A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma

Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from mul...

Full description

Saved in:
Bibliographic Details
Published in:Radiologia medica Vol. 127; no. 3; pp. 259 - 271
Main Authors: Gao, Wenyu, Wang, Wentao, Song, Danjun, Yang, Chun, Zhu, Kai, Zeng, Mengsu, Rao, Sheng-xiang, Wang, Manning
Format: Journal Article
Language:English
Published: Milan Springer Milan 01-03-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). Materials and methods A total of 472 HCC patients were included and divided into the training ( n  = 378) and validation ( n  = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. Results In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). Conclusion The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.
AbstractList Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). A total of 472 HCC patients were included and divided into the training (n = 378) and validation (n = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.
PURPOSEHepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). MATERIALS AND METHODSA total of 472 HCC patients were included and divided into the training (n = 378) and validation (n = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. RESULTSIn the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). CONCLUSIONThe combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.
Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). Materials and methods A total of 472 HCC patients were included and divided into the training ( n  = 378) and validation ( n  = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. Results In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). Conclusion The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection.
Author Yang, Chun
Zeng, Mengsu
Song, Danjun
Rao, Sheng-xiang
Gao, Wenyu
Wang, Wentao
Zhu, Kai
Wang, Manning
Author_xml – sequence: 1
  givenname: Wenyu
  surname: Gao
  fullname: Gao, Wenyu
  organization: Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention
– sequence: 2
  givenname: Wentao
  surname: Wang
  fullname: Wang, Wentao
  organization: Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging
– sequence: 3
  givenname: Danjun
  surname: Song
  fullname: Song, Danjun
  organization: Liver Cancer Institute, Zhongshan Hospital, Fudan University, Department of Interventional Radiology, Zhejiang Cancer Hospital
– sequence: 4
  givenname: Chun
  surname: Yang
  fullname: Yang, Chun
  organization: Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University
– sequence: 5
  givenname: Kai
  surname: Zhu
  fullname: Zhu, Kai
  organization: Liver Cancer Institute, Zhongshan Hospital, Fudan University
– sequence: 6
  givenname: Mengsu
  surname: Zeng
  fullname: Zeng, Mengsu
  organization: Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging
– sequence: 7
  givenname: Sheng-xiang
  surname: Rao
  fullname: Rao, Sheng-xiang
  email: raoxray@163.com
  organization: Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging
– sequence: 8
  givenname: Manning
  surname: Wang
  fullname: Wang, Manning
  email: mnwang@fudan.edu.cn
  organization: Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35129757$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFjEQx4NU7It-AQ8S8NLLapLdJPscS9FaqAii5zCbTLYpu8ma7Bb6hfyc5vGpL3iQOWQgv_nPwO-UHMUUkZCXnL3hjOm3hXPZ6YYJ3jDedbJRT8gJ74Vq1K5vj_7qj8lpKXeMdYyz3TNy3EoudlrqE_L9gi4ZXbBruEc6J4cTDXHFMcMa4kgd4kIhOprBhTQHW6hHWLeMhQ5Q0NEU6QguDRhhRerCjOO0zSFig_EWoq3Ix8_X1KdMl1TWtOA-ui5DyNMDzWi3nLFyNHl6iwusyeI0bRNkaiHbENMMz8lTD1PBF4_vGfn6_t2Xyw_Nzaer68uLm8a2Wq6Nl573UmOrNAg5CCEkONuBQpBODazvUXqtnej94PsBLQDuRItKoKqcbc_I-SF3yenbhmU1cyj7cyBi2ooRqpbQvRYVff0Pepe2HOt1leq6juledZUSB8rmVEpGb5YcZsgPhjOzt2gOFk21aH5aNKoOvXqM3oYZ3e-RX9oq0B6AUr_iiPnP7v_E_gB9gq4u
CitedBy_id crossref_primary_10_1016_j_acra_2024_04_022
crossref_primary_10_3389_fonc_2022_930458
crossref_primary_10_1186_s12880_024_01251_2
crossref_primary_10_3390_cancers15072140
crossref_primary_10_3390_curroncol31010027
crossref_primary_10_1186_s12880_022_00946_8
crossref_primary_10_1186_s12885_024_12394_4
crossref_primary_10_1016_j_acra_2024_06_002
crossref_primary_10_1002_jmri_28982
crossref_primary_10_1007_s00261_024_04356_y
crossref_primary_10_3389_fonc_2024_1346124
crossref_primary_10_3390_cancers15061784
crossref_primary_10_1007_s10278_023_00855_4
crossref_primary_10_1016_j_acra_2023_11_024
crossref_primary_10_3390_diagnostics13122012
crossref_primary_10_3390_curroncol30010064
crossref_primary_10_1186_s12938_024_01234_y
crossref_primary_10_3389_fnins_2023_1195188
crossref_primary_10_3390_biomedicines12010058
crossref_primary_10_3390_jpm13010134
crossref_primary_10_3390_diagnostics13081488
crossref_primary_10_1016_j_compbiomed_2024_108337
crossref_primary_10_3390_diagnostics13111974
crossref_primary_10_3390_jcm12041489
crossref_primary_10_3389_fonc_2023_1114983
crossref_primary_10_1016_j_dld_2022_12_015
crossref_primary_10_3390_diagnostics13182877
crossref_primary_10_3390_jpm13020223
crossref_primary_10_3390_jpm13020225
crossref_primary_10_1080_0886022X_2023_2271104
Cites_doi 10.1148/radiol.14132343
10.1245/s10434-007-9671-6
10.1016/j.mri.2012.06.010
10.1158/1078-0432.CCR-18-2861
10.1016/S0140-6736(18)30010-2
10.1007/s00432-021-03617-3
10.1038/ncomms5006
10.1186/s40644-019-0197-5
10.1002/sim.3148
10.1186/s40644-019-0209-5
10.1038/nature14539
10.1148/radiol.2018181494
10.1148/radiol.15142394
10.1007/s00261-017-1072-0
10.1109/JBHI.2018.2841992
10.1002/hep.29913
10.1117/1.JMI.5.1.011021
10.1097/SLA.0000000000000710
10.1158/0008-5472.CAN-17-0339
10.1097/TP.0000000000000659
10.1002/jmri.27424
10.1111/hpb.12367
10.1007/s11605-016-3311-z
10.1186/1477-7819-10-107
10.3389/fonc.2021.657039
10.1016/j.ejso.2020.10.017
10.1016/j.jhep.2018.03.019
10.1159/000488035
10.1016/S1470-2045(15)00198-9
10.1109/JBHI.2020.3043236
10.1053/j.gastro.2019.08.058
ContentType Journal Article
Copyright Italian Society of Medical Radiology 2022
2022. Italian Society of Medical Radiology.
Italian Society of Medical Radiology 2022.
Copyright_xml – notice: Italian Society of Medical Radiology 2022
– notice: 2022. Italian Society of Medical Radiology.
– notice: Italian Society of Medical Radiology 2022.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1007/s11547-021-01445-6
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1826-6983
EndPage 271
ExternalDocumentID 10_1007_s11547_021_01445_6
35129757
Genre Journal Article
GrantInformation_xml – fundername: chinese academy of sciences
  grantid: GJJSTD20170004
– fundername: national natural science foundation of china
  grantid: 81227901; 81527805; 81571661
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: the shanghai sailing program
  grantid: 19YF1408100
– fundername: national key research and development program of china
  grantid: 2017YFC0108804
– fundername: the china international medical foundation
  grantid: Z-2014-07-2003-04
– fundername: national natural science foundation of china
  grantid: 81527805
– fundername: national natural science foundation of china
  grantid: 81227901
– fundername: national natural science foundation of china
  grantid: 81571661
GroupedDBID -5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
P9S
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z7X
Z82
Z87
ZA5
ZMTXR
ZOVNA
~A9
~S-
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3
IEDL.DBID AEJHL
ISSN 1826-6983
0033-8362
IngestDate Fri Oct 25 08:06:29 EDT 2024
Tue Nov 19 06:00:53 EST 2024
Fri Nov 22 00:08:36 EST 2024
Wed Oct 16 00:45:54 EDT 2024
Sat Dec 16 12:07:38 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Reoccurrence
Hepatocellular carcinoma
Gadoxetic acid-enhanced MRI
Radiomics
Language English
License 2022. Italian Society of Medical Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35129757
PQID 2644407864
PQPubID 2043526
PageCount 13
ParticipantIDs proquest_miscellaneous_2626227872
proquest_journals_2644407864
crossref_primary_10_1007_s11547_021_01445_6
pubmed_primary_35129757
springer_journals_10_1007_s11547_021_01445_6
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Italy
– name: Torino
PublicationSubtitle Official Journal of the Italian Society of Medical and Interventional Radiology
PublicationTitle Radiologia medica
PublicationTitleAbbrev Radiol med
PublicationTitleAlternate Radiol Med
PublicationYear 2022
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Zhang, Jiang, Chen, Wei, Cao, Ye, Li, Ma, Song (CR14) 2019; 19
Kamiyama, Nakanishi, Yokoo, Kamachi, Tahara, Kakisaka, Tsuruga, Todo, Taketomi (CR9) 2012; 10
Song, Wang, Wang, Wang, Cai, Zhu, Lv, Gao, Zhou, Fan, Rao, Wang, Wang (CR21) 2021
Kim, Shin, Kim, Choi, Kim, Choi (CR13) 2019; 25
Paul, Hawkins, Schabath, Gillies, Hall, Goldgof (CR24) 2018; 5
CR10
CR31
Shan, Hu, Feng, Peng, Chen, Zhou, Li, Xie, Lu, Wang, Kuang (CR17) 2019; 19
Chernyak, Fowler, Kamaya, Kielar, Elsayes, Bashir, Kono, Do, Mitchell, Singal, Tang, Sirlin (CR26) 2018; 289
Sauerbrei, Royston, Binder (CR29) 2007; 26
Choi, Kim, Kang, Kim, Choi, Lee, Kim (CR4) 2008; 15
Tabrizian, Jibara, Shrager, Schwartz, Roayaie (CR3) 2015; 261
Hao, Fan, Chen, Tu, Wan (CR8) 2017; 21
Wen, Weng, Yan, Ye, Zhu, Zhou, Gao, Li (CR15) 2021; 11
Zhao, Wu, Zhang, Hua, Qi, Wang, Lin, Sheng, Cui, Liu, Song, Li, Wu, Guo, Cui, Liu (CR16) 2021; 53
Dioguardi Burgio, Ronot, Fuks, Dondero, Cauchy, Gaujoux, Dokmak, Paradis, Durand, Belghiti, Vilgrain (CR6) 2015; 99
LeCun, Bengio, Hinton (CR19) 2015; 521
Ning, Luo, Li, Han, Feng, Xu, Chen, Chen, Zhang (CR22) 2019; 23
Liu, Fong, Chan, Poon, Khong (CR7) 2015; 274
CR5
Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (CR18) 2014; 5
Zhou, He, Huang, Chen, Wu, Ye, Liu, Liang (CR12) 2017; 42
CR25
van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (CR28) 2017; 77
CR23
CR20
Kumar, Gu, Basu, Berglund, Eschrich, Schabath, Forster, Aerts, Dekker, Fenstermacher, Goldgof, Hall, Lambin, Balagurunathan, Gatenby, Gillies (CR11) 2012; 30
Cheng, Yang, Qu, Zhou, Yang, Yang, Xia, Li, Wang, Yan, Wu, Zhang, Huser, Shen (CR2) 2015; 17
An, Kim, Park, Chung, Rhee, Kim (CR30) 2015; 276
Forner, Reig, Bruix (CR1) 2018; 391
Marrero, Kulik, Sirlin, Zhu, Finn, Abecassis, Roberts, Heimbach (CR27) 2018; 68
Z Zhang (1445_CR14) 2019; 19
Y Zhou (1445_CR12) 2017; 42
1445_CR25
L Wen (1445_CR15) 2021; 11
S Kim (1445_CR13) 2019; 25
V Kumar (1445_CR11) 2012; 30
1445_CR20
1445_CR23
QY Shan (1445_CR17) 2019; 19
GH Choi (1445_CR4) 2008; 15
Z Ning (1445_CR22) 2019; 23
V Chernyak (1445_CR26) 2018; 289
JA Marrero (1445_CR27) 2018; 68
Y LeCun (1445_CR19) 2015; 521
D Liu (1445_CR7) 2015; 274
W Sauerbrei (1445_CR29) 2007; 26
S Hao (1445_CR8) 2017; 21
R Paul (1445_CR24) 2018; 5
D Song (1445_CR21) 2021
T Kamiyama (1445_CR9) 2012; 10
HJ Aerts (1445_CR18) 2014; 5
Y Zhao (1445_CR16) 2021; 53
C An (1445_CR30) 2015; 276
P Tabrizian (1445_CR3) 2015; 261
1445_CR10
1445_CR31
M Dioguardi Burgio (1445_CR6) 2015; 99
JJM van Griethuysen (1445_CR28) 2017; 77
A Forner (1445_CR1) 2018; 391
Z Cheng (1445_CR2) 2015; 17
1445_CR5
References_xml – volume: 274
  start-page: 133
  issue: 1
  year: 2015
  end-page: 140
  ident: CR7
  article-title: Hepatocellular carcinoma: surveillance CT schedule after hepatectomy based on risk stratification
  publication-title: Radiology
  doi: 10.1148/radiol.14132343
  contributor:
    fullname: Khong
– volume: 15
  start-page: 618
  issue: 2
  year: 2008
  end-page: 629
  ident: CR4
  article-title: Prognostic factors and optimal treatment strategy for intrahepatic nodular recurrence after curative resection of hepatocellular carcinoma
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-007-9671-6
  contributor:
    fullname: Kim
– volume: 30
  start-page: 1234
  issue: 9
  year: 2012
  end-page: 1248
  ident: CR11
  article-title: Radiomics: the process and the challenges
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.06.010
  contributor:
    fullname: Gillies
– volume: 25
  start-page: 3847
  issue: 13
  year: 2019
  end-page: 3855
  ident: CR13
  article-title: Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-18-2861
  contributor:
    fullname: Choi
– volume: 391
  start-page: 1301
  issue: 10127
  year: 2018
  end-page: 1314
  ident: CR1
  article-title: Hepatocellular carcinoma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30010-2
  contributor:
    fullname: Bruix
– year: 2021
  ident: CR21
  article-title: Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-021-03617-3
  contributor:
    fullname: Wang
– volume: 5
  start-page: 4006
  year: 2014
  ident: CR18
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
  contributor:
    fullname: Lambin
– ident: CR10
– volume: 19
  start-page: 11
  issue: 1
  year: 2019
  ident: CR17
  article-title: CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-019-0197-5
  contributor:
    fullname: Kuang
– volume: 26
  start-page: 5512
  issue: 30
  year: 2007
  end-page: 5528
  ident: CR29
  article-title: Selection of important variables and determination of functional form for continuous predictors in multivariable model building
  publication-title: Stat Med
  doi: 10.1002/sim.3148
  contributor:
    fullname: Binder
– ident: CR25
– volume: 19
  start-page: 22
  issue: 1
  year: 2019
  ident: CR14
  article-title: Hepatocellular carcinoma: radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-019-0209-5
  contributor:
    fullname: Song
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR19
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: Hinton
– ident: CR23
– volume: 289
  start-page: 816
  issue: 3
  year: 2018
  end-page: 830
  ident: CR26
  article-title: Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients
  publication-title: Radiology
  doi: 10.1148/radiol.2018181494
  contributor:
    fullname: Sirlin
– volume: 276
  start-page: 433
  issue: 2
  year: 2015
  end-page: 443
  ident: CR30
  article-title: Single hepatocellular carcinoma: preoperative MR imaging to predict early recurrence after curative resection
  publication-title: Radiology
  doi: 10.1148/radiol.15142394
  contributor:
    fullname: Kim
– volume: 42
  start-page: 1695
  issue: 6
  year: 2017
  end-page: 1704
  ident: CR12
  article-title: CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-017-1072-0
  contributor:
    fullname: Liang
– volume: 23
  start-page: 1181
  issue: 3
  year: 2019
  end-page: 1191
  ident: CR22
  article-title: Pattern classification for gastrointestinal stromal tumors by integration of radiomics and deep convolutional features
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2841992
  contributor:
    fullname: Zhang
– volume: 68
  start-page: 723
  issue: 2
  year: 2018
  end-page: 750
  ident: CR27
  article-title: Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases
  publication-title: Hepatology
  doi: 10.1002/hep.29913
  contributor:
    fullname: Heimbach
– volume: 5
  issue: 1
  year: 2018
  ident: CR24
  article-title: Predicting malignant nodules by fusing deep features with classical radiomics features
  publication-title: J Med Imaging (Bellingham)
  doi: 10.1117/1.JMI.5.1.011021
  contributor:
    fullname: Goldgof
– volume: 261
  start-page: 947
  issue: 5
  year: 2015
  end-page: 955
  ident: CR3
  article-title: Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000000710
  contributor:
    fullname: Roayaie
– ident: CR31
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  end-page: e107
  ident: CR28
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
  contributor:
    fullname: Aerts
– volume: 99
  start-page: 1613
  issue: 8
  year: 2015
  end-page: 1618
  ident: CR6
  article-title: Follow-up Imaging After Liver Transplantation Should Take Into Consideration Primary Hepatocellular Carcinoma Characteristics
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000000659
  contributor:
    fullname: Vilgrain
– volume: 53
  start-page: 1066
  issue: 4
  year: 2021
  end-page: 1079
  ident: CR16
  article-title: Radiomics analysis based on multiparametric MRI for predicting early recurrence in hepatocellular carcinoma after partial hepatectomy
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27424
  contributor:
    fullname: Liu
– volume: 17
  start-page: 422
  issue: 5
  year: 2015
  end-page: 427
  ident: CR2
  article-title: Risk factors and management for early and late intrahepatic recurrence of solitary hepatocellular carcinoma after curative resection
  publication-title: HPB (Oxford)
  doi: 10.1111/hpb.12367
  contributor:
    fullname: Shen
– volume: 21
  start-page: 312
  issue: 2
  year: 2017
  end-page: 320
  ident: CR8
  article-title: Distinct recurrence risk factors for intrahepatic metastasis and multicenter occurrence after surgery in patients with hepatocellular carcinoma
  publication-title: J Gastrointest Surg
  doi: 10.1007/s11605-016-3311-z
  contributor:
    fullname: Wan
– ident: CR5
– volume: 10
  start-page: 107
  year: 2012
  ident: CR9
  article-title: Analysis of the risk factors for early death due to disease recurrence or progression within 1 year after hepatectomy in patients with hepatocellular carcinoma
  publication-title: World J Surg Oncol
  doi: 10.1186/1477-7819-10-107
  contributor:
    fullname: Taketomi
– volume: 11
  year: 2021
  ident: CR15
  article-title: A Radiomics nomogram for preoperative prediction of early recurrence of small hepatocellular carcinoma after surgical resection or radiofrequency ablation
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.657039
  contributor:
    fullname: Li
– ident: CR20
– volume: 19
  start-page: 22
  issue: 1
  year: 2019
  ident: 1445_CR14
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-019-0209-5
  contributor:
    fullname: Z Zhang
– ident: 1445_CR31
  doi: 10.1016/j.ejso.2020.10.017
– volume: 5
  issue: 1
  year: 2018
  ident: 1445_CR24
  publication-title: J Med Imaging (Bellingham)
  doi: 10.1117/1.JMI.5.1.011021
  contributor:
    fullname: R Paul
– volume: 10
  start-page: 107
  year: 2012
  ident: 1445_CR9
  publication-title: World J Surg Oncol
  doi: 10.1186/1477-7819-10-107
  contributor:
    fullname: T Kamiyama
– volume: 276
  start-page: 433
  issue: 2
  year: 2015
  ident: 1445_CR30
  publication-title: Radiology
  doi: 10.1148/radiol.15142394
  contributor:
    fullname: C An
– volume: 17
  start-page: 422
  issue: 5
  year: 2015
  ident: 1445_CR2
  publication-title: HPB (Oxford)
  doi: 10.1111/hpb.12367
  contributor:
    fullname: Z Cheng
– volume: 15
  start-page: 618
  issue: 2
  year: 2008
  ident: 1445_CR4
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-007-9671-6
  contributor:
    fullname: GH Choi
– volume: 99
  start-page: 1613
  issue: 8
  year: 2015
  ident: 1445_CR6
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000000659
  contributor:
    fullname: M Dioguardi Burgio
– volume: 25
  start-page: 3847
  issue: 13
  year: 2019
  ident: 1445_CR13
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-18-2861
  contributor:
    fullname: S Kim
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  ident: 1445_CR28
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
  contributor:
    fullname: JJM van Griethuysen
– volume: 23
  start-page: 1181
  issue: 3
  year: 2019
  ident: 1445_CR22
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2841992
  contributor:
    fullname: Z Ning
– volume: 26
  start-page: 5512
  issue: 30
  year: 2007
  ident: 1445_CR29
  publication-title: Stat Med
  doi: 10.1002/sim.3148
  contributor:
    fullname: W Sauerbrei
– volume: 42
  start-page: 1695
  issue: 6
  year: 2017
  ident: 1445_CR12
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-017-1072-0
  contributor:
    fullname: Y Zhou
– volume: 53
  start-page: 1066
  issue: 4
  year: 2021
  ident: 1445_CR16
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.27424
  contributor:
    fullname: Y Zhao
– ident: 1445_CR25
  doi: 10.1016/j.jhep.2018.03.019
– volume: 68
  start-page: 723
  issue: 2
  year: 2018
  ident: 1445_CR27
  publication-title: Hepatology
  doi: 10.1002/hep.29913
  contributor:
    fullname: JA Marrero
– ident: 1445_CR10
  doi: 10.1159/000488035
– volume: 5
  start-page: 4006
  year: 2014
  ident: 1445_CR18
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
  contributor:
    fullname: HJ Aerts
– ident: 1445_CR5
  doi: 10.1016/S1470-2045(15)00198-9
– ident: 1445_CR23
  doi: 10.1109/JBHI.2020.3043236
– volume: 274
  start-page: 133
  issue: 1
  year: 2015
  ident: 1445_CR7
  publication-title: Radiology
  doi: 10.1148/radiol.14132343
  contributor:
    fullname: D Liu
– ident: 1445_CR20
  doi: 10.1053/j.gastro.2019.08.058
– volume: 391
  start-page: 1301
  issue: 10127
  year: 2018
  ident: 1445_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30010-2
  contributor:
    fullname: A Forner
– volume: 289
  start-page: 816
  issue: 3
  year: 2018
  ident: 1445_CR26
  publication-title: Radiology
  doi: 10.1148/radiol.2018181494
  contributor:
    fullname: V Chernyak
– volume: 30
  start-page: 1234
  issue: 9
  year: 2012
  ident: 1445_CR11
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.06.010
  contributor:
    fullname: V Kumar
– volume: 19
  start-page: 11
  issue: 1
  year: 2019
  ident: 1445_CR17
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-019-0197-5
  contributor:
    fullname: QY Shan
– volume: 261
  start-page: 947
  issue: 5
  year: 2015
  ident: 1445_CR3
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000000710
  contributor:
    fullname: P Tabrizian
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 1445_CR19
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: Y LeCun
– volume: 11
  year: 2021
  ident: 1445_CR15
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.657039
  contributor:
    fullname: L Wen
– volume: 21
  start-page: 312
  issue: 2
  year: 2017
  ident: 1445_CR8
  publication-title: J Gastrointest Surg
  doi: 10.1007/s11605-016-3311-z
  contributor:
    fullname: S Hao
– year: 2021
  ident: 1445_CR21
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-021-03617-3
  contributor:
    fullname: D Song
SSID ssj0040109
Score 2.4811103
Snippet Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of...
Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor...
PurposeHepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of...
PURPOSEHepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 259
SubjectTerms Abdominal Radiology
Algorithms
Carcinoma, Hepatocellular - diagnostic imaging
Carcinoma, Hepatocellular - pathology
Carcinoma, Hepatocellular - surgery
Diagnostic Radiology
Feature extraction
Humans
Imaging
Interventional Radiology
Liver cancer
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - pathology
Liver Neoplasms - surgery
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Meglumine - analogs & derivatives
Neuroradiology
Organometallic Compounds
Prediction models
Radiology
Radiomics
Retrospective Studies
Training
Ultrasound
Title A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma
URI https://link.springer.com/article/10.1007/s11547-021-01445-6
https://www.ncbi.nlm.nih.gov/pubmed/35129757
https://www.proquest.com/docview/2644407864
https://search.proquest.com/docview/2626227872
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RVkJceD8WChokbmDUJn6E4wq2WhDlwEPiFvkxaStUJ9rHX-J3MpNNdoUKB1BOSRzbsccznz2ezwAvtC20D5VV0b85UppNqAqGogquPDbBaxOjrOnOv7hP36t3M6HJKbdLF_nH69Ej2SvqXawbG3unZEeBTAKMsntwwLbHsHAfTGcf5h9HBazF2zPEx_z5y99t0BVgecUp2tuak1v_VcvbcHOAljjdyMIduEb5Llw_HZzn9-DnFLuF3ImGw_4IHBzZIrgMTEQd-pxw4dOFBCsvsaGe93OJYuwSthnPfGoDZUaomC4u6Yx1G2euKJ_3Wwnw9PN7ZByMnRB2dLThFUcSGmVcyNp-H12IbYPnbAhXrTgOZCcsRjnUKLeX_j58O5l9fTtXwzENKpbOrFRjGiGUotI6X5ggE0ifovaWvEk2sBoj0ziXiqoJTcUy4z0xrCRbkOV0sXwA-7nN9Aiw8q6IyTKIPQo6HBuvY6DK8FOBTrqZwMux4-puw8ZR73iXpelrbvq6b_raTuBw7Nt6GJnLWgCg-C6tnsDz7WseU_K_PlO7ljR8FazKigk83MjEtrhSEJIzbgKvRgnYZf73ujz-t-RP4EYhcRb9ZrdD2F8t1vQU9pZp_WyQ9l98Ef2o
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoKwEX3o9AgUHiBpbaxI_0uIIuu6LbAywSt8iPSdtDk2gff6m_szPepCtUOIBySuLEjj2Z-eyZ-SzEB2Vy5XxpZHBHB1KRCZVeY5DeFofaO6VD4DXdyQ97-qv8csw0OWrIhUnR7oNLMmnqbbIbWXsrOaSAZwFamh2xp46MIlneG03nX8eDBlbs7ukTZP785O9G6BayvOUVTcZm_PD_mvlIPOjBJYw20vBY3MHmibg7693nT8XVCLoFn7GOg7QJDgx8EVQHRMQOXBNh4eIFpysvocbE_LkENncR2gbOXGw9NoRRIV5c4hlpN3q5xOY8BRPA7PsUCAlDx5QdHW6YxQGZSBkWvLqf8guhreGcTOGqZdcBx8JC4G2NmvbSPRM_x8fzzxPZb9QgQ2H1Sta6ZkopLIx1ufY8hXQxKGfQ6Wg8KTLUtbUxL2tflyQ1ziEBSzQ5GioXiudit2kbfCmgdDYP0RCMPfDKH2qngsdS01UGT6rOxMdh5Kpuw8dRbZmXuesr6voqdX1lMrE_DG7V_5vLiiEgey-NysT7m9v0V_H3ugbbNZehIydllmfixUYobqorGCNZbTPxaZCA7cv_3pZX_1b8nbg3mc9OqpPp6bfX4n7OWRcp9G1f7K4Wa3wjdpZx_bYX_WusaAGn
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZoK1W8cB9bCgwSb2C1TXyExxXd1RbaCnFIvEU-Jm0f6kR7_CV-Z2dy7AoVHhDKUxLHTuzxzOfMzGch3iqTKecLI4P7cCgVmVDpNQbpbX6kvVM6BP6nO_tmz38WxxOmyVln8bfR7oNLsstpYJamtDxoYnWwSXwjy28lhxfwikBLsyV2FK1kSNJ3xpNPs9NBGyt2_fTJMn9-8neDdAtl3vKQtoZnev__X_mBuNeDThh3UvJQ3MH0SOye9W71x-LXGJo5n7Hug3ZzHBh4JKg9iIgNuBRh7uIVpzEvoMKWEXQBbAYj1AkuXKw9JsKuEK-u8YK0HlUuMV22QQZw9vUECCFDw1QeDXaM44BMsAxz_uvf5h1CXcElmchlzS4FjpGFwNsdpfraPRE_ppPvH2ey38BBhtzqpax0xVRTmBvrMu15aeliUM6g09F4UnCoK2tjVlS-KkianEMCnGgyNFQu5E_FdqoTPhdQOJuFaAjeHnrlj7RTwWOh6SqDKlWNxLthFMum4-koN4zM3PUldX3Zdn1pRmJ_GOiyn7OLkqEhezWNGok369s02_h7XcJ6xWXoyEjJZSPxrBOQdXM5Yyer7Ui8H6RhU_nf32Xv34q_Frtfjqfl6cn55xfibsbJGG1E3L7YXs5X-FJsLeLqVT8LbgDNEwpq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+predictive+model+integrating+deep+and+radiomics+features+based+on+gadobenate+dimeglumine-enhanced+MRI+for+postoperative+early+recurrence+of+hepatocellular+carcinoma&rft.jtitle=Radiologia+medica&rft.au=Gao%2C+Wenyu&rft.au=Wang%2C+Wentao&rft.au=Song%2C+Danjun&rft.au=Yang%2C+Chun&rft.date=2022-03-01&rft.pub=Springer+Milan&rft.eissn=1826-6983&rft.volume=127&rft.issue=3&rft.spage=259&rft.epage=271&rft_id=info:doi/10.1007%2Fs11547-021-01445-6&rft.externalDocID=10_1007_s11547_021_01445_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1826-6983&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1826-6983&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1826-6983&client=summon