Influence of Nd Substitution on the Phase Constitution in (Zr,Ce)Fe10Si2 Alloys with the ThMn12 Structure

Iron-based compounds with a ThMn12-type structure have the potential to bridge the gap between ferrites and high performance Nd2Fe14B magnets. From the point of view of possible applications, the main advantage is their composition, with about 10 wt.% less rare earth elements in comparison with the...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 16; no. 4; p. 1522
Main Authors: Kołodziej, Mieszko, Grenèche, Jean-Marc, Auguste, Sandy, Idzikowski, Bogdan, Zubko, Maciej, Bessais, Lotfi, Śniadecki, Zbigniew
Format: Journal Article
Language:English
Published: Basel MDPI AG 11-02-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iron-based compounds with a ThMn12-type structure have the potential to bridge the gap between ferrites and high performance Nd2Fe14B magnets. From the point of view of possible applications, the main advantage is their composition, with about 10 wt.% less rare earth elements in comparison with the 2:14:1 phase. On the other hand, the main issue delaying the development of Fe-rich alloys with a ThMn12-type structure is their structural stability. Therefore, various synthesis methods and stabilizing elements have been proposed to stabilize the structure. In this work, the influence of increasing Nd substitution on the phase constitution of Zr0.4−xNdxCe0.6Fe10Si2 (0 ≤ x ≤ 0.3) alloys was analyzed. X-ray diffraction and 57Fe Mössbauer spectrometry were used as the main methods to derive the stability range and destabilization routes of the 1:12 structure. For the arc-melted samples, an increase in the lattice parameters of the ThMn12-type structure was observed with the simultaneous growth of bcc-(Fe,Si) content with increasing Nd substitution. After isothermal annealing, the ThMn12-type structure (and the coexisting bcc-(Fe,Si)) were stable over the whole composition range. While the formation of a 1:12 phase was totally suppressed in the as-cast state for x = 0.3, further heat treatment resulted in the growth of about 45% of the ThMn12-type phase. The results confirmed that the stability range of ThMn12-type structure in the Nd-containing alloys was well improved by other substitutions and the heat treatment, which in turn, is also needed to homogenize the ThMn12-type phase. After further characterization of the magnetic properties and optimization of microstructure, such hard/soft magnetic composites can show their potential by exploiting the exchange spring mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16041522