Subdivision scheme tuning around extraordinary vertices

In this paper we extend the standard method to derive and optimize subdivision rules in the vicinity of extraordinary vertices (EV). Starting from a given set of rules for regular control meshes, we tune the extraordinary rules (ER) such that the necessary conditions for C 1 continuity are satisfied...

Full description

Saved in:
Bibliographic Details
Published in:Computer aided geometric design Vol. 21; no. 6; pp. 561 - 583
Main Authors: Barthe, Loïc, Kobbelt, Leif
Format: Journal Article
Language:English
Published: Elsevier B.V 01-07-2004
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we extend the standard method to derive and optimize subdivision rules in the vicinity of extraordinary vertices (EV). Starting from a given set of rules for regular control meshes, we tune the extraordinary rules (ER) such that the necessary conditions for C 1 continuity are satisfied along with as many necessary C 2 conditions as possible. As usually done, our approach sets up the general configuration around an EV by exploiting rotational symmetry and reformulating the subdivision rules in terms of the subdivision matrix' eigencomponents. The degrees of freedom are then successively eliminated by imposing new constraints which allows us, e.g., to improve the curvature behavior around EVs. The method is flexible enough to simultaneously optimize several subdivision rules, i.e., not only the one for the EV itself but also the rules for its direct neighbors. Moreover, it allows us to prescribe the stencils for the ERs and naturally blends them with the regular rules that are applied away from the EV. All the constraints are combined in an optimization scheme that searches in the space of feasible subdivision schemes for a candidate which satisfies some necessary conditions exactly and other conditions approximately. The relative weighting of the constraints allows us to tune the properties of the subdivision scheme according to application specific requirements. We demonstrate our method by tuning the ERs for the well-known Loop scheme and by deriving ERs for a 3 -type scheme based on a 6-direction Box-spline.
AbstractList In this paper we extend the standard method to derive and optimize subdivision rules in the vicinity of extraordinary vertices (EV). Starting from a given set of rules for regular control meshes, we tune the extraordinary rules (ER) such that the necessary conditions for C 1 continuity are satisfied along with as many necessary C 2 conditions as possible. As usually done, our approach sets up the general configuration around an EV by exploiting rotational symmetry and reformulating the subdivision rules in terms of the subdivision matrix' eigencomponents. The degrees of freedom are then successively eliminated by imposing new constraints which allows us, e.g., to improve the curvature behavior around EVs. The method is flexible enough to simultaneously optimize several subdivision rules, i.e., not only the one for the EV itself but also the rules for its direct neighbors. Moreover, it allows us to prescribe the stencils for the ERs and naturally blends them with the regular rules that are applied away from the EV. All the constraints are combined in an optimization scheme that searches in the space of feasible subdivision schemes for a candidate which satisfies some necessary conditions exactly and other conditions approximately. The relative weighting of the constraints allows us to tune the properties of the subdivision scheme according to application specific requirements. We demonstrate our method by tuning the ERs for the well-known Loop scheme and by deriving ERs for a 3 -type scheme based on a 6-direction Box-spline.
In this paper we extend the standard method to derive and optimize subdivision rules in the vicinity of extraordinary vertices (EV). Starting from a given set of rules for regular control meshes, we tune the extraordinary rules (ER) such that the necessary conditions for C 1 continuity are satisfied along with as many necessary C 2 conditions as possible. As usually done, our approach sets up the general configuration around an EV by exploiting rotational symmetry and reformulating the subdivision rules in terms of the subdivision matrix' eigencomponents. The degrees of freedom are then successively eliminated by imposing new constraints which allows us, e.g., to improve the curvature behavior around EVs. The method is flexible enough to simultaneously optimize several subdivision rules, i.e. not only the one for the EV itself but also the rules for its direct neighbors. Moreover it allows us to prescribe the stencils for the ERs and naturally blends them with the regular rules that are applied away from the EV. All the constraints are combined in an optimization scheme that searches in the space of feasible subdivision schemes for a candidate which satisfies some necessary conditions exactly and other conditions approximately. The relative weighting of the constraints allows us to tune the properties of the subdivision scheme according to application specific requirements. We demonstrate our method by tuning the ERs for the well-known Loop scheme and by deriving ERs for a √ 3-type scheme based on a 6-direction Box-spline.
Author Kobbelt, Leif
Barthe, Loïc
Author_xml – sequence: 1
  givenname: Loïc
  surname: Barthe
  fullname: Barthe, Loïc
  email: lbarthe@irit.fr
– sequence: 2
  givenname: Leif
  surname: Kobbelt
  fullname: Kobbelt, Leif
  email: kobbelt@cs.rwth-aachen.de
BackLink https://hal.science/hal-01538452$$DView record in HAL
BookMark eNp9kEtLAzEUhYNUsK3-AVezdTFjbtLJA9yUolYouFDXIU3utCltRpJp0X_vDBWXwoELl_Pdx5mQUWwjEnILtAIK4n5XObvxFaN0Vg2i_IKMQUldMs7ZiIx7kywV1-KKTHLeUUoZaDEm8u249uEUcmhjkd0WD1h0xxjiprCpPUZf4FeXbJt8iDZ9FydMXXCYr8llY_cZb37rlHw8Pb4vluXq9fllMV-VjkvRlcAa16-urZAaOPdeAF37Bhq59pZaJaTwwnldC1SomGQSpEKNoBVY6TSfkrvz3K3dm88UDv0RprXBLOcrM_Qo1FzNanaC3svOXpfanBM2fwBQM8RkdmaIyQwxmUGU99DDGcL-i1PAZLILGB36kNB1xrfhP_wHk5FxxQ
CitedBy_id crossref_primary_10_1016_j_cad_2023_103544
crossref_primary_10_1111_j_1467_8659_2010_01788_x
crossref_primary_10_1145_1531326_1531352
crossref_primary_10_1016_j_cag_2019_05_013
crossref_primary_10_1016_j_cagd_2007_09_001
crossref_primary_10_1111_j_1467_8659_2011_02083_x
crossref_primary_10_1016_j_cagd_2018_12_005
crossref_primary_10_1016_j_mod_2017_02_001
crossref_primary_10_1111_cgf_13582
crossref_primary_10_1145_3618400
crossref_primary_10_1145_1141911_1141990
crossref_primary_10_1145_3131778
crossref_primary_10_1016_j_cagd_2005_06_009
crossref_primary_10_1007_s00138_017_0886_7
crossref_primary_10_1016_j_cagd_2007_08_003
crossref_primary_10_1111_cgf_13822
crossref_primary_10_1016_j_cad_2018_04_020
crossref_primary_10_1111_j_1467_8659_2006_00945_x
crossref_primary_10_1016_j_cagd_2007_06_001
crossref_primary_10_1111_j_1467_8659_2005_00824_x
crossref_primary_10_1016_j_cad_2020_102871
crossref_primary_10_1016_j_cagd_2007_03_009
Cites_doi 10.1137/S0036142996304346
10.1145/42458.42459
10.1016/S0167-8396(01)00041-3
10.1016/0167-8396(94)00007-F
10.1023/A:1018945708536
10.1007/s003710100148
10.1016/S0167-8396(01)00038-3
10.1016/S0167-8396(01)00039-5
10.1007/s10107-002-0295-0
10.1137/S003614299834263X
10.1016/S0167-8396(01)00040-1
10.1145/263834.263851
10.1016/0010-4485(78)90111-2
10.1016/0010-4485(78)90110-0
ContentType Journal Article
Copyright 2004 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2004 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.cagd.2004.04.003
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1879-2332
EndPage 583
ExternalDocumentID oai_HAL_hal_01538452v1
10_1016_j_cagd_2004_04_003
S0167839604000603
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
ZY4
~G-
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c376t-12fc0165a679133dd610bdf1f7bda0a8676d6cd956e8e82727178e9e1981a7c93
ISSN 0167-8396
IngestDate Tue Oct 15 15:52:46 EDT 2024
Fri Nov 22 00:15:04 EST 2024
Fri Feb 23 02:29:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Extraordinary vertices
Meshes
Artifacts
Subdivision surfaces
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-12fc0165a679133dd610bdf1f7bda0a8676d6cd956e8e82727178e9e1981a7c93
ORCID 0000-0001-9908-3640
OpenAccessLink https://hal.science/hal-01538452
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_01538452v1
crossref_primary_10_1016_j_cagd_2004_04_003
elsevier_sciencedirect_doi_10_1016_j_cagd_2004_04_003
PublicationCentury 2000
PublicationDate 2004-07-01
PublicationDateYYYYMMDD 2004-07-01
PublicationDate_xml – month: 07
  year: 2004
  text: 2004-07-01
  day: 01
PublicationDecade 2000
PublicationTitle Computer aided geometric design
PublicationYear 2004
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Prautzsch, Umlauf (BIB017) 1998
Umlauf G., 1999. Glatte FreiformflSchen und optimierte Unterteilungsalgorithmen. PhD thesis. University of Karlsruhe, Germany (in German)
Alvarez, Cominetti (BIB001) 2002; 93
Kobbelt (BIB009) 1996
Peters, Reif (BIB014) 1998; 35
Sabin, Barthe (BIB022) 2002
Kobbelt (BIB010) 2000
Catmull, Clark (BIB003) 1978; 10
Ball, Storry (BIB002) 1988; 7
Prautzsch (BIB016) 1998; 14
Loop C., 1987. Smooth subdivision surfaces based on triangles. Master's thesis. University of Utah
Stam (BIB023) 1998
Sabin (BIB021) 2002
Velho, Zorin (BIB020) 2001; 18
Warren, Weimer (BIB026) 2002
Zorin D., 1997. Stationary subdivision and multiresolution surface representations. PhD thesis. Caltech, Pasadena, California
Doo, Sabin (BIB005) 1978; 10
Zorin, Schröder (BIB030) 2001; 18
de Boor, Hollig, Riemenschneider (BIB004) 1994
Gerot, Barthe, Dodgson, Sabin (BIB008) 2004
Ron A., 2000. Private communication
Dyn (BIB006) 1992
Farin (BIB007) 2002
Stam (BIB024) 2001; 18
Zorin D., Schröder P., 2000. Subdivision for modeling and animation. SIGGRAPH 2000 course notes
Reif (BIB018) 1995; 12
Zorin (BIB029) 2000; 35
Loop (BIB012) 2002; 18
Peters, Reif (BIB013) 1997; 16
Peters, Umlauf (BIB015) 2001; 18
Ball (10.1016/j.cagd.2004.04.003_BIB002) 1988; 7
Doo (10.1016/j.cagd.2004.04.003_BIB005) 1978; 10
10.1016/j.cagd.2004.04.003_BIB028
Zorin (10.1016/j.cagd.2004.04.003_BIB029) 2000; 35
Catmull (10.1016/j.cagd.2004.04.003_BIB003) 1978; 10
Peters (10.1016/j.cagd.2004.04.003_BIB015) 2001; 18
Stam (10.1016/j.cagd.2004.04.003_BIB023) 1998
10.1016/j.cagd.2004.04.003_BIB027
Farin (10.1016/j.cagd.2004.04.003_BIB007) 2002
Prautzsch (10.1016/j.cagd.2004.04.003_BIB016) 1998; 14
Sabin (10.1016/j.cagd.2004.04.003_BIB021) 2002
10.1016/j.cagd.2004.04.003_BIB025
Kobbelt (10.1016/j.cagd.2004.04.003_BIB009) 1996
Warren (10.1016/j.cagd.2004.04.003_BIB026) 2002
Peters (10.1016/j.cagd.2004.04.003_BIB013) 1997; 16
Alvarez (10.1016/j.cagd.2004.04.003_BIB001) 2002; 93
Peters (10.1016/j.cagd.2004.04.003_BIB014) 1998; 35
Stam (10.1016/j.cagd.2004.04.003_BIB024) 2001; 18
10.1016/j.cagd.2004.04.003_BIB019
Loop (10.1016/j.cagd.2004.04.003_BIB012) 2002; 18
Zorin (10.1016/j.cagd.2004.04.003_BIB030) 2001; 18
Sabin (10.1016/j.cagd.2004.04.003_BIB022) 2002
Prautzsch (10.1016/j.cagd.2004.04.003_BIB017) 1998
10.1016/j.cagd.2004.04.003_BIB011
Reif (10.1016/j.cagd.2004.04.003_BIB018) 1995; 12
Velho (10.1016/j.cagd.2004.04.003_BIB020) 2001; 18
Dyn (10.1016/j.cagd.2004.04.003_BIB006) 1992
Kobbelt (10.1016/j.cagd.2004.04.003_BIB010) 2000
Gerot (10.1016/j.cagd.2004.04.003_BIB008) 2004
de Boor (10.1016/j.cagd.2004.04.003_BIB004) 1994
References_xml – year: 1994
  ident: BIB004
  article-title: Box Splines
  contributor:
    fullname: Riemenschneider
– volume: 10
  start-page: 350
  year: 1978
  end-page: 355
  ident: BIB003
  article-title: Recursively generated B-spline surfaces on arbitrary topological meshes
  publication-title: Computer-Aided Design
  contributor:
    fullname: Clark
– volume: 35
  start-page: 728
  year: 1998
  end-page: 748
  ident: BIB014
  article-title: Analysis of algorithms generalizing B-spline subdivision
  publication-title: SIAM J. Numer. Anal.
  contributor:
    fullname: Reif
– volume: 14
  start-page: 377
  year: 1998
  end-page: 390
  ident: BIB016
  article-title: Smoothness of subdivision surfaces at extraordinary points
  publication-title: Adv. Comp. Math.
  contributor:
    fullname: Prautzsch
– volume: 35
  start-page: 1677
  year: 2000
  end-page: 1708
  ident: BIB029
  article-title: A method for analysis of
  publication-title: SIAM J. Numer. Anal.
  contributor:
    fullname: Zorin
– year: 2002
  ident: BIB022
  article-title: Artifact in recursive subdivision surfaces
  publication-title: Curves and Surfaces 2002 Proceedings
  contributor:
    fullname: Barthe
– start-page: 395
  year: 1998
  end-page: 404
  ident: BIB023
  article-title: Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values
  publication-title: Proceedings of SIGGRAPH 1998, Computer Graphics Proceedings, Annual Conference Series
  contributor:
    fullname: Stam
– volume: 16
  start-page: 420
  year: 1997
  end-page: 431
  ident: BIB013
  article-title: The simplest subdivision scheme for smoothing polyhedra
  publication-title: ACM Trans. Graph.
  contributor:
    fullname: Reif
– volume: 18
  start-page: 383
  year: 2001
  end-page: 396
  ident: BIB024
  article-title: On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree
  publication-title: Computer Aided Geometric Design (Special issue on subdivision surfaces)
  contributor:
    fullname: Stam
– volume: 18
  start-page: 455
  year: 2001
  end-page: 461
  ident: BIB015
  article-title: Computing curvature bounds for bounded curvature subdivision
  publication-title: Computer Aided Geometric Design (Special issue on subdivision surfaces)
  contributor:
    fullname: Umlauf
– volume: 18
  start-page: 397
  year: 2001
  end-page: 428
  ident: BIB020
  article-title: 4–8 subdivision
  publication-title: Computer Aided Geometric Design (Special issue on subdivision surfaces)
  contributor:
    fullname: Zorin
– year: 2002
  ident: BIB026
  article-title: Subdivision Methods for Geometric Design: A Constructive Approach
  contributor:
    fullname: Weimer
– start-page: 103
  year: 2000
  end-page: 112
  ident: BIB010
  article-title:
  publication-title: Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series
  contributor:
    fullname: Kobbelt
– volume: 18
  start-page: 429
  year: 2001
  end-page: 454
  ident: BIB030
  article-title: A unified framework for primal/dual quadrilateral subdivision schemes
  publication-title: Computer Aided Geometric Design (Special issue on subdivision surfaces)
  contributor:
    fullname: Schröder
– year: 2002
  ident: BIB007
  article-title: CAGD a Practical Guide
  contributor:
    fullname: Farin
– volume: 18
  start-page: 316
  year: 2002
  end-page: 325
  ident: BIB012
  article-title: Bounded curvature triangular mesh subdivision with the convex hull property
  publication-title: The Visual Computer
  contributor:
    fullname: Loop
– start-page: 69
  year: 2002
  end-page: 97
  ident: BIB021
  article-title: Eigenanalysis and artifacts of subdivision curves and surfaces
  publication-title: Tutorial on Multiresolution in Geometric Modelling
  contributor:
    fullname: Sabin
– start-page: 217
  year: 1998
  end-page: 224
  ident: BIB017
  article-title: A
  publication-title: Geometric Modelling
  contributor:
    fullname: Umlauf
– year: 2004
  ident: BIB008
  article-title: Subdivision as a sequence of sampled Cp surfaces
  publication-title: Proc. of MINGLE Workshop, September 2003
  contributor:
    fullname: Sabin
– volume: 10
  start-page: 356
  year: 1978
  end-page: 360
  ident: BIB005
  article-title: Analysis of the behaviour of recursive subdivision surfaces near extraordinary points
  publication-title: Computer-Aided Design
  contributor:
    fullname: Sabin
– start-page: 409
  year: 1996
  end-page: 420
  ident: BIB009
  article-title: Interpolatory subdivision on open quadrilateral nets with arbitrary topology
  publication-title: Computer Graphics Forum 15, Eurographics '96 issue
  contributor:
    fullname: Kobbelt
– volume: 7
  start-page: 83
  year: 1988
  end-page: 102
  ident: BIB002
  article-title: Conditions for tangent plane continuity over recursively generated B-spline surfaces
  publication-title: ACM Trans. Graph.
  contributor:
    fullname: Storry
– start-page: 36
  year: 1992
  end-page: 104
  ident: BIB006
  article-title: Subdivision schemes in computer-aided geometric design
  publication-title: Advances in Numerical Analysis, II, Wavelets, Subdivision Algorithms and Radial Basis Functions
  contributor:
    fullname: Dyn
– volume: 12
  start-page: 153
  year: 1995
  end-page: 174
  ident: BIB018
  article-title: A unified approach to subdivision algorithms near extraordinary vertices
  publication-title: Computer-Aided Design
  contributor:
    fullname: Reif
– volume: 93
  start-page: 87
  year: 2002
  end-page: 96
  ident: BIB001
  article-title: Primal and dual convergence of a proximal point exponential penalty method for linear programming
  publication-title: Math. Programming
  contributor:
    fullname: Cominetti
– volume: 35
  start-page: 728
  issue: 2
  year: 1998
  ident: 10.1016/j.cagd.2004.04.003_BIB014
  article-title: Analysis of algorithms generalizing B-spline subdivision
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142996304346
  contributor:
    fullname: Peters
– volume: 7
  start-page: 83
  issue: 2
  year: 1988
  ident: 10.1016/j.cagd.2004.04.003_BIB002
  article-title: Conditions for tangent plane continuity over recursively generated B-spline surfaces
  publication-title: ACM Trans. Graph.
  doi: 10.1145/42458.42459
  contributor:
    fullname: Ball
– volume: 18
  start-page: 455
  issue: 5
  year: 2001
  ident: 10.1016/j.cagd.2004.04.003_BIB015
  article-title: Computing curvature bounds for bounded curvature subdivision
  publication-title: Computer Aided Geometric Design (Special issue on subdivision surfaces)
  doi: 10.1016/S0167-8396(01)00041-3
  contributor:
    fullname: Peters
– ident: 10.1016/j.cagd.2004.04.003_BIB027
– volume: 12
  start-page: 153
  year: 1995
  ident: 10.1016/j.cagd.2004.04.003_BIB018
  article-title: A unified approach to subdivision algorithms near extraordinary vertices
  publication-title: Computer-Aided Design
  doi: 10.1016/0167-8396(94)00007-F
  contributor:
    fullname: Reif
– year: 2002
  ident: 10.1016/j.cagd.2004.04.003_BIB026
  contributor:
    fullname: Warren
– ident: 10.1016/j.cagd.2004.04.003_BIB019
– volume: 14
  start-page: 377
  year: 1998
  ident: 10.1016/j.cagd.2004.04.003_BIB016
  article-title: Smoothness of subdivision surfaces at extraordinary points
  publication-title: Adv. Comp. Math.
  doi: 10.1023/A:1018945708536
  contributor:
    fullname: Prautzsch
– volume: 18
  start-page: 316
  issue: 5–6
  year: 2002
  ident: 10.1016/j.cagd.2004.04.003_BIB012
  article-title: Bounded curvature triangular mesh subdivision with the convex hull property
  publication-title: The Visual Computer
  doi: 10.1007/s003710100148
  contributor:
    fullname: Loop
– volume: 18
  start-page: 383
  issue: 5
  year: 2001
  ident: 10.1016/j.cagd.2004.04.003_BIB024
  article-title: On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree
  publication-title: Computer Aided Geometric Design (Special issue on subdivision surfaces)
  doi: 10.1016/S0167-8396(01)00038-3
  contributor:
    fullname: Stam
– volume: 18
  start-page: 397
  issue: 5
  year: 2001
  ident: 10.1016/j.cagd.2004.04.003_BIB020
  article-title: 4–8 subdivision
  publication-title: Computer Aided Geometric Design (Special issue on subdivision surfaces)
  doi: 10.1016/S0167-8396(01)00039-5
  contributor:
    fullname: Velho
– start-page: 36
  year: 1992
  ident: 10.1016/j.cagd.2004.04.003_BIB006
  article-title: Subdivision schemes in computer-aided geometric design
  contributor:
    fullname: Dyn
– volume: 93
  start-page: 87
  issue: 1
  year: 2002
  ident: 10.1016/j.cagd.2004.04.003_BIB001
  article-title: Primal and dual convergence of a proximal point exponential penalty method for linear programming
  publication-title: Math. Programming
  doi: 10.1007/s10107-002-0295-0
  contributor:
    fullname: Alvarez
– year: 2002
  ident: 10.1016/j.cagd.2004.04.003_BIB007
  contributor:
    fullname: Farin
– volume: 35
  start-page: 1677
  issue: 5
  year: 2000
  ident: 10.1016/j.cagd.2004.04.003_BIB029
  article-title: A method for analysis of C1-continuity of subdivision surfaces
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614299834263X
  contributor:
    fullname: Zorin
– ident: 10.1016/j.cagd.2004.04.003_BIB011
– year: 2004
  ident: 10.1016/j.cagd.2004.04.003_BIB008
  article-title: Subdivision as a sequence of sampled Cp surfaces
  contributor:
    fullname: Gerot
– volume: 18
  start-page: 429
  issue: 5
  year: 2001
  ident: 10.1016/j.cagd.2004.04.003_BIB030
  article-title: A unified framework for primal/dual quadrilateral subdivision schemes
  publication-title: Computer Aided Geometric Design (Special issue on subdivision surfaces)
  doi: 10.1016/S0167-8396(01)00040-1
  contributor:
    fullname: Zorin
– start-page: 217
  year: 1998
  ident: 10.1016/j.cagd.2004.04.003_BIB017
  article-title: A G2-subdivision algorithm
  contributor:
    fullname: Prautzsch
– year: 2002
  ident: 10.1016/j.cagd.2004.04.003_BIB022
  article-title: Artifact in recursive subdivision surfaces
  contributor:
    fullname: Sabin
– ident: 10.1016/j.cagd.2004.04.003_BIB028
– volume: 16
  start-page: 420
  issue: 4
  year: 1997
  ident: 10.1016/j.cagd.2004.04.003_BIB013
  article-title: The simplest subdivision scheme for smoothing polyhedra
  publication-title: ACM Trans. Graph.
  doi: 10.1145/263834.263851
  contributor:
    fullname: Peters
– year: 1994
  ident: 10.1016/j.cagd.2004.04.003_BIB004
  contributor:
    fullname: de Boor
– start-page: 395
  year: 1998
  ident: 10.1016/j.cagd.2004.04.003_BIB023
  article-title: Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values
  contributor:
    fullname: Stam
– start-page: 69
  year: 2002
  ident: 10.1016/j.cagd.2004.04.003_BIB021
  article-title: Eigenanalysis and artifacts of subdivision curves and surfaces
  contributor:
    fullname: Sabin
– start-page: 103
  year: 2000
  ident: 10.1016/j.cagd.2004.04.003_BIB010
  article-title: 3-Subdivision
  contributor:
    fullname: Kobbelt
– volume: 10
  start-page: 356
  issue: 6
  year: 1978
  ident: 10.1016/j.cagd.2004.04.003_BIB005
  article-title: Analysis of the behaviour of recursive subdivision surfaces near extraordinary points
  publication-title: Computer-Aided Design
  doi: 10.1016/0010-4485(78)90111-2
  contributor:
    fullname: Doo
– ident: 10.1016/j.cagd.2004.04.003_BIB025
– volume: 10
  start-page: 350
  issue: 6
  year: 1978
  ident: 10.1016/j.cagd.2004.04.003_BIB003
  article-title: Recursively generated B-spline surfaces on arbitrary topological meshes
  publication-title: Computer-Aided Design
  doi: 10.1016/0010-4485(78)90110-0
  contributor:
    fullname: Catmull
– start-page: 409
  year: 1996
  ident: 10.1016/j.cagd.2004.04.003_BIB009
  article-title: Interpolatory subdivision on open quadrilateral nets with arbitrary topology
  contributor:
    fullname: Kobbelt
SSID ssj0002196
Score 1.8807108
Snippet In this paper we extend the standard method to derive and optimize subdivision rules in the vicinity of extraordinary vertices (EV). Starting from a given set...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 561
SubjectTerms Computer Science
Extraordinary vertices
Graphics
Meshes
Subdivision surfaces
Title Subdivision scheme tuning around extraordinary vertices
URI https://dx.doi.org/10.1016/j.cagd.2004.04.003
https://hal.science/hal-01538452
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcGvMADYgMEg03RxFsUKYkdx37stqJu2ngBJN4if4UP0XYqLX8_d7GTtiAQTEKqotZK7Mh3-vnuevc7Qo40Z8JwWSe1LkzCFNWJlFonuU4Ns9YWuikfG5yWJxfiZ5_15-2O5mPvKmkYA1lj5ewbpN1NCgPwHWQOV5A6XF8ld0ACLLHCIFgMnqsbung6a4IfaoItlGJA44kCl9MX4jbtmE1IJGwZC0KnhxjpI2186cZD7LtlYruU7vEdVr_yfZrHzf_tx6aD77HW7tY7_e66XgotsC4NNcS7ntS8-BAkQCuYVYHA2sOmKGWSU7qEq77yOejPIkgWnn49nLeFb2TzBMp9VOEG3PTLhtGVNZS0KZ0fXF064Sm-E74SIlLKkfx1LQfgAdxb6_3qX_zuzmbAZ96yveMDoYzKZ_w9Xuk5U2Xlqg26N0bI2RbZDN5D1PNi_0g-uNEnsrHAKQm__nZEvHfbpFxQh8irQ-TVIfLqEC2pQ9Sqww45P-6f_RgkoVdGYuCImCZZXhusTFO8lBml1oJZrG2d1aW2KlWCl9xyY8EbdsKJHKzWrBROukyKTJVG0l2yOhqP3B6JBBXKIi-klpTBFHA3dVLJtOYa_AW6T-J2W6p_nhKlanMFbyrcROxtyir8pHB30e5cFYw6b6xVIOgXn_sG29wtgCzog96fCsdSPKVZkd9nn_9z8gOyPtf3Q7I6nczcF7JyZ2dfg8Y8AKIteDU
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subdivision+scheme+tuning+around+extraordinary+vertices&rft.jtitle=Computer+aided+geometric+design&rft.au=Barthe%2C+Lo%C3%AFc&rft.au=Kobbelt%2C+Leif&rft.date=2004-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-8396&rft.eissn=1879-2332&rft.volume=21&rft.issue=6&rft.spage=561&rft.epage=583&rft_id=info:doi/10.1016%2Fj.cagd.2004.04.003&rft.externalDocID=S0167839604000603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8396&client=summon