A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma
Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from mul...
Saved in:
Published in: | Radiologia medica Vol. 127; no. 3; pp. 259 - 271 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Milan
Springer Milan
01-03-2022
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Purpose
Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI).
Materials and methods
A total of 472 HCC patients were included and divided into the training (
n
= 378) and validation (
n
= 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison.
Results
In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813).
Conclusion
The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection. |
---|---|
AbstractList | Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI).
A total of 472 HCC patients were included and divided into the training (n = 378) and validation (n = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison.
In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813).
The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection. PURPOSEHepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). MATERIALS AND METHODSA total of 472 HCC patients were included and divided into the training (n = 378) and validation (n = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. RESULTSIn the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). CONCLUSIONThe combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection. Purpose Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor prognoses. We aim to develop a predictive model for postoperative early recurrence of HCC based on deep and radiomics features from multi-phasic magnetic resonance imaging (MRI). Materials and methods A total of 472 HCC patients were included and divided into the training ( n = 378) and validation ( n = 94) cohorts in the retrospective study. We separately extracted radiomics features and deep features from eight phases of gadoxetic acid-enhanced MRI and utilized the least absolute shrinkage and selection operator logistic regression algorithm for feature selection and model construction. We integrated the selected two types of features into a combined model and established a radiomics model as well as a deep learning (DL) model for comparison. Results In the training and validation cohorts, the combined model demonstrated better performance for stratifying patients at high risk of early recurrence (AUC of 0.911 and 0.840, accuracy of 0.779 and 0.777, sensitivity of 0.927 and 0.769, specificity 0.720 and 0.779) than the radiomics model (AUC of 0.740 and 0.780) and the DL model (AUC of 0.887 and 0.813). Conclusion The combined model integrating deep and radiomics features from multi-phasic MRI is efficient for noninvasively stratifying patients at high risk of early HCC recurrence after resection. |
Author | Yang, Chun Zeng, Mengsu Song, Danjun Rao, Sheng-xiang Gao, Wenyu Wang, Wentao Zhu, Kai Wang, Manning |
Author_xml | – sequence: 1 givenname: Wenyu surname: Gao fullname: Gao, Wenyu organization: Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention – sequence: 2 givenname: Wentao surname: Wang fullname: Wang, Wentao organization: Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging – sequence: 3 givenname: Danjun surname: Song fullname: Song, Danjun organization: Liver Cancer Institute, Zhongshan Hospital, Fudan University, Department of Interventional Radiology, Zhejiang Cancer Hospital – sequence: 4 givenname: Chun surname: Yang fullname: Yang, Chun organization: Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University – sequence: 5 givenname: Kai surname: Zhu fullname: Zhu, Kai organization: Liver Cancer Institute, Zhongshan Hospital, Fudan University – sequence: 6 givenname: Mengsu surname: Zeng fullname: Zeng, Mengsu organization: Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging – sequence: 7 givenname: Sheng-xiang surname: Rao fullname: Rao, Sheng-xiang email: raoxray@163.com organization: Department of Radiology, Cancer Center, Shanghai Medical Imaging Institute, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging – sequence: 8 givenname: Manning surname: Wang fullname: Wang, Manning email: mnwang@fudan.edu.cn organization: Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35129757$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFjEQx4NU7It-AQ8S8NLLapLdJPscS9FaqAii5zCbTLYpu8ma7Bb6hfyc5vGpL3iQOWQgv_nPwO-UHMUUkZCXnL3hjOm3hXPZ6YYJ3jDedbJRT8gJ74Vq1K5vj_7qj8lpKXeMdYyz3TNy3EoudlrqE_L9gi4ZXbBruEc6J4cTDXHFMcMa4kgd4kIhOprBhTQHW6hHWLeMhQ5Q0NEU6QguDRhhRerCjOO0zSFig_EWoq3Ix8_X1KdMl1TWtOA-ui5DyNMDzWi3nLFyNHl6iwusyeI0bRNkaiHbENMMz8lTD1PBF4_vGfn6_t2Xyw_Nzaer68uLm8a2Wq6Nl573UmOrNAg5CCEkONuBQpBODazvUXqtnej94PsBLQDuRItKoKqcbc_I-SF3yenbhmU1cyj7cyBi2ooRqpbQvRYVff0Pepe2HOt1leq6juledZUSB8rmVEpGb5YcZsgPhjOzt2gOFk21aH5aNKoOvXqM3oYZ3e-RX9oq0B6AUr_iiPnP7v_E_gB9gq4u |
CitedBy_id | crossref_primary_10_1016_j_acra_2024_04_022 crossref_primary_10_3389_fonc_2022_930458 crossref_primary_10_1186_s12880_024_01251_2 crossref_primary_10_3390_cancers15072140 crossref_primary_10_3390_curroncol31010027 crossref_primary_10_1186_s12880_022_00946_8 crossref_primary_10_1186_s12885_024_12394_4 crossref_primary_10_1016_j_acra_2024_06_002 crossref_primary_10_1002_jmri_28982 crossref_primary_10_1007_s00261_024_04356_y crossref_primary_10_3389_fonc_2024_1346124 crossref_primary_10_3390_cancers15061784 crossref_primary_10_1007_s10278_023_00855_4 crossref_primary_10_1016_j_acra_2023_11_024 crossref_primary_10_3390_diagnostics13122012 crossref_primary_10_3390_curroncol30010064 crossref_primary_10_1186_s12938_024_01234_y crossref_primary_10_3389_fnins_2023_1195188 crossref_primary_10_3390_biomedicines12010058 crossref_primary_10_3390_jpm13010134 crossref_primary_10_3390_diagnostics13081488 crossref_primary_10_1016_j_compbiomed_2024_108337 crossref_primary_10_3390_diagnostics13111974 crossref_primary_10_3390_jcm12041489 crossref_primary_10_3389_fonc_2023_1114983 crossref_primary_10_1016_j_dld_2022_12_015 crossref_primary_10_3390_diagnostics13182877 crossref_primary_10_3390_jpm13020223 crossref_primary_10_3390_jpm13020225 crossref_primary_10_1080_0886022X_2023_2271104 |
Cites_doi | 10.1148/radiol.14132343 10.1245/s10434-007-9671-6 10.1016/j.mri.2012.06.010 10.1158/1078-0432.CCR-18-2861 10.1016/S0140-6736(18)30010-2 10.1007/s00432-021-03617-3 10.1038/ncomms5006 10.1186/s40644-019-0197-5 10.1002/sim.3148 10.1186/s40644-019-0209-5 10.1038/nature14539 10.1148/radiol.2018181494 10.1148/radiol.15142394 10.1007/s00261-017-1072-0 10.1109/JBHI.2018.2841992 10.1002/hep.29913 10.1117/1.JMI.5.1.011021 10.1097/SLA.0000000000000710 10.1158/0008-5472.CAN-17-0339 10.1097/TP.0000000000000659 10.1002/jmri.27424 10.1111/hpb.12367 10.1007/s11605-016-3311-z 10.1186/1477-7819-10-107 10.3389/fonc.2021.657039 10.1016/j.ejso.2020.10.017 10.1016/j.jhep.2018.03.019 10.1159/000488035 10.1016/S1470-2045(15)00198-9 10.1109/JBHI.2020.3043236 10.1053/j.gastro.2019.08.058 |
ContentType | Journal Article |
Copyright | Italian Society of Medical Radiology 2022 2022. Italian Society of Medical Radiology. Italian Society of Medical Radiology 2022. |
Copyright_xml | – notice: Italian Society of Medical Radiology 2022 – notice: 2022. Italian Society of Medical Radiology. – notice: Italian Society of Medical Radiology 2022. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1007/s11547-021-01445-6 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1826-6983 |
EndPage | 271 |
ExternalDocumentID | 10_1007_s11547_021_01445_6 35129757 |
Genre | Journal Article |
GrantInformation_xml | – fundername: chinese academy of sciences grantid: GJJSTD20170004 – fundername: national natural science foundation of china grantid: 81227901; 81527805; 81571661 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: the shanghai sailing program grantid: 19YF1408100 – fundername: national key research and development program of china grantid: 2017YFC0108804 – fundername: the china international medical foundation grantid: Z-2014-07-2003-04 – fundername: national natural science foundation of china grantid: 81527805 – fundername: national natural science foundation of china grantid: 81227901 – fundername: national natural science foundation of china grantid: 81571661 |
GroupedDBID | -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J P9S PF0 PT4 QOR QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U Z7X Z82 Z87 ZA5 ZMTXR ZOVNA ~A9 ~S- AACDK AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3 |
IEDL.DBID | AEJHL |
ISSN | 1826-6983 0033-8362 |
IngestDate | Fri Oct 25 08:06:29 EDT 2024 Tue Nov 19 06:00:53 EST 2024 Fri Nov 22 00:08:36 EST 2024 Wed Oct 16 00:45:54 EDT 2024 Sat Dec 16 12:07:38 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning Reoccurrence Hepatocellular carcinoma Gadoxetic acid-enhanced MRI Radiomics |
Language | English |
License | 2022. Italian Society of Medical Radiology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-f5f1857e367a25b2225adc4a6ea5d6b088e5f77d28fbf8becaae923e62e6dc4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35129757 |
PQID | 2644407864 |
PQPubID | 2043526 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2626227872 proquest_journals_2644407864 crossref_primary_10_1007_s11547_021_01445_6 pubmed_primary_35129757 springer_journals_10_1007_s11547_021_01445_6 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Milan |
PublicationPlace_xml | – name: Milan – name: Italy – name: Torino |
PublicationSubtitle | Official Journal of the Italian Society of Medical and Interventional Radiology |
PublicationTitle | Radiologia medica |
PublicationTitleAbbrev | Radiol med |
PublicationTitleAlternate | Radiol Med |
PublicationYear | 2022 |
Publisher | Springer Milan Springer Nature B.V |
Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
References | Zhang, Jiang, Chen, Wei, Cao, Ye, Li, Ma, Song (CR14) 2019; 19 Kamiyama, Nakanishi, Yokoo, Kamachi, Tahara, Kakisaka, Tsuruga, Todo, Taketomi (CR9) 2012; 10 Song, Wang, Wang, Wang, Cai, Zhu, Lv, Gao, Zhou, Fan, Rao, Wang, Wang (CR21) 2021 Kim, Shin, Kim, Choi, Kim, Choi (CR13) 2019; 25 Paul, Hawkins, Schabath, Gillies, Hall, Goldgof (CR24) 2018; 5 CR10 CR31 Shan, Hu, Feng, Peng, Chen, Zhou, Li, Xie, Lu, Wang, Kuang (CR17) 2019; 19 Chernyak, Fowler, Kamaya, Kielar, Elsayes, Bashir, Kono, Do, Mitchell, Singal, Tang, Sirlin (CR26) 2018; 289 Sauerbrei, Royston, Binder (CR29) 2007; 26 Choi, Kim, Kang, Kim, Choi, Lee, Kim (CR4) 2008; 15 Tabrizian, Jibara, Shrager, Schwartz, Roayaie (CR3) 2015; 261 Hao, Fan, Chen, Tu, Wan (CR8) 2017; 21 Wen, Weng, Yan, Ye, Zhu, Zhou, Gao, Li (CR15) 2021; 11 Zhao, Wu, Zhang, Hua, Qi, Wang, Lin, Sheng, Cui, Liu, Song, Li, Wu, Guo, Cui, Liu (CR16) 2021; 53 Dioguardi Burgio, Ronot, Fuks, Dondero, Cauchy, Gaujoux, Dokmak, Paradis, Durand, Belghiti, Vilgrain (CR6) 2015; 99 LeCun, Bengio, Hinton (CR19) 2015; 521 Ning, Luo, Li, Han, Feng, Xu, Chen, Chen, Zhang (CR22) 2019; 23 Liu, Fong, Chan, Poon, Khong (CR7) 2015; 274 CR5 Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (CR18) 2014; 5 Zhou, He, Huang, Chen, Wu, Ye, Liu, Liang (CR12) 2017; 42 CR25 van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (CR28) 2017; 77 CR23 CR20 Kumar, Gu, Basu, Berglund, Eschrich, Schabath, Forster, Aerts, Dekker, Fenstermacher, Goldgof, Hall, Lambin, Balagurunathan, Gatenby, Gillies (CR11) 2012; 30 Cheng, Yang, Qu, Zhou, Yang, Yang, Xia, Li, Wang, Yan, Wu, Zhang, Huser, Shen (CR2) 2015; 17 An, Kim, Park, Chung, Rhee, Kim (CR30) 2015; 276 Forner, Reig, Bruix (CR1) 2018; 391 Marrero, Kulik, Sirlin, Zhu, Finn, Abecassis, Roberts, Heimbach (CR27) 2018; 68 Z Zhang (1445_CR14) 2019; 19 Y Zhou (1445_CR12) 2017; 42 1445_CR25 L Wen (1445_CR15) 2021; 11 S Kim (1445_CR13) 2019; 25 V Kumar (1445_CR11) 2012; 30 1445_CR20 1445_CR23 QY Shan (1445_CR17) 2019; 19 GH Choi (1445_CR4) 2008; 15 Z Ning (1445_CR22) 2019; 23 V Chernyak (1445_CR26) 2018; 289 JA Marrero (1445_CR27) 2018; 68 Y LeCun (1445_CR19) 2015; 521 D Liu (1445_CR7) 2015; 274 W Sauerbrei (1445_CR29) 2007; 26 S Hao (1445_CR8) 2017; 21 R Paul (1445_CR24) 2018; 5 D Song (1445_CR21) 2021 T Kamiyama (1445_CR9) 2012; 10 HJ Aerts (1445_CR18) 2014; 5 Y Zhao (1445_CR16) 2021; 53 C An (1445_CR30) 2015; 276 P Tabrizian (1445_CR3) 2015; 261 1445_CR10 1445_CR31 M Dioguardi Burgio (1445_CR6) 2015; 99 JJM van Griethuysen (1445_CR28) 2017; 77 A Forner (1445_CR1) 2018; 391 Z Cheng (1445_CR2) 2015; 17 1445_CR5 |
References_xml | – volume: 274 start-page: 133 issue: 1 year: 2015 end-page: 140 ident: CR7 article-title: Hepatocellular carcinoma: surveillance CT schedule after hepatectomy based on risk stratification publication-title: Radiology doi: 10.1148/radiol.14132343 contributor: fullname: Khong – volume: 15 start-page: 618 issue: 2 year: 2008 end-page: 629 ident: CR4 article-title: Prognostic factors and optimal treatment strategy for intrahepatic nodular recurrence after curative resection of hepatocellular carcinoma publication-title: Ann Surg Oncol doi: 10.1245/s10434-007-9671-6 contributor: fullname: Kim – volume: 30 start-page: 1234 issue: 9 year: 2012 end-page: 1248 ident: CR11 article-title: Radiomics: the process and the challenges publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.06.010 contributor: fullname: Gillies – volume: 25 start-page: 3847 issue: 13 year: 2019 end-page: 3855 ident: CR13 article-title: Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-2861 contributor: fullname: Choi – volume: 391 start-page: 1301 issue: 10127 year: 2018 end-page: 1314 ident: CR1 article-title: Hepatocellular carcinoma publication-title: Lancet doi: 10.1016/S0140-6736(18)30010-2 contributor: fullname: Bruix – year: 2021 ident: CR21 article-title: Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-021-03617-3 contributor: fullname: Wang – volume: 5 start-page: 4006 year: 2014 ident: CR18 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5006 contributor: fullname: Lambin – ident: CR10 – volume: 19 start-page: 11 issue: 1 year: 2019 ident: CR17 article-title: CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation publication-title: Cancer Imaging doi: 10.1186/s40644-019-0197-5 contributor: fullname: Kuang – volume: 26 start-page: 5512 issue: 30 year: 2007 end-page: 5528 ident: CR29 article-title: Selection of important variables and determination of functional form for continuous predictors in multivariable model building publication-title: Stat Med doi: 10.1002/sim.3148 contributor: fullname: Binder – ident: CR25 – volume: 19 start-page: 22 issue: 1 year: 2019 ident: CR14 article-title: Hepatocellular carcinoma: radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction publication-title: Cancer Imaging doi: 10.1186/s40644-019-0209-5 contributor: fullname: Song – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR19 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: Hinton – ident: CR23 – volume: 289 start-page: 816 issue: 3 year: 2018 end-page: 830 ident: CR26 article-title: Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients publication-title: Radiology doi: 10.1148/radiol.2018181494 contributor: fullname: Sirlin – volume: 276 start-page: 433 issue: 2 year: 2015 end-page: 443 ident: CR30 article-title: Single hepatocellular carcinoma: preoperative MR imaging to predict early recurrence after curative resection publication-title: Radiology doi: 10.1148/radiol.15142394 contributor: fullname: Kim – volume: 42 start-page: 1695 issue: 6 year: 2017 end-page: 1704 ident: CR12 article-title: CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-017-1072-0 contributor: fullname: Liang – volume: 23 start-page: 1181 issue: 3 year: 2019 end-page: 1191 ident: CR22 article-title: Pattern classification for gastrointestinal stromal tumors by integration of radiomics and deep convolutional features publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2841992 contributor: fullname: Zhang – volume: 68 start-page: 723 issue: 2 year: 2018 end-page: 750 ident: CR27 article-title: Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases publication-title: Hepatology doi: 10.1002/hep.29913 contributor: fullname: Heimbach – volume: 5 issue: 1 year: 2018 ident: CR24 article-title: Predicting malignant nodules by fusing deep features with classical radiomics features publication-title: J Med Imaging (Bellingham) doi: 10.1117/1.JMI.5.1.011021 contributor: fullname: Goldgof – volume: 261 start-page: 947 issue: 5 year: 2015 end-page: 955 ident: CR3 article-title: Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis publication-title: Ann Surg doi: 10.1097/SLA.0000000000000710 contributor: fullname: Roayaie – ident: CR31 – volume: 77 start-page: e104 issue: 21 year: 2017 end-page: e107 ident: CR28 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 contributor: fullname: Aerts – volume: 99 start-page: 1613 issue: 8 year: 2015 end-page: 1618 ident: CR6 article-title: Follow-up Imaging After Liver Transplantation Should Take Into Consideration Primary Hepatocellular Carcinoma Characteristics publication-title: Transplantation doi: 10.1097/TP.0000000000000659 contributor: fullname: Vilgrain – volume: 53 start-page: 1066 issue: 4 year: 2021 end-page: 1079 ident: CR16 article-title: Radiomics analysis based on multiparametric MRI for predicting early recurrence in hepatocellular carcinoma after partial hepatectomy publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27424 contributor: fullname: Liu – volume: 17 start-page: 422 issue: 5 year: 2015 end-page: 427 ident: CR2 article-title: Risk factors and management for early and late intrahepatic recurrence of solitary hepatocellular carcinoma after curative resection publication-title: HPB (Oxford) doi: 10.1111/hpb.12367 contributor: fullname: Shen – volume: 21 start-page: 312 issue: 2 year: 2017 end-page: 320 ident: CR8 article-title: Distinct recurrence risk factors for intrahepatic metastasis and multicenter occurrence after surgery in patients with hepatocellular carcinoma publication-title: J Gastrointest Surg doi: 10.1007/s11605-016-3311-z contributor: fullname: Wan – ident: CR5 – volume: 10 start-page: 107 year: 2012 ident: CR9 article-title: Analysis of the risk factors for early death due to disease recurrence or progression within 1 year after hepatectomy in patients with hepatocellular carcinoma publication-title: World J Surg Oncol doi: 10.1186/1477-7819-10-107 contributor: fullname: Taketomi – volume: 11 year: 2021 ident: CR15 article-title: A Radiomics nomogram for preoperative prediction of early recurrence of small hepatocellular carcinoma after surgical resection or radiofrequency ablation publication-title: Front Oncol doi: 10.3389/fonc.2021.657039 contributor: fullname: Li – ident: CR20 – volume: 19 start-page: 22 issue: 1 year: 2019 ident: 1445_CR14 publication-title: Cancer Imaging doi: 10.1186/s40644-019-0209-5 contributor: fullname: Z Zhang – ident: 1445_CR31 doi: 10.1016/j.ejso.2020.10.017 – volume: 5 issue: 1 year: 2018 ident: 1445_CR24 publication-title: J Med Imaging (Bellingham) doi: 10.1117/1.JMI.5.1.011021 contributor: fullname: R Paul – volume: 10 start-page: 107 year: 2012 ident: 1445_CR9 publication-title: World J Surg Oncol doi: 10.1186/1477-7819-10-107 contributor: fullname: T Kamiyama – volume: 276 start-page: 433 issue: 2 year: 2015 ident: 1445_CR30 publication-title: Radiology doi: 10.1148/radiol.15142394 contributor: fullname: C An – volume: 17 start-page: 422 issue: 5 year: 2015 ident: 1445_CR2 publication-title: HPB (Oxford) doi: 10.1111/hpb.12367 contributor: fullname: Z Cheng – volume: 15 start-page: 618 issue: 2 year: 2008 ident: 1445_CR4 publication-title: Ann Surg Oncol doi: 10.1245/s10434-007-9671-6 contributor: fullname: GH Choi – volume: 99 start-page: 1613 issue: 8 year: 2015 ident: 1445_CR6 publication-title: Transplantation doi: 10.1097/TP.0000000000000659 contributor: fullname: M Dioguardi Burgio – volume: 25 start-page: 3847 issue: 13 year: 2019 ident: 1445_CR13 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-2861 contributor: fullname: S Kim – volume: 77 start-page: e104 issue: 21 year: 2017 ident: 1445_CR28 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 contributor: fullname: JJM van Griethuysen – volume: 23 start-page: 1181 issue: 3 year: 2019 ident: 1445_CR22 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2841992 contributor: fullname: Z Ning – volume: 26 start-page: 5512 issue: 30 year: 2007 ident: 1445_CR29 publication-title: Stat Med doi: 10.1002/sim.3148 contributor: fullname: W Sauerbrei – volume: 42 start-page: 1695 issue: 6 year: 2017 ident: 1445_CR12 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-017-1072-0 contributor: fullname: Y Zhou – volume: 53 start-page: 1066 issue: 4 year: 2021 ident: 1445_CR16 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.27424 contributor: fullname: Y Zhao – ident: 1445_CR25 doi: 10.1016/j.jhep.2018.03.019 – volume: 68 start-page: 723 issue: 2 year: 2018 ident: 1445_CR27 publication-title: Hepatology doi: 10.1002/hep.29913 contributor: fullname: JA Marrero – ident: 1445_CR10 doi: 10.1159/000488035 – volume: 5 start-page: 4006 year: 2014 ident: 1445_CR18 publication-title: Nat Commun doi: 10.1038/ncomms5006 contributor: fullname: HJ Aerts – ident: 1445_CR5 doi: 10.1016/S1470-2045(15)00198-9 – ident: 1445_CR23 doi: 10.1109/JBHI.2020.3043236 – volume: 274 start-page: 133 issue: 1 year: 2015 ident: 1445_CR7 publication-title: Radiology doi: 10.1148/radiol.14132343 contributor: fullname: D Liu – ident: 1445_CR20 doi: 10.1053/j.gastro.2019.08.058 – volume: 391 start-page: 1301 issue: 10127 year: 2018 ident: 1445_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(18)30010-2 contributor: fullname: A Forner – volume: 289 start-page: 816 issue: 3 year: 2018 ident: 1445_CR26 publication-title: Radiology doi: 10.1148/radiol.2018181494 contributor: fullname: V Chernyak – volume: 30 start-page: 1234 issue: 9 year: 2012 ident: 1445_CR11 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.06.010 contributor: fullname: V Kumar – volume: 19 start-page: 11 issue: 1 year: 2019 ident: 1445_CR17 publication-title: Cancer Imaging doi: 10.1186/s40644-019-0197-5 contributor: fullname: QY Shan – volume: 261 start-page: 947 issue: 5 year: 2015 ident: 1445_CR3 publication-title: Ann Surg doi: 10.1097/SLA.0000000000000710 contributor: fullname: P Tabrizian – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 1445_CR19 publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: Y LeCun – volume: 11 year: 2021 ident: 1445_CR15 publication-title: Front Oncol doi: 10.3389/fonc.2021.657039 contributor: fullname: L Wen – volume: 21 start-page: 312 issue: 2 year: 2017 ident: 1445_CR8 publication-title: J Gastrointest Surg doi: 10.1007/s11605-016-3311-z contributor: fullname: S Hao – year: 2021 ident: 1445_CR21 publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-021-03617-3 contributor: fullname: D Song |
SSID | ssj0040109 |
Score | 2.4811103 |
Snippet | Purpose
Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of... Hepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of poor... PurposeHepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of... PURPOSEHepatocellular carcinoma (HCC) is the most common liver cancer worldwide, and early recurrence of HCC after curative hepatic resection is indicative of... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 259 |
SubjectTerms | Abdominal Radiology Algorithms Carcinoma, Hepatocellular - diagnostic imaging Carcinoma, Hepatocellular - pathology Carcinoma, Hepatocellular - surgery Diagnostic Radiology Feature extraction Humans Imaging Interventional Radiology Liver cancer Liver Neoplasms - diagnostic imaging Liver Neoplasms - pathology Liver Neoplasms - surgery Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Medicine Medicine & Public Health Meglumine - analogs & derivatives Neuroradiology Organometallic Compounds Prediction models Radiology Radiomics Retrospective Studies Training Ultrasound |
Title | A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma |
URI | https://link.springer.com/article/10.1007/s11547-021-01445-6 https://www.ncbi.nlm.nih.gov/pubmed/35129757 https://www.proquest.com/docview/2644407864 https://search.proquest.com/docview/2626227872 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RVkJceD8WChokbmDUJn6E4wq2WhDlwEPiFvkxaStUJ9rHX-J3MpNNdoUKB1BOSRzbsccznz2ezwAvtC20D5VV0b85UppNqAqGogquPDbBaxOjrOnOv7hP36t3M6HJKbdLF_nH69Ej2SvqXawbG3unZEeBTAKMsntwwLbHsHAfTGcf5h9HBazF2zPEx_z5y99t0BVgecUp2tuak1v_VcvbcHOAljjdyMIduEb5Llw_HZzn9-DnFLuF3ImGw_4IHBzZIrgMTEQd-pxw4dOFBCsvsaGe93OJYuwSthnPfGoDZUaomC4u6Yx1G2euKJ_3Wwnw9PN7ZByMnRB2dLThFUcSGmVcyNp-H12IbYPnbAhXrTgOZCcsRjnUKLeX_j58O5l9fTtXwzENKpbOrFRjGiGUotI6X5ggE0ifovaWvEk2sBoj0ziXiqoJTcUy4z0xrCRbkOV0sXwA-7nN9Aiw8q6IyTKIPQo6HBuvY6DK8FOBTrqZwMux4-puw8ZR73iXpelrbvq6b_raTuBw7Nt6GJnLWgCg-C6tnsDz7WseU_K_PlO7ljR8FazKigk83MjEtrhSEJIzbgKvRgnYZf73ujz-t-RP4EYhcRb9ZrdD2F8t1vQU9pZp_WyQ9l98Ef2o |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoKwEX3o9AgUHiBpbaxI_0uIIuu6LbAywSt8iPSdtDk2gff6m_szPepCtUOIBySuLEjj2Z-eyZ-SzEB2Vy5XxpZHBHB1KRCZVeY5DeFofaO6VD4DXdyQ97-qv8csw0OWrIhUnR7oNLMmnqbbIbWXsrOaSAZwFamh2xp46MIlneG03nX8eDBlbs7ukTZP785O9G6BayvOUVTcZm_PD_mvlIPOjBJYw20vBY3MHmibg7693nT8XVCLoFn7GOg7QJDgx8EVQHRMQOXBNh4eIFpysvocbE_LkENncR2gbOXGw9NoRRIV5c4hlpN3q5xOY8BRPA7PsUCAlDx5QdHW6YxQGZSBkWvLqf8guhreGcTOGqZdcBx8JC4G2NmvbSPRM_x8fzzxPZb9QgQ2H1Sta6ZkopLIx1ufY8hXQxKGfQ6Wg8KTLUtbUxL2tflyQ1ziEBSzQ5GioXiudit2kbfCmgdDYP0RCMPfDKH2qngsdS01UGT6rOxMdh5Kpuw8dRbZmXuesr6voqdX1lMrE_DG7V_5vLiiEgey-NysT7m9v0V_H3ugbbNZehIydllmfixUYobqorGCNZbTPxaZCA7cv_3pZX_1b8nbg3mc9OqpPp6bfX4n7OWRcp9G1f7K4Wa3wjdpZx_bYX_WusaAGn |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZoK1W8cB9bCgwSb2C1TXyExxXd1RbaCnFIvEU-Jm0f6kR7_CV-Z2dy7AoVHhDKUxLHTuzxzOfMzGch3iqTKecLI4P7cCgVmVDpNQbpbX6kvVM6BP6nO_tmz38WxxOmyVln8bfR7oNLsstpYJamtDxoYnWwSXwjy28lhxfwikBLsyV2FK1kSNJ3xpNPs9NBGyt2_fTJMn9-8neDdAtl3vKQtoZnev__X_mBuNeDThh3UvJQ3MH0SOye9W71x-LXGJo5n7Hug3ZzHBh4JKg9iIgNuBRh7uIVpzEvoMKWEXQBbAYj1AkuXKw9JsKuEK-u8YK0HlUuMV22QQZw9vUECCFDw1QeDXaM44BMsAxz_uvf5h1CXcElmchlzS4FjpGFwNsdpfraPRE_ppPvH2ey38BBhtzqpax0xVRTmBvrMu15aeliUM6g09F4UnCoK2tjVlS-KkianEMCnGgyNFQu5E_FdqoTPhdQOJuFaAjeHnrlj7RTwWOh6SqDKlWNxLthFMum4-koN4zM3PUldX3Zdn1pRmJ_GOiyn7OLkqEhezWNGok369s02_h7XcJ6xWXoyEjJZSPxrBOQdXM5Yyer7Ui8H6RhU_nf32Xv34q_Frtfjqfl6cn55xfibsbJGG1E3L7YXs5X-FJsLeLqVT8LbgDNEwpq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+predictive+model+integrating+deep+and+radiomics+features+based+on+gadobenate+dimeglumine-enhanced+MRI+for+postoperative+early+recurrence+of+hepatocellular+carcinoma&rft.jtitle=Radiologia+medica&rft.au=Gao%2C+Wenyu&rft.au=Wang%2C+Wentao&rft.au=Song%2C+Danjun&rft.au=Yang%2C+Chun&rft.date=2022-03-01&rft.pub=Springer+Milan&rft.eissn=1826-6983&rft.volume=127&rft.issue=3&rft.spage=259&rft.epage=271&rft_id=info:doi/10.1007%2Fs11547-021-01445-6&rft.externalDocID=10_1007_s11547_021_01445_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1826-6983&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1826-6983&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1826-6983&client=summon |