Aerosol Synthesis of Pure and Pt-Doped ZnO Particles Using Nitrate and Pdda-Pt(IV) Complex Solutions

Pure and Pt-doped ZnO nanophase particles were synthesized by ultrasonic spray pyrolysis. The particles were obtained through the decomposition of zinc nitrate and with a newly developed Pt(IV) complex with 1,3-propylenediamine-N,N′-diacetate tetradentate class ligand (pdda). The complex was charact...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research Vol. 20; no. 1; pp. 102 - 113
Main Authors: Djinovic, Vesna M., Mancic, Lidija T., Bogdanovic, Goran A., Vulic, Predrag J., Rosario, Gilberto del, Sabo, Tibor J., Milosevic, Olivera B.
Format: Journal Article
Language:English
Published: New York, USA Cambridge University Press 01-01-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pure and Pt-doped ZnO nanophase particles were synthesized by ultrasonic spray pyrolysis. The particles were obtained through the decomposition of zinc nitrate and with a newly developed Pt(IV) complex with 1,3-propylenediamine-N,N′-diacetate tetradentate class ligand (pdda). The complex was characterized by elemental analysis, electronic absorption and infrared spectroscopy. The form of the determined complex structure {trans-[Pt(pdda)Br2]·H2O} implies that Pt(IV) ion has a distorted octahedral coordination due to intramolecular N–H···Br interaction. The results of structural refinement (cell parameters, bond lengths, and ion occupancy) of ultrasonically derived pure and Pt-doped ZnO particles suggest either the formation of Zni interstitials or platinum ion incorporation into the ZnO lattice in octahedral interstitial positions, respectively. A well-crystallized hexagonal wurtzite structure of ZnO was pronounced in all investigated samples [JCPDS card 36-1415, Joint Committee on Powder Diffraction Standards, defined by International Centre for Diffraction Data (www.icdd.com)]. Phase determination also indicated the presence of a nitrate hydroxide hydrate phase (JCPDS card 24-1460), as a result of incomplete precursor decomposition and a spinel Zn2PtO4 phase (below 1.0 wt%) located in the boundary region for a Pt-doped ZnO sample. Based on x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy analyses, it was shown that the different particle growingmorphologies, which were either spheroidally or pyramidally shaped, were influenced by the precursor chemistry, processing parameters and the presence of platinum ions. The composite internal particle structure revealed by transmission electron microscopy and selected area electron diffraction analyses, implied that the secondary particles represent an assembly of primary particles sized under 60 nm aroused during the processes of nucleation, growth and aggregation. Both hexagonal and spheroidal shape of primary particles was evident. The particle morphology, primarily particle size and the mechanism of Pt4+ ion introduction into the ZnO cell was discussed based on the structural refinement and selected area electron diffraction analysis.
Bibliography:ark:/67375/6GQ-M48F7RFM-M
istex:B8A6A64708E87569431B07AB6F9B37E23E2429FC
PII:S0884291400091123
ArticleID:09112
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.2005.0006