Automatic Roadside Feature Detection Based on Lidar Road Cross Section Images
The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for hig...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 15; p. 5510 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
23-07-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for highly accurate and fully automatic determination of two attributes is proposed: roadside severity-object and roadside severity-distance. The framework integrates mobile Lidar point clouds with deep learning-based object detection on road cross-section images. The You Only Look Once (YOLO) network was used for object detection. Lidar data were collected by vehicle-mounted mobile Lidar for all Croatian highways. Point clouds were collected in .las format and cropped to 10 m-long segments align vehicle path. To determine both attributes, it was necessary to detect the road with high accuracy, then roadside severity-distance was determined with respect to the edge of the detected road. Each segment is finally classified into one of 13 roadside severity object classes and one of four roadside severity-distance classes. The overall accuracy of the roadside severity-object classification is 85.1%, while for the distance attribute it is 85.6%. The best average precision is achieved for safety barrier concrete class (0.98), while the worst AP is achieved for rockface class (0.72). |
---|---|
AbstractList | The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for highly accurate and fully automatic determination of two attributes is proposed: roadside severity-object and roadside severity-distance. The framework integrates mobile Lidar point clouds with deep learning-based object detection on road cross-section images. The You Only Look Once (YOLO) network was used for object detection. Lidar data were collected by vehicle-mounted mobile Lidar for all Croatian highways. Point clouds were collected in .las format and cropped to 10 m-long segments align vehicle path. To determine both attributes, it was necessary to detect the road with high accuracy, then roadside severity-distance was determined with respect to the edge of the detected road. Each segment is finally classified into one of 13 roadside severity object classes and one of four roadside severity-distance classes. The overall accuracy of the roadside severity-object classification is 85.1%, while for the distance attribute it is 85.6%. The best average precision is achieved for safety barrier concrete class (0.98), while the worst AP is achieved for rockface class (0.72). |
Author | Medak, Damir Brkić, Ivan Ševrović, Marko Miler, Mario |
AuthorAffiliation | 1 Department of Geoinformatics, Faculty of Geodesy, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia; ibrkic@geof.unizg.hr (I.B.); dmedak@geof.unizg.hr (D.M.) 2 Department of Transport Planning, Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia; msevrovic@fpz.unizg.hr |
AuthorAffiliation_xml | – name: 2 Department of Transport Planning, Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia; msevrovic@fpz.unizg.hr – name: 1 Department of Geoinformatics, Faculty of Geodesy, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia; ibrkic@geof.unizg.hr (I.B.); dmedak@geof.unizg.hr (D.M.) |
Author_xml | – sequence: 1 givenname: Ivan orcidid: 0000-0003-0301-0485 surname: Brkić fullname: Brkić, Ivan – sequence: 2 givenname: Mario orcidid: 0000-0003-3883-8493 surname: Miler fullname: Miler, Mario – sequence: 3 givenname: Marko surname: Ševrović fullname: Ševrović, Marko – sequence: 4 givenname: Damir surname: Medak fullname: Medak, Damir |
BookMark | eNpdkUtv1DAQgC1URB9w4B9E4gKHBdvj2M4FqSwtrLQIicfZmtiTJaskLnaCxL-v211VlNOMZj59msc5O5niRIy9FPwtQMPfZSlFXdeCP2FnQkm1slLyk3_yU3ae855zCQD2GTuF2jaWC3XGvlwucxxx7n31LWLIfaDqmnBeElUfaSY_93GqPmCmUJVk2wdM92S1TjHn6vuR2Iy4o_ycPe1wyPTiGC_Yz-urH-vPq-3XT5v15Xblweh5hcrWQnOr66DaRihlqLHaypob3XC0HacWTJBgTKt9B4E6a4yX2jdCqibABdscvCHi3t2kfsT010Xs3X0hpp3DVHYayLVC2Q4VQgdKeZKWt-Cxgzq0oUVhiuv9wXWztCMFT9OccHgkfdyZ-l9uF_-4BkAIAUXw-ihI8fdCeXZjnz0NA04Ul-ykbjQXZTVV0Ff_ofu4pKmcyknDCyKNFIV6c6D83YkTdQ_DCO7uHu4eHg6348aboA |
CitedBy_id | crossref_primary_10_3390_su15118979 crossref_primary_10_1061_JCCEE5_CPENG_5406 crossref_primary_10_3390_s23094405 crossref_primary_10_3390_s22197533 |
Cites_doi | 10.1145/1143844.1143874 10.1016/S2468-2667(19)30074-X 10.5194/isprsannals-II-3-W4-239-2015 10.1007/s00521-021-05734-z 10.1109/IVCNZ51579.2020.9290590 10.1177/1729881417738102 10.1109/ITSC45102.2020.9294305 10.1109/SSCI44817.2019.9002813 10.1007/978-3-030-01234-2_31 10.1016/j.procs.2022.01.135 10.3390/rs10030458 10.1109/TITS.2018.2797697 10.5220/0007706800710076 10.1177/0278364917696568 10.1145/3517256 10.3390/rs12223844 10.1109/ACCESS.2021.3108543 10.1109/IVCNZ48456.2019.8960997 10.1007/978-3-319-54193-8_13 10.1016/j.isprsjprs.2018.10.004 10.1016/j.aap.2019.105323 10.1109/TITS.2020.3003782 10.1007/978-3-030-36802-9 10.3390/s19020347 10.1177/0361198120981948 10.1109/ICASSP39728.2021.9413902 10.1016/j.earscirev.2022.103969 10.1002/wsb.949 10.1109/JSEN.2020.3020626 10.1109/IVCNZ.2018.8634743 10.1109/CVPR.2016.91 10.55329/tcfh3140 10.1109/TNNLS.2020.3015992 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22155510 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_b148fa4a3f344ce280b3caf35dbdba17 10_3390_s22155510 |
GrantInformation_xml | – fundername: HIDROLAB grantid: KK.01.1.1.04.0053 |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c376t-a485160865d4b91447e98682507690a8f0eb37d2377b6cf3def877c26c91249d3 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:16:05 EDT 2024 Tue Sep 17 21:19:57 EDT 2024 Sat Oct 05 04:47:46 EDT 2024 Thu Oct 10 21:53:08 EDT 2024 Thu Sep 26 21:15:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-a485160865d4b91447e98682507690a8f0eb37d2377b6cf3def877c26c91249d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0301-0485 0000-0003-3883-8493 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331113/ |
PMID | 35898014 |
PQID | 2700762721 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b148fa4a3f344ce280b3caf35dbdba17 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331113 proquest_miscellaneous_2696010764 proquest_journals_2700762721 crossref_primary_10_3390_s22155510 |
PublicationCentury | 2000 |
PublicationDate | 20220723 |
PublicationDateYYYYMMDD | 2022-07-23 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220723 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Chen (ref_11) 2021; 22 Ziakopoulos (ref_24) 2020; 135 Leduc (ref_12) 2008; 1 ref_14 ref_13 ref_35 Jiang (ref_36) 2021; 199 ref_33 Wolcott (ref_43) 2017; 36 ref_31 Li (ref_44) 2021; 32 Chan (ref_41) 2022; Volume 6 ref_39 ref_16 ref_38 Passmore (ref_1) 2019; 4 ref_15 ref_37 Zeybek (ref_32) 2021; 2675 Li (ref_45) 2020; 37 Sanjeewani (ref_18) 2021; 33 Sanjeewani (ref_17) 2021; 9 ref_25 (ref_19) 2021; 1 ref_23 Ke (ref_10) 2019; 20 ref_21 ref_20 Zazo (ref_22) 2018; 146 ref_3 ref_2 Wu (ref_34) 2021; 21 ref_29 ref_28 Ural (ref_30) 2015; 2 ref_27 ref_26 ref_9 ref_8 Tavani (ref_42) 2022; 227 ref_5 ref_4 ref_7 Stitt (ref_40) 2019; 43 ref_6 |
References_xml | – ident: ref_7 – ident: ref_39 doi: 10.1145/1143844.1143874 – volume: 4 start-page: e272 year: 2019 ident: ref_1 article-title: Progress in Reducing Road-Traffic Injuries in the WHO European Region publication-title: Lancet Public Health doi: 10.1016/S2468-2667(19)30074-X contributor: fullname: Passmore – volume: 2 start-page: 239 year: 2015 ident: ref_30 article-title: Road and Roadside Feature Extraction Using Imagery and Lidar Data for Transportation Operation publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprsannals-II-3-W4-239-2015 contributor: fullname: Ural – ident: ref_5 – ident: ref_3 – volume: 33 start-page: 9691 year: 2021 ident: ref_18 article-title: Single Class Detection-Based Deep Learning Approach for Identification of Road Safety Attributes publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05734-z contributor: fullname: Sanjeewani – ident: ref_26 doi: 10.1109/IVCNZ51579.2020.9290590 – ident: ref_31 doi: 10.1177/1729881417738102 – ident: ref_15 doi: 10.1109/ITSC45102.2020.9294305 – ident: ref_27 doi: 10.1109/SSCI44817.2019.9002813 – ident: ref_38 doi: 10.1007/978-3-030-01234-2_31 – volume: 199 start-page: 1066 year: 2021 ident: ref_36 article-title: A Review of Yolo Algorithm Developments publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.135 contributor: fullname: Jiang – ident: ref_9 doi: 10.3390/rs10030458 – volume: 20 start-page: 54 year: 2019 ident: ref_10 article-title: Real-Time Traffic Flow Parameter Estimation from UAV Video Based on Ensemble Classifier and Optical Flow publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2797697 contributor: fullname: Ke – ident: ref_16 doi: 10.5220/0007706800710076 – volume: 36 start-page: 292 year: 2017 ident: ref_43 article-title: Robust LIDAR Localization Using Multiresolution Gaussian Mixture Maps for Autonomous Driving publication-title: Int. J. Robot. Res. doi: 10.1177/0278364917696568 contributor: fullname: Wolcott – ident: ref_14 – volume: Volume 6 start-page: 27 year: 2022 ident: ref_41 article-title: Testing a Drop of Liquid Using Smartphone LiDAR publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies doi: 10.1145/3517256 contributor: fullname: Chan – ident: ref_8 doi: 10.3390/rs12223844 – volume: 1 start-page: 1 year: 2008 ident: ref_12 article-title: Road Traffic Data: Collection Methods and Applications, Working Papers on Energy publication-title: Work. Pap. Energy Transp. Clim. Change contributor: fullname: Leduc – volume: 9 start-page: 120525 year: 2021 ident: ref_17 article-title: Optimization of Fully Convolutional Network for Road Safety Attribute Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3108543 contributor: fullname: Sanjeewani – ident: ref_28 doi: 10.1109/IVCNZ48456.2019.8960997 – ident: ref_21 – ident: ref_37 doi: 10.1007/978-3-319-54193-8_13 – volume: 146 start-page: 334 year: 2018 ident: ref_22 article-title: Road Safety Evaluation through Automatic Extraction of Road Horizontal Alignments from Mobile LiDAR System and Inductive Reasoning Based on a Decision Tree publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.10.004 contributor: fullname: Zazo – volume: 135 start-page: 105323 year: 2020 ident: ref_24 article-title: A Review of Spatial Approaches in Road Safety publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2019.105323 contributor: fullname: Ziakopoulos – volume: 37 start-page: 50 year: 2020 ident: ref_45 article-title: Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems publication-title: IEEE Signal Processing Mag. contributor: fullname: Li – volume: 22 start-page: 3190 year: 2021 ident: ref_11 article-title: High-Resolution Vehicle Trajectory Extraction and Denoising from Aerial Videos publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3003782 contributor: fullname: Chen – ident: ref_23 doi: 10.1007/978-3-030-36802-9 – ident: ref_6 – ident: ref_13 doi: 10.3390/s19020347 – volume: 2675 start-page: 30 year: 2021 ident: ref_32 article-title: Extraction of Road Lane Markings from Mobile LiDAR Data publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.1177/0361198120981948 contributor: fullname: Zeybek – ident: ref_33 doi: 10.1109/ICASSP39728.2021.9413902 – volume: 227 start-page: 103969 year: 2022 ident: ref_42 article-title: Smartphone Assisted Fieldwork: Towards the Digital Transition of Geoscience Fieldwork Using LiDAR-Equipped IPhones publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2022.103969 contributor: fullname: Tavani – ident: ref_4 – ident: ref_29 – ident: ref_2 – volume: 43 start-page: 159 year: 2019 ident: ref_40 article-title: Smartphone LIDAR Can Measure Tree Cavity Dimensions for Wildlife Studies publication-title: Wildl. Soc. Bull. doi: 10.1002/wsb.949 contributor: fullname: Stitt – volume: 21 start-page: 1152 year: 2021 ident: ref_34 article-title: Deep 3D Object Detection Networks Using LiDAR Data: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3020626 contributor: fullname: Wu – ident: ref_25 doi: 10.1109/IVCNZ.2018.8634743 – ident: ref_35 doi: 10.1109/CVPR.2016.91 – volume: 1 start-page: 000002 year: 2021 ident: ref_19 article-title: Flying Roadside Stones—A Deadly Risk in a Crash publication-title: Traffic Saf. Res. doi: 10.55329/tcfh3140 – ident: ref_20 – volume: 32 start-page: 3412 year: 2021 ident: ref_44 article-title: Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3015992 contributor: fullname: Li |
SSID | ssj0023338 |
Score | 2.4407635 |
Snippet | The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 5510 |
SubjectTerms | Accuracy Automation Classification Cross-sections Data collection Deep learning Fatalities Infrastructure Lidar Neural networks road assessment road safety Roads & highways roadside features Safety barriers Segments Sensors Traffic accidents & safety Traffic flow Travel time Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEJ5oT3owPiNazWq8kgJLWTj2GU3Ug9XEG9kXsQfBtOX_OwOUlJMXbwTmsMywM9_H7n4D8OBl0veVjl2dZImLFc-60g-UK-MM6QSnE1DVr4uFeP2MpzOSyWlbfdGesFoeuHbcQCFez2QoecbDUNsg9hTXMuNDo4ySfn2O3Iu2ZKqhWhyZV60jxJHUD9YBVjbEBl6n-lQi_R1k2d0XuVNo5sdw1CBENqpHdgJ7Nj-Fwx3dwDN4GZWbotJaZW-FNNRxkxGWK1eWTe2m2l2VszEWKMPw4nlp5KqyZBMaFls0Fk_fmE3W5_Axn71PHt2mL4KrMR1sXBkiTIqQiwxNqBJkRMImcYRUzxPIddHLHjJkYQIuhIp0xo3NYiF0EOmEWk0bfgG9vMjtJTDLjeLKUpcqgmZDGfu0UKeMH6lAGO3A_dZf6U8tf5EibSCnpq1THRiTJ1sDUqyubmAc0yaO6V9xdKC_jUPaTKN1SqvimK2RpTpw1z7GCUCrGjK3RYk2UUKkUkShA6ITv86Auk_y5VclpZ1wjsmeX_3HG1zDQUBnIzzhBrwPvc2qtDewvzblbfVx_gJR1OsI priority: 102 providerName: Directory of Open Access Journals |
Title | Automatic Roadside Feature Detection Based on Lidar Road Cross Section Images |
URI | https://www.proquest.com/docview/2700762721 https://search.proquest.com/docview/2696010764 https://pubmed.ncbi.nlm.nih.gov/PMC9331113 https://doaj.org/article/b148fa4a3f344ce280b3caf35dbdba17 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT4QwEMcnric9GJ8RX6nGKy5QoHDUVaOJGuMj8Ub6Qjdxwewu39-ZLmzk6o1ASZpp6cyPTv8DcB6UMgyVznydl7mPHs_6MoyUL7MScYLTCSj36-JVPH1k1zckk5N0Z2Fc0r5W44vqe3JRjb9cbuXPRA-7PLHh8-MIIZwqpA8HMMDYsEP0lrI4QtdCQogjzw9nETo1DAuo5BtPspzUUno-yEn19-LLfnbkH3dzuwkbbZzILhf92YIVW23D-h_1wB14vGzmtVNcZS-1NFR3k1FE10wtu7Zzl2NVsSt0U4bhxcPYyKlryUbULfbatrif4Joy24X325u30Z3fVkfwNS4Kc1_GGCylSCSJiVWOXCRsnqUIfIFA4kVbB8jJwkRcCJXqkhtbZkLoKNU5FZw2fA9Wq7qy-8AsN4orS7WqKEBLZBbSdp0yYaoiYbQHZ529ip-FCEaB8ED2LZb29eCKLLlsQLrV7kY9_Sza0SsU0lcpY8lLHsfaRlmguJYlT4wySobCg6NuHIr2Y5oVtDeOazayqgeny8f4GdDehqxs3WCbNCe0FGnsgeiNX69D_Sc4v5ygdjufDv795iGsRXQsIhB-xI9gdT5t7DEMZqY5cZB_4qboL3eB6vs |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT6RAEK74OOx6UPdhxGe72SsO0EDDUUeNZmeMWd1kb6Rf6CQOmJnh_1vVAxO5eiN0kTT90V310dVfAfwOShmGSme-zsvcR49nfRlGypdZiXSC0wko9-viUdz_z66uSSYn6c7CuKR9rSbn1ev0vJq8uNzKt6kedHlig4fxEEk4VUgfrMMmztcg6Eh6y7M40q6liBBHRj-YR-jWMDCgom88yXLSS-l5ISfW34sw-_mRHxzOzc4nu7oL222EyS6Wzd9gzVbfYeuD7uAPGF80i9pptbK_tTRUsZNRLNjMLLuyC5edVbFLdHCG4cVoYuTMWbIhvQ57bC3uprgazX_Cv5vrp-Gt39ZV8DUuJwtfxhhmpchlEhOrHBmVsHmWIlUMBHJlRClAhi1MxIVQqS65sWUmhI5SnVOpasP3YKOqK7sPzHKjuLJU5YpCu0RmIW30KROmKhJGe_CrG-fibSmfUSDtIFyKFS4eXBICKwNSvHY36tlz0Q5moZC3lTKWvORxrG2UBYprWfLEKKNkKDw46vAr2mk4L2hXHVd7ZLkenK2acQLRroisbN2gTZoTKRVp7IHo4d7rUL8F4XZS3C28B59-8hS-3D6NR8Xo7v7PIXyN6HBFIPyIH8HGYtbYY1ifm-bEfeDvyXX_gw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xISH2wPipBQYYxGuWxE7j5HFrVzGxTRMDibfIP1mlNana5v_nzk2r5XW8RfFFcvzFvvvi83cA31KvskybMjaVr2L0eC5WGdexKj3SCUEnoMKvi1t5_aecnJNMzq7UV0jaN3p20tzPT5rZXcitXMxNss0TS26uxkjCqUJ6srA-2YOnOGdTviXqPdcSSL02QkICWX2y4ujaMDigwm9iVFakmTLwREGwfxBlDnMkHzid6eF_dPclvOgjTXa6MXkFT1zzGg4e6A--gavTbt0GzVb2s1WWKncyigm7pWMTtw5ZWg07Q0dnGV5czqxaBks2pldit73FxRxXpdVb-D09_zX-Hvf1FWKDy8o6VjmGWwVympHNdYXMSrqqLJAyphI5M6KVItOWlgspdWG8sM6XUhpemIpKVlvxDvabtnFHwJywWmhH1a4oxBupMqMNP22zQnNpTQRft2NdLzYyGjXSD8Km3mETwRmhsDMg5etwo13-rfsBrTXyN69yJbzIc-N4mWphlBcjq61WmYzgeIth3U_HVU2767jqI9uN4MuuGScS7Y6oxrUd2hQVkVNZ5BHIAfaDDg1bEPIgyd1D_P7RT36GZzeTaX15cf3jAzzndMYilTEXx7C_XnbuI-ytbPcpfOP_AODWAhI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Roadside+Feature+Detection+Based+on+Lidar+Road+Cross+Section+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Brki%C4%87%2C+Ivan&rft.au=Miler%2C+Mario&rft.au=%C5%A0evrovi%C4%87%2C+Marko&rft.au=Medak%2C+Damir&rft.date=2022-07-23&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft_id=info:doi/10.3390%2Fs22155510&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |