 37 year: 2021 end-page: 19346 publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 4387 issue: 5 year: 2021 end-page: 4403 publication-title: Energy Fuels – volume: 35 start-page: 1182 issue: 4 year: 2014 end-page: 1190 publication-title: Bull. Korean Chem. Soc. – volume: 155 start-page: 121 year: 2017 end-page: 129 publication-title: Sol. Energy – volume: 52 start-page: 13561 issue: 23 year: 2017 end-page: 13571 publication-title: J. Mater. Sci. – volume: 440 year: 2023 publication-title: J. Photochem. Photobiol. A – volume: 193 start-page: 830 year: 2014 end-page: 837 publication-title: Sens. Actuators B – volume: 6 start-page: 1898 issue: 3 year: 2023 end-page: 1909 publication-title: ACS Appl. Nano Mater. – volume: 348 start-page: 47 year: 2018 end-page: 55 publication-title: J. Hazard. Mater. – volume: 186 start-page: 1 year: 2019 end-page: 12 publication-title: Microchim. Acta – volume: 73 year: 2023 publication-title: J. Energy Storage – volume: 454 year: 2023 publication-title: Chem. Eng. J. – volume: 9 issue: 18 year: 2022 publication-title: ChemElectroChem – volume: 49 year: 2022 publication-title: J. Water Proc. Eng. – volume: 94 start-page: 12723 issue: 37 year: 2022 end-page: 12731 publication-title: Anal. Chem. – year: 2023 publication-title: Inorg. Chem. Front. – volume: 34 issue: 7 year: 2023 publication-title: Adv. Powder Technol. – volume: 11 start-page: 11330 issue: 23 year: 2021 publication-title: Appl. Sci. – volume: 162 start-page: 1340 year: 2020 end-page: 1346 publication-title: Renewable Energy – volume: 31 start-page: 163 issue: 1 year: 2016 end-page: 172 publication-title: J. Mater. Res. – volume: 11 start-page: 21078 issue: 39 year: 2023 end-page: 21088 publication-title: J. Mater. Chem. A – year: 2023 publication-title: ACS Omega – volume: 32 year: 2022 publication-title: Surfaces and Interfaces – volume: 12 start-page: 3874 issue: 21 year: 2022 publication-title: Nanomaterials – volume: 268 year: 2022 publication-title: Energy Convers. Manage. – volume: 33 start-page: 4669 issue: 10 year: 2022 end-page: 4674 publication-title: Chin. Chem. Lett. – volume: 26 start-page: 245 year: 2022 end-page: 255 publication-title: J. Solid State Electrochem. – volume: 238 start-page: 37 issue: 5358 year: 1972 end-page: 38 publication-title: Nature – volume: 21 start-page: 841 issue: 4 year: 2021 end-page: 857 publication-title: The Chemical Record – volume: 599 start-page: 453 year: 2021 end-page: 466 publication-title: J. Colloid Interface Sci. – volume: 77 start-page: 168 issue: 1 year: 1982 end-page: 172 publication-title: J. Chem. Phys. – volume: 31 issue: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 1045 issue: 8 year: 2018 end-page: 1052 publication-title: Chem. Asian J. – year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 91 start-page: 158 year: 2013 end-page: 165 publication-title: Electrochim. Acta – volume: 57 start-page: 9196 issue: 73 year: 2021 end-page: 9199 publication-title: Chem. Commun. – volume: 564 year: 2021 publication-title: Appl. Surf. Sci. – volume: 37 year: 2023 publication-title: Mater. Today Commun. – volume: 11 start-page: 27570 issue: 44 year: 2021 end-page: 27582 publication-title: RSC Adv. – volume: 33 start-page: 269 issue: 5 year: 2000 end-page: 277 publication-title: Acc. Chem. Res. – volume: 926 year: 2022 publication-title: J. Alloys Compd. – volume: 46 start-page: 35290 issue: 71 year: 2021 end-page: 35301 publication-title: Int. J. Hydrogen Energy – ident: e_1_2_9_14_1 doi: 10.1002/tcr.202000186 – ident: e_1_2_9_9_1 doi: 10.1016/j.rser.2020.110503 – ident: e_1_2_9_17_1 doi: 10.1016/j.jwpe.2022.103008 – ident: e_1_2_9_52_1 doi: 10.1002/adfm.202102321 – ident: e_1_2_9_21_1 doi: 10.1039/c3nr04332k – ident: e_1_2_9_40_1 doi: 10.1007/s00604-018-3127-5 – ident: e_1_2_9_53_1 doi: 10.1016/j.enconman.2022.115978 – ident: e_1_2_9_45_1 doi: 10.1007/s10853-017-1417-7 – ident: e_1_2_9_20_1 doi: 10.1016/j.electacta.2023.142495 – ident: e_1_2_9_31_1 doi: 10.1016/j.ijhydene.2021.03.075 – ident: e_1_2_9_16_1 doi: 10.1021/acsanm.2c04864 – ident: e_1_2_9_6_1 doi: 10.1016/j.jallcom.2022.166822 – ident: e_1_2_9_26_1 doi: 10.1063/1.443636 – ident: e_1_2_9_51_1 doi: 10.1021/acs.energyfuels.0c04089 – ident: e_1_2_9_34_1 doi: 10.1039/D1CC03880J – ident: e_1_2_9_23_1 doi: 10.1007/s10008-021-05083-w – year: 2023 ident: e_1_2_9_10_1 publication-title: Inorg. Chem. Front. contributor: fullname: Li P. – ident: e_1_2_9_54_1 doi: 10.1016/j.apt.2023.104051 – ident: e_1_2_9_25_1 doi: 10.1016/j.renene.2020.07.102 – ident: e_1_2_9_41_1 doi: 10.1007/s11696-019-00856-0 – ident: e_1_2_9_33_1 doi: 10.1021/acs.analchem.2c02210 – ident: e_1_2_9_38_1 doi: 10.1016/j.cej.2019.122783 – ident: e_1_2_9_47_1 doi: 10.1557/jmr.2015.379 – ident: e_1_2_9_8_1 doi: 10.1038/238037a0 – volume: 2021 start-page: 1 year: 2021 ident: e_1_2_9_39_1 publication-title: J. Nanomater. contributor: fullname: Jiang H. – ident: e_1_2_9_5_1 doi: 10.1080/03067319.2019.1700970 – ident: e_1_2_9_46_1 doi: 10.1016/j.jhazmat.2018.01.027 – ident: e_1_2_9_11_1 doi: 10.1016/j.apcatb.2022.121711 – ident: e_1_2_9_36_1 doi: 10.1039/D3TA03285J – ident: e_1_2_9_3_1 doi: 10.1039/C4EE03565H – year: 2023 ident: e_1_2_9_7_1 publication-title: ACS Omega contributor: fullname: Heo J. – ident: e_1_2_9_48_1 doi: 10.1016/j.est.2023.109184 – ident: e_1_2_9_57_1 doi: 10.1016/j.mtcomm.2023.107122 – ident: e_1_2_9_42_1 doi: 10.1016/j.electacta.2012.12.112 – ident: e_1_2_9_13_1 doi: 10.1021/ar980112j – year: 2023 ident: e_1_2_9_18_1 publication-title: New J. Chem. contributor: fullname: Dagar – ident: e_1_2_9_30_1 doi: 10.1016/j.surfin.2022.102089 – ident: e_1_2_9_28_1 doi: 10.3390/nano12213874 – ident: e_1_2_9_29_1 doi: 10.1016/j.solener.2017.05.089 – ident: e_1_2_9_24_1 doi: 10.1016/j.ijhydene.2021.08.064 – ident: e_1_2_9_56_1 doi: 10.1039/C8QM00677F – ident: e_1_2_9_15_1 doi: 10.1016/j.jphotochem.2021.113291 – ident: e_1_2_9_49_1 doi: 10.3390/app112311330 – ident: e_1_2_9_35_1 doi: 10.1016/j.apsusc.2021.150463 – ident: e_1_2_9_2_1 doi: 10.1016/j.jcis.2021.04.116 – ident: e_1_2_9_12_1 doi: 10.1016/j.cclet.2022.02.001 – ident: e_1_2_9_4_1 doi: 10.1021/acscatal.2c01319 – ident: e_1_2_9_1_1 doi: 10.1016/j.cej.2022.140081 – ident: e_1_2_9_50_1 doi: 10.1002/celc.202200750 – ident: e_1_2_9_27_1 doi: 10.1039/D1RA04529F – ident: e_1_2_9_44_1 doi: 10.5012/bkcs.2014.35.4.1182 – ident: e_1_2_9_55_1 doi: 10.1002/asia.201800016 – ident: e_1_2_9_43_1 doi: 10.1016/j.snb.2013.12.031 – ident: e_1_2_9_22_1 doi: 10.1016/j.jphotochem.2023.114657 – ident: e_1_2_9_32_1 doi: 10.1016/j.renene.2020.08.063 – ident: e_1_2_9_37_1 doi: 10.1016/j.cclet.2020.09.037 – year: 2023 ident: e_1_2_9_19_1 publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Ho H.-C. |
SSID | ssj0001105386 |
Score | 2.3622553 |
Snippet | Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal chalcogenide... Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N 3 ) and quaternary metal chalcogenide... Abstract Here, photoelectrodes of photoelectrochemical (PEC) cells consisting of azide functionalized reduced graphene oxide (GO‐N3) and quaternary metal... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Alkynes Azide-functionalized reduced graphene oxide Chalcogenides Charge transfer Chemical synthesis click chemistry Composite materials Current efficiency Cycloaddition Electrodes Electromagnetic absorption Graphene Hydrogen evolution reactions Indium tin oxides Metal phthalocyanines Photoanodes Photoelectric effect Photoelectrochemical devices photoelectrochemical performance quaternary composite Sensitizing |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEF4VLuWCaAsiQNEeKvVkYe96becYTEIPbdUWkLit9mcsIgUH4eRATjwCT8DD8STMrJ0oPXHBF8s_2h3tjHe-GY2_YexboiAWtsCwxCb9KE1BRBZxa5SrxBL-lzmE1MVF_vu6OBsSTc6q1RfVhLX0wO3CnTiPPsV6gUgePVGWGCByScgAQxtwWUu2HWdrwVTIriBskEW2ZGmMxYmDCTEWUslkTB0-1rxQIOv_D2Gu49TgaEY7bLtDiHzQSvaJfYD6M_tYLhuzfWHPvwARM_9zM7sx6IoeTI1IkV9QJfpsvACPT6azadffxnWEALyECQ7aNHBr6Q90TglYPliMPbw8Po3Qu7VJwTDAP-JzxfM5sVnjZshN7fnfuQnJw_sH3gpQ4vRuigaIY3DaV6j-C5pddjUaXpY_oq7NQuSITD7yykrp48RlxgqbeytisE71U3CoYahUlVYVWA8uVzaNpQdrbJWl6NeUwdfkHtuspzXsMw7GYrziq0oVMvVgCuibRHjvpZB4JD32fbns-q5l09Atb7LQpCC9UlCPnZJWVm8RC3a4gbahO9vQb9lGjx0tdaq7T7PRuMGlhZB9hXOIoOc3RNHl8Ge5ujp4D8EO2RYNGAonxRHbnN3P4SvbaPz8ONjxK4_4-Pk priority: 102 providerName: Directory of Open Access Journals |
Title | Metal Phthalocyanine Sensitized Photoelectrochemical Cell Assembling with Azide‐Functionalized Reduced Graphene and Quaternary Metal Chalcogenide Composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400018 https://www.proquest.com/docview/3054823958 https://doaj.org/article/cd381bd214924461ae1175e6e825ec66 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKL3CB8icWSuVDJU5RYztOsscSduEAVUtB4mb5Z0IrlQRtdg_tiUfgCfpwfZLOONmUPSFBLvm3LXvG881o_JmxfaEhla5Et8SJaZJlIBOHuDUptHCE_1UBMXRxWhx9K9_NiCZnXMXf80OMATfSjDhfk4Jb1x3ckYZ6uCAKQsqBTAWt9kVXIa7hUMd3QRZEDyru9oiKScm2Il8TN6byYLOEDcMU-fs3QOef0DXanvmj_2_1Dns44E5-2AvKY7YFzRN2v1pv9_aUXX8CxOH8-Gx5ZtHAXdoG6-KnlN--PL-CgG_aZTvsmuMHmgFewQUW2nXww9G6dk5hXX54dR7g5tfvOdrMPtQYC_hMLLF4fk8c2TjFctsEfrKyMSS5uOR9Ayqs3rco1lgGp9mKssqge8a-zmdfqg_JsHlD4omiPgnaKRVS4XPrpCuCkyk4r6cZeJQbqHWd1TW4AL7QLktVAGddnWdoLbXFz9Rztt20DbxgHKxDLyjUtS5VFsCWMLVChhCUVHiICXuzHjnzs-foMD0bszTU32bs7wl7SwM7fkXc2vFBu_huBlU1PiCKcUGi74jYJxcWiM4UckBnGnyeT9juWizMoPCdwWkzK6WaaqxDRgH4S1NMNftYjXcv_-WnV-wBXcf0S7nLtpeLFbxm97qw2otqsBcDDLcyrAvZ |
link.rule.ids | 315,782,786,866,1408,2106,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZoOZQL_4gtBXxA4hQ1seMke1zCLkVsq0KLxM3yz4RWKkm12T20Jx6BJ-DheBJmnGTLnpAQuURxEtuyZ8afR-NvGHuVKIiFLXBbYpNxlKYgIou4NcpVYgn_yxyC6-IkP_pSvJ0STc5kOAvT8UOsHW6kGcFek4KTQ3r_hjXUwQVxEFIQZJwUW-x2mqE00ikOeXzjZkH8IEO-R1RNCrdNsoG6MRb7m1VsLE2BwX8Ddv4JXsPqM7v3H_p9n93toSefdLLygN2C-iHbKYeMb4_Yz0NAKM6Pz5ZnBte4K1NjY_yEQtyX59fg8U2zbPrEOa5nGuAlXGClbQvfLB1t5-TZ5ZPrcw-_vv-Y4bLZeRtDBZ-IKBbv74gmG60sN7XnH1cmeCUXV7zrQInNuwYlG-vgZLAosAzax-zzbHpaHkR9_obIEUt95JWV0seJy4wVNvdWxGCdGqfgUHSgUlVaVWA9uFzZNJYerLEVTmKaK4OfySdsu25qeMo4GIsbIV9VqpCpB1PA2CTCey-FxCsZsdfD1OnLjqZDd4TMQtN46_V4j9gbmtn1V0SvHQqaxVfda6t2HoGM9QK3jwh_ssQAMZpCBrifBpdlI7Y3yIXudb7VaDnTQsixwjZEkIC_dEWX03m5ftr9l59esp2D08O5nr8_-vCM3aHyEI0p9tj2crGC52yr9asXQSd-A7kbDww |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZokYAL_xULLfiAxClqYsdJ9ljS3YIo1UJB4mb5Z9JWapNqs3toTzwCT8DD8STMONmUPSFBLlGcZGzZM57Po_Fnxl4nCmJhC1yW2GQcpSmIyCJujXKVWML_MocQujjOj74V-xOiyRl28Xf8EEPAjSwjzNdk4Je-2r0hDXVwThSElAMZJ8UGu50iFif2fClnN1EWhA8yHPeIlknZtkm2Ym6Mxe66iDXPFAj811Dnn9g1OJ_pg_9v9kN2vweefK_TlEfsFtSP2d1ydd7bE_bzIyAQ57PTxalBD3dlaqyLH1OC--LsGjy-aRZNf2yO63kGeAnnKLRt4cLSxnZOcV2-d33m4df3H1N0ml2sMQj4TDSxeD8gkmycY7mpPf-0NCEmOb_iXQNKrN41qNcog9N0RWll0D5lX6eTL-W7qD-9IXLEUR95ZaX0ceIyY4XNvRUxWKfGKThUHKhUlVYVWA8uVzaNpQdrbJWl6C6Vwc_kFtusmxqeMQ7G4jLIV5UqZOrBFDA2ifDeSyHxSkbszWrk9GVH0qE7Omahqb_10N8j9pYGdviKyLVDQTM_0b2taucRxlgvcPGI4CdLDBCfKWSAq2lwWTZi2yu10L3FtxrnzbQQcqywDhEU4C9N0eXksByenv_LT6_Yndn-VB--P_rwgt2j4pCKKbbZ5mK-hB220frly2ARvwFmiA2y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+Phthalocyanine+Sensitized+Photoelectrochemical+Cell+Assembling+with+Azide%E2%80%90Functionalized+Reduced+Graphene+and+Quaternary+Metal+Chalcogenide+Composites&rft.jtitle=ChemElectroChem&rft.au=Ezgi+Varol%2C+Deniz&rft.au=U%C4%9Fuz+Neli%2C+%C3%96zlem&rft.au=Budak%2C+%C3%96zlem&rft.au=Keskin%2C+Bahad%C4%B1r&rft.date=2024-05-02&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=11&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcelc.202400018&rft.externalDBID=10.1002%252Fcelc.202400018&rft.externalDocID=CELC202400018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |