Increased tumorigenicity in the human pancreatic cell line MIA PaCa-2 is associated with an aberrant regulation of an IGF-1 autocrine loop and lack of expression of the TGF-beta type RII receptor

The growth characteristics associated with tumorigenicity were determined in clones of MIA PaCa-2 and PANC-1 pancreatic carcinoma cells. MIA PaCa-2 cells differed from PANC-1 cells in that they rapidly formed tumors in nude mice, formed colonies more rapidly and formed larger colonies in soft agar,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology Vol. 165; no. 1; p. 155
Main Authors: Freeman, J W, Mattingly, C A, Strodel, W E
Format: Journal Article
Language:English
Published: United States 01-10-1995
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growth characteristics associated with tumorigenicity were determined in clones of MIA PaCa-2 and PANC-1 pancreatic carcinoma cells. MIA PaCa-2 cells differed from PANC-1 cells in that they rapidly formed tumors in nude mice, formed colonies more rapidly and formed larger colonies in soft agar, and were cloned more efficiently when seeded at low density. MIA PaCa-2 cells but not PANC-1 cells were stimulated to escape quiescence and undergo DNA synthesis with nutrient media lacking growth factors. Both cell lines were stimulated to proliferate with serum-free media containing EGF, transferrin, and insulin. Antibody neutralization assays indicated that an IGF-1 autocrine loop was required for the nutrient stimulation of growth in MIA PaCa-2 cells and for the growth-factor stimulation in both MIA PaCa-2 and PANC-1 cells. Both cell lines were stimulated to proliferate with exogenous IGF-1 in basal media; this stimulation was specifically blocked by antibodies to IGF-1 or its receptor. MIA PaCa-2 and PANC-1 cells expressed similar levels of IGF-1 receptor mRNA and showed similar binding kinetics in receptor binding assays. In contrast to PANC-1 cells, MIA PaCa-2 cells were insensitive to TGF-beta 1 and did not express TGF-beta receptor type II. The results suggest that the growth-factor independence is representative of a more tumorigenic phenotype. We hypothesize that growth-factor independence of MIA PaCa-2 cells is mediated by an aberrant regulation of an IGF-1 autocrine loop. A decreased regulation of this IGF-1 loop may be potentiated by loss of response to TGF-beta.
ISSN:0021-9541
DOI:10.1002/jcp.1041650118