Carbide-Modified Pd on ZrO2 as Active Phase for CO2-Reforming of Methane—A Model Phase Boundary Approach
Starting from subsurface Zr0-doped “inverse” Pd and bulk-intermetallic Pd0Zr0 model catalyst precursors, we investigated the dry reforming reaction of methane (DRM) using synchrotron-based near ambient pressure in-situ X-ray photoelectron spectroscopy (NAP-XPS), in-situ X-ray diffraction and catalyt...
Saved in:
Published in: | Catalysts Vol. 10; no. 9; p. 1000 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
02-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Starting from subsurface Zr0-doped “inverse” Pd and bulk-intermetallic Pd0Zr0 model catalyst precursors, we investigated the dry reforming reaction of methane (DRM) using synchrotron-based near ambient pressure in-situ X-ray photoelectron spectroscopy (NAP-XPS), in-situ X-ray diffraction and catalytic testing in an ultrahigh-vacuum-compatible recirculating batch reactor cell. Both intermetallic precursors develop a Pd0–ZrO2 phase boundary under realistic DRM conditions, whereby the oxidative segregation of ZrO2 from bulk intermetallic PdxZry leads to a highly active composite layer of carbide-modified Pd0 metal nanoparticles in contact with tetragonal ZrO2. This active state exhibits reaction rates exceeding those of a conventional supported Pd–ZrO2 reference catalyst and its high activity is unambiguously linked to the fast conversion of the highly reactive carbidic/dissolved C-species inside Pd0 toward CO at the Pd/ZrO2 phase boundary, which serves the role of providing efficient CO2 activation sites. In contrast, the near-surface intermetallic precursor decomposes toward ZrO2 islands at the surface of a quasi-infinite Pd0 metal bulk. Strongly delayed Pd carbide accumulation and thus carbon resegregation under reaction conditions leads to a much less active interfacial ZrO2–Pd0 state. |
---|---|
AbstractList | Starting from subsurface Zr0-doped “inverse” Pd and bulk-intermetallic Pd0Zr0 model catalyst precursors, we investigated the dry reforming reaction of methane (DRM) using synchrotron-based near ambient pressure in-situ X-ray photoelectron spectroscopy (NAP-XPS), in-situ X-ray diffraction and catalytic testing in an ultrahigh-vacuum-compatible recirculating batch reactor cell. Both intermetallic precursors develop a Pd0–ZrO2 phase boundary under realistic DRM conditions, whereby the oxidative segregation of ZrO2 from bulk intermetallic PdxZry leads to a highly active composite layer of carbide-modified Pd0 metal nanoparticles in contact with tetragonal ZrO2. This active state exhibits reaction rates exceeding those of a conventional supported Pd–ZrO2 reference catalyst and its high activity is unambiguously linked to the fast conversion of the highly reactive carbidic/dissolved C-species inside Pd0 toward CO at the Pd/ZrO2 phase boundary, which serves the role of providing efficient CO2 activation sites. In contrast, the near-surface intermetallic precursor decomposes toward ZrO2 islands at the surface of a quasi-infinite Pd0 metal bulk. Strongly delayed Pd carbide accumulation and thus carbon resegregation under reaction conditions leads to a much less active interfacial ZrO2–Pd0 state. |
Author | Kevin Ploner Michael Schmid Delf Kober Simon Penner Norbert Köpfle Peter Lackner Emilia Carbonio Thomas Götsch Christoph Thurner Lukas Schlicker Andrew Doran Michael Hävecker Bernhard Klötzer Marc Willinger Axel Knop-Gericke Aleksander Gurlo |
Author_xml | – sequence: 1 fullname: Norbert Köpfle organization: Institute of Physical Chemistry, University of Innsbruck, Innrain 52 c, A-6020 Innsbruck, Austria – sequence: 2 fullname: Kevin Ploner organization: Institute of Physical Chemistry, University of Innsbruck, Innrain 52 c, A-6020 Innsbruck, Austria – sequence: 3 fullname: Peter Lackner organization: Institute of Applied Physics, TU Wien, Wiedner Hauptstr. 8-10/134, 1040 Wien, Austria – sequence: 4 fullname: Thomas Götsch organization: Institute of Physical Chemistry, University of Innsbruck, Innrain 52 c, A-6020 Innsbruck, Austria – sequence: 5 fullname: Christoph Thurner organization: Institute of Physical Chemistry, University of Innsbruck, Innrain 52 c, A-6020 Innsbruck, Austria – sequence: 6 fullname: Emilia Carbonio organization: Fritz-Haber-Institut der Max-Planck-Gesellschaft, Anorganische Chemie, Faradayweg 4–6, D-14195 Berlin, Germany – sequence: 7 fullname: Michael Hävecker organization: Fritz-Haber-Institut der Max-Planck-Gesellschaft, Anorganische Chemie, Faradayweg 4–6, D-14195 Berlin, Germany – sequence: 8 fullname: Axel Knop-Gericke organization: Fritz-Haber-Institut der Max-Planck-Gesellschaft, Anorganische Chemie, Faradayweg 4–6, D-14195 Berlin, Germany – sequence: 9 fullname: Lukas Schlicker organization: Institut für Werkstoffwissenschaften und -technologien, Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, D-10623 Berlin, Germany – sequence: 10 fullname: Andrew Doran organization: Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 11 fullname: Delf Kober organization: Institut für Werkstoffwissenschaften und -technologien, Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, D-10623 Berlin, Germany – sequence: 12 fullname: Aleksander Gurlo organization: Institut für Werkstoffwissenschaften und -technologien, Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, D-10623 Berlin, Germany – sequence: 13 fullname: Marc Willinger organization: Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093 Zürich, Switzerland – sequence: 14 fullname: Simon Penner organization: Institute of Physical Chemistry, University of Innsbruck, Innrain 52 c, A-6020 Innsbruck, Austria – sequence: 15 fullname: Michael Schmid organization: Institute of Applied Physics, TU Wien, Wiedner Hauptstr. 8-10/134, 1040 Wien, Austria – sequence: 16 fullname: Bernhard Klötzer organization: Institute of Physical Chemistry, University of Innsbruck, Innrain 52 c, A-6020 Innsbruck, Austria |
BookMark | eNotTs1Kw0AYXETBWnv0vi8Q3b8ku8cY1BZaWkQvXsK3f-2WNFs2UfDmQ_iEPolBexhmmBmGuULnXewcQjeU3HKuyJ2BAVpKiBpBztCEkZJnggtxiWZ9vx_NMeKS5hO0ryHpYF22ijb44CzeWBw7_JbWDEOPKzOED4c3O-gd9jHhes2yZzeqQ-i2OHq8csMOOvfz9V3hccS1p_J9fO8spE9cHY8pgtldowsPbe9mJ56i18eHl3qeLddPi7paZoaXkmSS5YZ7A17bwguuBHAjAIwQjhXOgyCEE50r6QtT6rKUBTFAKZVGF7bgik_R4n_XRtg3xxQO44smQmj-jJi2DaQhmNY1tDTeKKoIEV7kWirnNKdM5popxgrJfwGX4mZV |
CitedBy_id | crossref_primary_10_1021_acscatal_2c01120 crossref_primary_10_1021_acscatal_2c01584 crossref_primary_10_3390_catal11050588 crossref_primary_10_1016_j_psep_2021_10_051 crossref_primary_10_1021_acscatal_1c04334 crossref_primary_10_1039_D1CY00913C crossref_primary_10_1007_s11164_023_05083_7 crossref_primary_10_3390_catal11010137 crossref_primary_10_1021_acscatal_1c00718 crossref_primary_10_3390_methane3010006 crossref_primary_10_1016_j_apsusc_2023_156679 crossref_primary_10_1002_ange_202213249 crossref_primary_10_1002_anie_202213249 |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.3390/catal10091000 |
DatabaseName | Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4344 |
ExternalDocumentID | oai_doaj_org_article_17cfc919004f45b89eeb31285b292268 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU D1I ESX GROUPED_DOAJ HCIFZ IAO KB. KQ8 MODMG M~E OK1 PDBOC PIMPY PROAC RIG |
ID | FETCH-LOGICAL-c3780-825c3fcafbd6f4394a3c4aac44e26efa40030b598f6c7b77860ca1118cb6d6393 |
IEDL.DBID | DOA |
IngestDate | Tue Oct 22 15:13:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3780-825c3fcafbd6f4394a3c4aac44e26efa40030b598f6c7b77860ca1118cb6d6393 |
OpenAccessLink | https://doaj.org/article/17cfc919004f45b89eeb31285b292268 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17cfc919004f45b89eeb31285b292268 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-02 |
PublicationDateYYYYMMDD | 2020-09-02 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Catalysts |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
SSID | ssj0000913815 |
Score | 2.297722 |
Snippet | Starting from subsurface Zr0-doped “inverse” Pd and bulk-intermetallic Pd0Zr0 model catalyst precursors, we investigated the dry reforming reaction of methane... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 1000 |
SubjectTerms | coking graphite in-situ X-ray photoelectron spectroscopy metal-support interaction palladium carbide palladium-zirconium intermetallic phase |
Title | Carbide-Modified Pd on ZrO2 as Active Phase for CO2-Reforming of Methane—A Model Phase Boundary Approach |
URI | https://doaj.org/article/17cfc919004f45b89eeb31285b292268 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgCyyIp3jLA2tE6thJPKahVZfSioeEWCI_RRFKUEoHNj6CL-RLuDcJqBsLaxzZkq98z7lO7jmEXIhUKsZcEkgjogAQ2gdSGzhXQLUZMAJhG-e58W1y_ZBeDVEm59fqC_8Ja-WB24277CfGGwmwFXLPhU6lg_IPkqrQTAJ1aNt8w3ilmGpysOwDFIlWVDOCur7tBO_jQIjdbCsC_Q2SjLbJVkcBadYuvUPWXLlLNvIf57U98pyrWs-tCyaVnXvgiHRmaVXSx3rKqFrQrMlRdPYECESBdNJ8yoIbh_QTgIhWnk4c3oi7r4_PjKLb2Uv38qAxUarfadZJie-T-9HwLh8HnSdCYKIkxa5vYSJvlNc29tjVqiLDlTKcOxY7rzieWi1k6mOTaBSHC42CfJYaHVtgI9EB6ZVV6Q4JRfLjTOwd8wJnAqrImWXccK0Tzs0RGeAmFa-t7EWBQtTNAwhP0YWn-Cs8x_8xyQnZZFjm4nccdkp6b_XSnZH1hV2eN2H_BhzEr_U |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbide-Modified+Pd+on+ZrO2+as+Active+Phase+for+CO2-Reforming+of+Methane%E2%80%94A+Model+Phase+Boundary+Approach&rft.jtitle=Catalysts&rft.au=Norbert+K%C3%B6pfle&rft.au=Kevin+Ploner&rft.au=Peter+Lackner&rft.au=Thomas+G%C3%B6tsch&rft.date=2020-09-02&rft.pub=MDPI+AG&rft.eissn=2073-4344&rft.volume=10&rft.issue=9&rft.spage=1000&rft_id=info:doi/10.3390%2Fcatal10091000&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_17cfc919004f45b89eeb31285b292268 |