Singular values of the Dirac operator in dense QCD-like theories

A bstract We study the singular values of the Dirac operator in dense QCD-like theories at zero temperature. The Dirac singular values are real and nonnegative at any nonzero quark density. The scale of their spectrum is set by the diquark condensate, in contrast to the complex Dirac eigenvalues who...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2011; no. 12
Main Authors: Kanazawa, Takuya, Wettig, Tilo, Yamamoto, Naoki
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01-12-2011
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract We study the singular values of the Dirac operator in dense QCD-like theories at zero temperature. The Dirac singular values are real and nonnegative at any nonzero quark density. The scale of their spectrum is set by the diquark condensate, in contrast to the complex Dirac eigenvalues whose scale is set by the chiral condensate at low density and by the BCS gap at high density. We identify three different low-energy effective theories with diquark sources applicable at low, intermediate, and high density, together with their overlapping domains of validity. We derive a number of exact formulas for the Dirac singular values, including Banks-Casher-type relations for the diquark condensate, Smilga-Stern-type relations for the slope of the singular value density, and Leutwyler-Smilga-type sum rules for the inverse singular values. We construct random matrix theories and determine the form of the microscopic spectral correlation functions of the singular values for all nonzero quark densities. We also derive a rigorous index theorem for non-Hermitian Diracoperators. Our results can in principle be tested in lattice simulations.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP12(2011)007