Automatic Roadside Feature Detection Based on Lidar Road Cross Section Images

The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for hig...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 15; p. 5510
Main Authors: Brkić, Ivan, Miler, Mario, Ševrović, Marko, Medak, Damir
Format: Journal Article
Language:English
Published: Basel MDPI AG 23-07-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for highly accurate and fully automatic determination of two attributes is proposed: roadside severity-object and roadside severity-distance. The framework integrates mobile Lidar point clouds with deep learning-based object detection on road cross-section images. The You Only Look Once (YOLO) network was used for object detection. Lidar data were collected by vehicle-mounted mobile Lidar for all Croatian highways. Point clouds were collected in .las format and cropped to 10 m-long segments align vehicle path. To determine both attributes, it was necessary to detect the road with high accuracy, then roadside severity-distance was determined with respect to the edge of the detected road. Each segment is finally classified into one of 13 roadside severity object classes and one of four roadside severity-distance classes. The overall accuracy of the roadside severity-object classification is 85.1%, while for the distance attribute it is 85.6%. The best average precision is achieved for safety barrier concrete class (0.98), while the worst AP is achieved for rockface class (0.72).
AbstractList The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for highly accurate and fully automatic determination of two attributes is proposed: roadside severity-object and roadside severity-distance. The framework integrates mobile Lidar point clouds with deep learning-based object detection on road cross-section images. The You Only Look Once (YOLO) network was used for object detection. Lidar data were collected by vehicle-mounted mobile Lidar for all Croatian highways. Point clouds were collected in .las format and cropped to 10 m-long segments align vehicle path. To determine both attributes, it was necessary to detect the road with high accuracy, then roadside severity-distance was determined with respect to the edge of the detected road. Each segment is finally classified into one of 13 roadside severity object classes and one of four roadside severity-distance classes. The overall accuracy of the roadside severity-object classification is 85.1%, while for the distance attribute it is 85.6%. The best average precision is achieved for safety barrier concrete class (0.98), while the worst AP is achieved for rockface class (0.72).
Author Medak, Damir
Brkić, Ivan
Ševrović, Marko
Miler, Mario
AuthorAffiliation 1 Department of Geoinformatics, Faculty of Geodesy, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia; ibrkic@geof.unizg.hr (I.B.); dmedak@geof.unizg.hr (D.M.)
2 Department of Transport Planning, Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia; msevrovic@fpz.unizg.hr
AuthorAffiliation_xml – name: 2 Department of Transport Planning, Faculty of Transport and Traffic Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia; msevrovic@fpz.unizg.hr
– name: 1 Department of Geoinformatics, Faculty of Geodesy, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia; ibrkic@geof.unizg.hr (I.B.); dmedak@geof.unizg.hr (D.M.)
Author_xml – sequence: 1
  givenname: Ivan
  orcidid: 0000-0003-0301-0485
  surname: Brkić
  fullname: Brkić, Ivan
– sequence: 2
  givenname: Mario
  orcidid: 0000-0003-3883-8493
  surname: Miler
  fullname: Miler, Mario
– sequence: 3
  givenname: Marko
  surname: Ševrović
  fullname: Ševrović, Marko
– sequence: 4
  givenname: Damir
  surname: Medak
  fullname: Medak, Damir
BookMark eNpdkUtv1DAQgC1URB9w4B9E4gKHBdvj2M4FqSwtrLQIicfZmtiTJaskLnaCxL-v211VlNOMZj59msc5O5niRIy9FPwtQMPfZSlFXdeCP2FnQkm1slLyk3_yU3ae855zCQD2GTuF2jaWC3XGvlwucxxx7n31LWLIfaDqmnBeElUfaSY_93GqPmCmUJVk2wdM92S1TjHn6vuR2Iy4o_ycPe1wyPTiGC_Yz-urH-vPq-3XT5v15Xblweh5hcrWQnOr66DaRihlqLHaypob3XC0HacWTJBgTKt9B4E6a4yX2jdCqibABdscvCHi3t2kfsT010Xs3X0hpp3DVHYayLVC2Q4VQgdKeZKWt-Cxgzq0oUVhiuv9wXWztCMFT9OccHgkfdyZ-l9uF_-4BkAIAUXw-ihI8fdCeXZjnz0NA04Ul-ykbjQXZTVV0Ff_ofu4pKmcyknDCyKNFIV6c6D83YkTdQ_DCO7uHu4eHg6348aboA
CitedBy_id crossref_primary_10_3390_su15118979
crossref_primary_10_1061_JCCEE5_CPENG_5406
crossref_primary_10_3390_s23094405
crossref_primary_10_3390_s22197533
Cites_doi 10.1145/1143844.1143874
10.1016/S2468-2667(19)30074-X
10.5194/isprsannals-II-3-W4-239-2015
10.1007/s00521-021-05734-z
10.1109/IVCNZ51579.2020.9290590
10.1177/1729881417738102
10.1109/ITSC45102.2020.9294305
10.1109/SSCI44817.2019.9002813
10.1007/978-3-030-01234-2_31
10.1016/j.procs.2022.01.135
10.3390/rs10030458
10.1109/TITS.2018.2797697
10.5220/0007706800710076
10.1177/0278364917696568
10.1145/3517256
10.3390/rs12223844
10.1109/ACCESS.2021.3108543
10.1109/IVCNZ48456.2019.8960997
10.1007/978-3-319-54193-8_13
10.1016/j.isprsjprs.2018.10.004
10.1016/j.aap.2019.105323
10.1109/TITS.2020.3003782
10.1007/978-3-030-36802-9
10.3390/s19020347
10.1177/0361198120981948
10.1109/ICASSP39728.2021.9413902
10.1016/j.earscirev.2022.103969
10.1002/wsb.949
10.1109/JSEN.2020.3020626
10.1109/IVCNZ.2018.8634743
10.1109/CVPR.2016.91
10.55329/tcfh3140
10.1109/TNNLS.2020.3015992
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22155510
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b148fa4a3f344ce280b3caf35dbdba17
10_3390_s22155510
GrantInformation_xml – fundername: HIDROLAB
  grantid: KK.01.1.1.04.0053
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c376t-a485160865d4b91447e98682507690a8f0eb37d2377b6cf3def877c26c91249d3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:16:05 EDT 2024
Tue Sep 17 21:19:57 EDT 2024
Sat Oct 05 04:47:46 EDT 2024
Thu Oct 10 21:53:08 EDT 2024
Thu Sep 26 21:15:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-a485160865d4b91447e98682507690a8f0eb37d2377b6cf3def877c26c91249d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0301-0485
0000-0003-3883-8493
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331113/
PMID 35898014
PQID 2700762721
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b148fa4a3f344ce280b3caf35dbdba17
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331113
proquest_miscellaneous_2696010764
proquest_journals_2700762721
crossref_primary_10_3390_s22155510
PublicationCentury 2000
PublicationDate 20220723
PublicationDateYYYYMMDD 2022-07-23
PublicationDate_xml – month: 7
  year: 2022
  text: 20220723
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_11) 2021; 22
Ziakopoulos (ref_24) 2020; 135
Leduc (ref_12) 2008; 1
ref_14
ref_13
ref_35
Jiang (ref_36) 2021; 199
ref_33
Wolcott (ref_43) 2017; 36
ref_31
Li (ref_44) 2021; 32
Chan (ref_41) 2022; Volume 6
ref_39
ref_16
ref_38
Passmore (ref_1) 2019; 4
ref_15
ref_37
Zeybek (ref_32) 2021; 2675
Li (ref_45) 2020; 37
Sanjeewani (ref_18) 2021; 33
Sanjeewani (ref_17) 2021; 9
ref_25
(ref_19) 2021; 1
ref_23
Ke (ref_10) 2019; 20
ref_21
ref_20
Zazo (ref_22) 2018; 146
ref_3
ref_2
Wu (ref_34) 2021; 21
ref_29
ref_28
Ural (ref_30) 2015; 2
ref_27
ref_26
ref_9
ref_8
Tavani (ref_42) 2022; 227
ref_5
ref_4
ref_7
Stitt (ref_40) 2019; 43
ref_6
References_xml – ident: ref_7
– ident: ref_39
  doi: 10.1145/1143844.1143874
– volume: 4
  start-page: e272
  year: 2019
  ident: ref_1
  article-title: Progress in Reducing Road-Traffic Injuries in the WHO European Region
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(19)30074-X
  contributor:
    fullname: Passmore
– volume: 2
  start-page: 239
  year: 2015
  ident: ref_30
  article-title: Road and Roadside Feature Extraction Using Imagery and Lidar Data for Transportation Operation
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsannals-II-3-W4-239-2015
  contributor:
    fullname: Ural
– ident: ref_5
– ident: ref_3
– volume: 33
  start-page: 9691
  year: 2021
  ident: ref_18
  article-title: Single Class Detection-Based Deep Learning Approach for Identification of Road Safety Attributes
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05734-z
  contributor:
    fullname: Sanjeewani
– ident: ref_26
  doi: 10.1109/IVCNZ51579.2020.9290590
– ident: ref_31
  doi: 10.1177/1729881417738102
– ident: ref_15
  doi: 10.1109/ITSC45102.2020.9294305
– ident: ref_27
  doi: 10.1109/SSCI44817.2019.9002813
– ident: ref_38
  doi: 10.1007/978-3-030-01234-2_31
– volume: 199
  start-page: 1066
  year: 2021
  ident: ref_36
  article-title: A Review of Yolo Algorithm Developments
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.135
  contributor:
    fullname: Jiang
– ident: ref_9
  doi: 10.3390/rs10030458
– volume: 20
  start-page: 54
  year: 2019
  ident: ref_10
  article-title: Real-Time Traffic Flow Parameter Estimation from UAV Video Based on Ensemble Classifier and Optical Flow
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2797697
  contributor:
    fullname: Ke
– ident: ref_16
  doi: 10.5220/0007706800710076
– volume: 36
  start-page: 292
  year: 2017
  ident: ref_43
  article-title: Robust LIDAR Localization Using Multiresolution Gaussian Mixture Maps for Autonomous Driving
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364917696568
  contributor:
    fullname: Wolcott
– ident: ref_14
– volume: Volume 6
  start-page: 27
  year: 2022
  ident: ref_41
  article-title: Testing a Drop of Liquid Using Smartphone LiDAR
  publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
  doi: 10.1145/3517256
  contributor:
    fullname: Chan
– ident: ref_8
  doi: 10.3390/rs12223844
– volume: 1
  start-page: 1
  year: 2008
  ident: ref_12
  article-title: Road Traffic Data: Collection Methods and Applications, Working Papers on Energy
  publication-title: Work. Pap. Energy Transp. Clim. Change
  contributor:
    fullname: Leduc
– volume: 9
  start-page: 120525
  year: 2021
  ident: ref_17
  article-title: Optimization of Fully Convolutional Network for Road Safety Attribute Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3108543
  contributor:
    fullname: Sanjeewani
– ident: ref_28
  doi: 10.1109/IVCNZ48456.2019.8960997
– ident: ref_21
– ident: ref_37
  doi: 10.1007/978-3-319-54193-8_13
– volume: 146
  start-page: 334
  year: 2018
  ident: ref_22
  article-title: Road Safety Evaluation through Automatic Extraction of Road Horizontal Alignments from Mobile LiDAR System and Inductive Reasoning Based on a Decision Tree
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.10.004
  contributor:
    fullname: Zazo
– volume: 135
  start-page: 105323
  year: 2020
  ident: ref_24
  article-title: A Review of Spatial Approaches in Road Safety
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2019.105323
  contributor:
    fullname: Ziakopoulos
– volume: 37
  start-page: 50
  year: 2020
  ident: ref_45
  article-title: Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems
  publication-title: IEEE Signal Processing Mag.
  contributor:
    fullname: Li
– volume: 22
  start-page: 3190
  year: 2021
  ident: ref_11
  article-title: High-Resolution Vehicle Trajectory Extraction and Denoising from Aerial Videos
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3003782
  contributor:
    fullname: Chen
– ident: ref_23
  doi: 10.1007/978-3-030-36802-9
– ident: ref_6
– ident: ref_13
  doi: 10.3390/s19020347
– volume: 2675
  start-page: 30
  year: 2021
  ident: ref_32
  article-title: Extraction of Road Lane Markings from Mobile LiDAR Data
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.1177/0361198120981948
  contributor:
    fullname: Zeybek
– ident: ref_33
  doi: 10.1109/ICASSP39728.2021.9413902
– volume: 227
  start-page: 103969
  year: 2022
  ident: ref_42
  article-title: Smartphone Assisted Fieldwork: Towards the Digital Transition of Geoscience Fieldwork Using LiDAR-Equipped IPhones
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2022.103969
  contributor:
    fullname: Tavani
– ident: ref_4
– ident: ref_29
– ident: ref_2
– volume: 43
  start-page: 159
  year: 2019
  ident: ref_40
  article-title: Smartphone LIDAR Can Measure Tree Cavity Dimensions for Wildlife Studies
  publication-title: Wildl. Soc. Bull.
  doi: 10.1002/wsb.949
  contributor:
    fullname: Stitt
– volume: 21
  start-page: 1152
  year: 2021
  ident: ref_34
  article-title: Deep 3D Object Detection Networks Using LiDAR Data: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3020626
  contributor:
    fullname: Wu
– ident: ref_25
  doi: 10.1109/IVCNZ.2018.8634743
– ident: ref_35
  doi: 10.1109/CVPR.2016.91
– volume: 1
  start-page: 000002
  year: 2021
  ident: ref_19
  article-title: Flying Roadside Stones—A Deadly Risk in a Crash
  publication-title: Traffic Saf. Res.
  doi: 10.55329/tcfh3140
– ident: ref_20
– volume: 32
  start-page: 3412
  year: 2021
  ident: ref_44
  article-title: Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3015992
  contributor:
    fullname: Li
SSID ssj0023338
Score 2.4407635
Snippet The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 5510
SubjectTerms Accuracy
Automation
Classification
Cross-sections
Data collection
Deep learning
Fatalities
Infrastructure
Lidar
Neural networks
road assessment
road safety
Roads & highways
roadside features
Safety barriers
Segments
Sensors
Traffic accidents & safety
Traffic flow
Travel time
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEJ5oT3owPiNazWq8kgJLWTj2GU3Ug9XEG9kXsQfBtOX_OwOUlJMXbwTmsMywM9_H7n4D8OBl0veVjl2dZImLFc-60g-UK-MM6QSnE1DVr4uFeP2MpzOSyWlbfdGesFoeuHbcQCFez2QoecbDUNsg9hTXMuNDo4ySfn2O3Iu2ZKqhWhyZV60jxJHUD9YBVjbEBl6n-lQi_R1k2d0XuVNo5sdw1CBENqpHdgJ7Nj-Fwx3dwDN4GZWbotJaZW-FNNRxkxGWK1eWTe2m2l2VszEWKMPw4nlp5KqyZBMaFls0Fk_fmE3W5_Axn71PHt2mL4KrMR1sXBkiTIqQiwxNqBJkRMImcYRUzxPIddHLHjJkYQIuhIp0xo3NYiF0EOmEWk0bfgG9vMjtJTDLjeLKUpcqgmZDGfu0UKeMH6lAGO3A_dZf6U8tf5EibSCnpq1THRiTJ1sDUqyubmAc0yaO6V9xdKC_jUPaTKN1SqvimK2RpTpw1z7GCUCrGjK3RYk2UUKkUkShA6ITv86Auk_y5VclpZ1wjsmeX_3HG1zDQUBnIzzhBrwPvc2qtDewvzblbfVx_gJR1OsI
  priority: 102
  providerName: Directory of Open Access Journals
Title Automatic Roadside Feature Detection Based on Lidar Road Cross Section Images
URI https://www.proquest.com/docview/2700762721
https://search.proquest.com/docview/2696010764
https://pubmed.ncbi.nlm.nih.gov/PMC9331113
https://doaj.org/article/b148fa4a3f344ce280b3caf35dbdba17
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT4QwEMcnric9GJ8RX6nGKy5QoHDUVaOJGuMj8Ub6Qjdxwewu39-ZLmzk6o1ASZpp6cyPTv8DcB6UMgyVznydl7mPHs_6MoyUL7MScYLTCSj36-JVPH1k1zckk5N0Z2Fc0r5W44vqe3JRjb9cbuXPRA-7PLHh8-MIIZwqpA8HMMDYsEP0lrI4QtdCQogjzw9nETo1DAuo5BtPspzUUno-yEn19-LLfnbkH3dzuwkbbZzILhf92YIVW23D-h_1wB14vGzmtVNcZS-1NFR3k1FE10wtu7Zzl2NVsSt0U4bhxcPYyKlryUbULfbatrif4Joy24X325u30Z3fVkfwNS4Kc1_GGCylSCSJiVWOXCRsnqUIfIFA4kVbB8jJwkRcCJXqkhtbZkLoKNU5FZw2fA9Wq7qy-8AsN4orS7WqKEBLZBbSdp0yYaoiYbQHZ529ip-FCEaB8ED2LZb29eCKLLlsQLrV7kY9_Sza0SsU0lcpY8lLHsfaRlmguJYlT4wySobCg6NuHIr2Y5oVtDeOazayqgeny8f4GdDehqxs3WCbNCe0FGnsgeiNX69D_Sc4v5ygdjufDv795iGsRXQsIhB-xI9gdT5t7DEMZqY5cZB_4qboL3eB6vs
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT6RAEK74OOx6UPdhxGe72SsO0EDDUUeNZmeMWd1kb6Rf6CQOmJnh_1vVAxO5eiN0kTT90V310dVfAfwOShmGSme-zsvcR49nfRlGypdZiXSC0wko9-viUdz_z66uSSYn6c7CuKR9rSbn1ev0vJq8uNzKt6kedHlig4fxEEk4VUgfrMMmztcg6Eh6y7M40q6liBBHRj-YR-jWMDCgom88yXLSS-l5ISfW34sw-_mRHxzOzc4nu7oL222EyS6Wzd9gzVbfYeuD7uAPGF80i9pptbK_tTRUsZNRLNjMLLuyC5edVbFLdHCG4cVoYuTMWbIhvQ57bC3uprgazX_Cv5vrp-Gt39ZV8DUuJwtfxhhmpchlEhOrHBmVsHmWIlUMBHJlRClAhi1MxIVQqS65sWUmhI5SnVOpasP3YKOqK7sPzHKjuLJU5YpCu0RmIW30KROmKhJGe_CrG-fibSmfUSDtIFyKFS4eXBICKwNSvHY36tlz0Q5moZC3lTKWvORxrG2UBYprWfLEKKNkKDw46vAr2mk4L2hXHVd7ZLkenK2acQLRroisbN2gTZoTKRVp7IHo4d7rUL8F4XZS3C28B59-8hS-3D6NR8Xo7v7PIXyN6HBFIPyIH8HGYtbYY1ifm-bEfeDvyXX_gw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xISH2wPipBQYYxGuWxE7j5HFrVzGxTRMDibfIP1mlNana5v_nzk2r5XW8RfFFcvzFvvvi83cA31KvskybMjaVr2L0eC5WGdexKj3SCUEnoMKvi1t5_aecnJNMzq7UV0jaN3p20tzPT5rZXcitXMxNss0TS26uxkjCqUJ6srA-2YOnOGdTviXqPdcSSL02QkICWX2y4ujaMDigwm9iVFakmTLwREGwfxBlDnMkHzid6eF_dPclvOgjTXa6MXkFT1zzGg4e6A--gavTbt0GzVb2s1WWKncyigm7pWMTtw5ZWg07Q0dnGV5czqxaBks2pldit73FxRxXpdVb-D09_zX-Hvf1FWKDy8o6VjmGWwVympHNdYXMSrqqLJAyphI5M6KVItOWlgspdWG8sM6XUhpemIpKVlvxDvabtnFHwJywWmhH1a4oxBupMqMNP22zQnNpTQRft2NdLzYyGjXSD8Km3mETwRmhsDMg5etwo13-rfsBrTXyN69yJbzIc-N4mWphlBcjq61WmYzgeIth3U_HVU2767jqI9uN4MuuGScS7Y6oxrUd2hQVkVNZ5BHIAfaDDg1bEPIgyd1D_P7RT36GZzeTaX15cf3jAzzndMYilTEXx7C_XnbuI-ytbPcpfOP_AODWAhI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Roadside+Feature+Detection+Based+on+Lidar+Road+Cross+Section+Images&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Brki%C4%87%2C+Ivan&rft.au=Miler%2C+Mario&rft.au=%C5%A0evrovi%C4%87%2C+Marko&rft.au=Medak%2C+Damir&rft.date=2022-07-23&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft_id=info:doi/10.3390%2Fs22155510&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon