Headspace Solid-Phase Micro-Extraction Method Optimization and Evaluation for the Volatile Compound Extraction of Bronchoalveolar Lung Lavage Fluid Samples

Headspace solid-phase micro-extraction (HS-SPME) is a prevalent technique in metabolomics and volatolomics research. However, the performance of HS-SPME can vary considerably depending on the sample matrix. As a result, fine-tuning the parameters for each specific sample matrix is crucial to maximiz...

Full description

Saved in:
Bibliographic Details
Published in:Separations Vol. 11; no. 1; p. 27
Main Authors: Gao, Antao, Nouri, Nina, Stevenson, Keisean, Zemanick, Edith T., Nick, Jerry A., Hill, Jane E.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Headspace solid-phase micro-extraction (HS-SPME) is a prevalent technique in metabolomics and volatolomics research. However, the performance of HS-SPME can vary considerably depending on the sample matrix. As a result, fine-tuning the parameters for each specific sample matrix is crucial to maximize extraction efficacy. In this context, we conducted comprehensive HS-SPME optimization for bronchoalveolar lavage fluid (BALF) samples using two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-ToFMS). Our exploration spanned several HS-SPME parameters, including vial size, dilution factor, extraction time, extraction temperature, and ionic strength. The 10 mL vial size, no sample dilution, extraction time of 50 min, extraction temperature of 45 °C, and 40% salt were identified as the optimized parameters. The optimized method was then evaluated by a pair-wise comparison of ten sets of samples. The results revealed that the optimized method yielded an increase of 340% in total peak area and an increase of 80% in total peak number. Moreover, enhancements were observed across nine major chemical classes in both peak area and number. Notably, the optimized method also doubled the number of volatile compounds consistently detected across BALF samples, from 52 to 108.
ISSN:2297-8739
2297-8739
DOI:10.3390/separations11010027