Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning
Objectives To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). Methods Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery di...
Saved in:
Published in: | European radiology Vol. 31; no. 1; pp. 486 - 493 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Objectives
To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML).
Methods
Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC).
Results
MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93–0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80–0.87]), segment involvement score (AUC 0.88 [95%CI 0.84–0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86–0.92], all
p
< 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72–0.82, all
p
< 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71–0.76, all
p
< 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92,
p
= 0.024).
Conclusion
Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient’s information to enhance risk stratification.
Key Points
•
A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE).
• ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone.
• A ML model outperforms conventional logistic regression analysis for the prediction of MACE. |
---|---|
AbstractList | ObjectivesTo evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML).MethodsDatasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC).ResultsMACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93–0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80–0.87]), segment involvement score (AUC 0.88 [95%CI 0.84–0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86–0.92], all p < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72–0.82, all p < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71–0.76, all p < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p = 0.024).ConclusionIntegration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient’s information to enhance risk stratification.Key Points• A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE).• ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone.• A ML model outperforms conventional logistic regression analysis for the prediction of MACE. Objectives To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). Methods Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC). Results MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93–0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80–0.87]), segment involvement score (AUC 0.88 [95%CI 0.84–0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86–0.92], all p < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72–0.82, all p < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71–0.76, all p < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p = 0.024). Conclusion Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient’s information to enhance risk stratification. Key Points • A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE. To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC). MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93-0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80-0.87]), segment involvement score (AUC 0.88 [95%CI 0.84-0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86-0.92], all p < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72-0.82, all p < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71-0.76, all p < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p = 0.024). Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient's information to enhance risk stratification. • A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE. |
Author | Straube, Florian Hartl, Stefan Tesche, Christian Gray, Hunter N. Jochheim, David Ebersberger, Ullrich Rogowski, Sebastian Baquet, Moritz Aschauer, Theresia Schoepf, U. Joseph Hoffmann, Ellen Hedels, Benedikt Massberg, Steffen Bauer, Maximilian J. |
Author_xml | – sequence: 1 givenname: Christian orcidid: 0000-0002-3584-4284 surname: Tesche fullname: Tesche, Christian email: tesche.christian@gmail.com organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University, Department of Internal Medicine, Cardiology, St. Johannes Hospital, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina – sequence: 2 givenname: Maximilian J. surname: Bauer fullname: Bauer, Maximilian J. organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina – sequence: 3 givenname: Moritz surname: Baquet fullname: Baquet, Moritz organization: Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University – sequence: 4 givenname: Benedikt surname: Hedels fullname: Hedels, Benedikt organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen – sequence: 5 givenname: Florian surname: Straube fullname: Straube, Florian organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen – sequence: 6 givenname: Stefan surname: Hartl fullname: Hartl, Stefan organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen – sequence: 7 givenname: Hunter N. surname: Gray fullname: Gray, Hunter N. organization: Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina – sequence: 8 givenname: David surname: Jochheim fullname: Jochheim, David organization: Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University – sequence: 9 givenname: Theresia surname: Aschauer fullname: Aschauer, Theresia organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen – sequence: 10 givenname: Sebastian surname: Rogowski fullname: Rogowski, Sebastian organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen – sequence: 11 givenname: U. Joseph surname: Schoepf fullname: Schoepf, U. Joseph organization: Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Division of Cardiology, Medical University of South Carolina – sequence: 12 givenname: Steffen surname: Massberg fullname: Massberg, Steffen organization: Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University – sequence: 13 givenname: Ellen surname: Hoffmann fullname: Hoffmann, Ellen organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen – sequence: 14 givenname: Ullrich surname: Ebersberger fullname: Ebersberger, Ullrich organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University, Kardiologie MVZ München-Nord |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32725337$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1URG8LL8ACWWLDJjD-uXGyRFf8VKrEpqyjiT1JXSV2sJMr9W36qLjcAhILFpat8XfOeHwu2FmIgRh7LeC9ADAfMoBSUIEsy0CjKvmM7YRWshLQ6DO2g1Y1lWlbfc4ucr4DgFZo84KdK2nkXimzYw9X85LikRyfYhirldLMS2EMMa_e8iNOG_E4cBtTDJju-eGGYxh9HBMut_eVo-Qf1cuEPwo5E-YtUS6M43bywVuc-IIJZyremcfA0R3LibjF5DxaHrfVxpn4ln0Y-Yz21gfiE2EKpfCSPR9wyvTqab9k3z9_ujl8ra6_fbk6fLyurDL7tSLrsJeN0Y0xQPXQtKYeWlUPqB3Itu-HvjfKNq63GocBybUAvZEKbV2DtuqSvTv5lunLJHntZp8tTRMGilvupJaNFo0QoqBv_0Hv4pZCeV2hjFLtXipTKHmibIo5Jxq6Jfm5fGEnoHvMrzvl15X8ul_5dbKI3jxZb_1M7o_kd2AFUCcgl6swUvrb-z-2PwH1uqvC |
CitedBy_id | crossref_primary_10_1097_RTI_0000000000000626 crossref_primary_10_3390_healthcare10020232 crossref_primary_10_1016_j_ejrad_2021_109767 crossref_primary_10_1155_2020_6649410 crossref_primary_10_1016_j_medp_2023_100001 crossref_primary_10_1055_a_1395_2301 crossref_primary_10_3390_jcdd10010025 crossref_primary_10_1148_ryct_220107 crossref_primary_10_1093_ehjopen_oeac018 crossref_primary_10_1007_s12410_020_09549_9 crossref_primary_10_1016_j_ejrad_2023_111133 crossref_primary_10_3389_fcvm_2022_896366 crossref_primary_10_1002_mp_15616 crossref_primary_10_1016_j_pcad_2023_09_001 crossref_primary_10_1186_s12916_024_03273_7 crossref_primary_10_1016_j_cjca_2021_09_030 crossref_primary_10_1016_j_crad_2022_02_021 crossref_primary_10_1016_j_crad_2023_08_024 crossref_primary_10_1097_RTI_0000000000000709 crossref_primary_10_2196_47645 crossref_primary_10_1016_j_ejrad_2022_110164 |
Cites_doi | 10.1016/j.ijcard.2016.12.137 10.1016/j.jacc.2007.03.067 10.1016/j.jcct.2016.08.003 10.1016/j.jcmg.2012.03.019 10.1016/j.jacc.2009.10.039 10.2202/1544-6115.1078 10.1016/j.jcct.2018.04.011 10.1148/radiol.2019182061 10.1109/TSMCA.2009.2029559 10.1007/s10554-010-9613-4 10.1007/s00330-017-5223-z 10.1016/j.jacc.2003.09.053 10.1161/CIRCULATIONAHA.107.699579 10.1007/978-0-387-84858-7 10.1016/j.jacc.2018.12.054 10.1016/j.jacc.2007.03.044 10.1016/j.jcct.2018.07.001 10.1016/j.jcmg.2014.11.002 10.2307/2531595 10.1016/j.amjcard.2016.11.030 10.2214/AJR.08.1277 10.1016/j.jcct.2016.04.005 10.1186/1758-2946-6-10 10.1093/eurheartj/ehy404 |
ContentType | Journal Article |
Copyright | European Society of Radiology 2020 European Society of Radiology 2020. |
Copyright_xml | – notice: European Society of Radiology 2020 – notice: European Society of Radiology 2020. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00330-020-07083-2 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts ProQuest Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 493 |
ExternalDocumentID | 10_1007_s00330_020_07083_2 32725337 |
Genre | Journal Article |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAKSU AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWTL AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPTK ABQBU ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHVE ACHXU ACIGE ACIHN ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACUDM ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFAFS AFEXP AFJLC AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGKHE AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z5O Z7R Z7U Z7V Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z87 Z88 Z8M Z8O Z8P Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AACDK AAEOY AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ ADOJX AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU AJOOF ALIPV CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-ecdab28748770e6f8976f936fa4d029bbfbb73c8dbc4affaed900b723ac6604c3 |
IEDL.DBID | AEJHL |
ISSN | 0938-7994 |
IngestDate | Fri Oct 25 23:09:06 EDT 2024 Thu Oct 10 22:57:44 EDT 2024 Thu Nov 21 22:36:18 EST 2024 Wed Oct 16 00:43:41 EDT 2024 Sat Dec 16 12:01:10 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Outcome measures Coronary artery disease Machine learning Multidetector computed tomography |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-ecdab28748770e6f8976f936fa4d029bbfbb73c8dbc4affaed900b723ac6604c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3584-4284 |
PMID | 32725337 |
PQID | 2473395237 |
PQPubID | 54162 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2428418111 proquest_journals_2473395237 crossref_primary_10_1007_s00330_020_07083_2 pubmed_primary_32725337 springer_journals_10_1007_s00330_020_07083_2 |
PublicationCentury | 2000 |
PublicationDate | 1-2021 2021-Jan 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 1-2021 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Hastie, Tibshirani, Friedman (CR21) 2009 Tesche, Caruso, De Cecco (CR26) 2017; 119 Min, Feignoux, Treutenaere, Laperche, Sablayrolles (CR17) 2010; 26 Seiffert, Khoshgoftaar, Van Hulse, Napolitano (CR19) 2010; 40 DeLong, DeLong, Clarke-Pearson (CR24) 1988; 44 Yamamoto, Kihara, Kitagawa (CR18) 2018; 12 Johnson, Johnson, Zhao, Dowe, Staib (CR25) 2019; 292 Park, Heo, o Hartaigh (CR16) 2015; 8 Achenbach, Ropers, Hoffmann (CR14) 2004; 43 Bauer, Thilo, Chiaramida, Vogl, Costello, Schoepf (CR4) 2009; 193 CR13 CR11 CR10 van Rosendael, Maliakal, Kolli (CR20) 2018; 12 Tesche, Plank, De Cecco (CR2) 2016; 10 Maurovich-Horvat, Schlett, Alkadhi (CR15) 2012; 5 Ruschhaupt, Huber, Poustka, Mansmann (CR22) 2004; 3 Chow, Wells, Chen (CR3) 2010; 55 Motoyama, Kondo, Sarai (CR5) 2007; 50 CR8 Dey, Gaur, Ovrehus (CR9) 2018; 28 CR23 Andreini, Pontone, Mushtaq (CR6) 2017; 231 Dey, Slomka, Leeson (CR7) 2019; 73 D’Agostino, Vasan, Pencina (CR12) 2008; 117 Min, Shaw, Devereux (CR1) 2007; 50 H Yamamoto (7083_CR18) 2018; 12 JK Min (7083_CR17) 2010; 26 C Tesche (7083_CR2) 2016; 10 M Ruschhaupt (7083_CR22) 2004; 3 7083_CR23 JK Min (7083_CR1) 2007; 50 RW Bauer (7083_CR4) 2009; 193 D Andreini (7083_CR6) 2017; 231 RB D’Agostino Sr (7083_CR12) 2008; 117 S Motoyama (7083_CR5) 2007; 50 D Dey (7083_CR7) 2019; 73 C Tesche (7083_CR26) 2017; 119 HB Park (7083_CR16) 2015; 8 S Achenbach (7083_CR14) 2004; 43 7083_CR8 AR van Rosendael (7083_CR20) 2018; 12 C Seiffert (7083_CR19) 2010; 40 BJ Chow (7083_CR3) 2010; 55 ER DeLong (7083_CR24) 1988; 44 P Maurovich-Horvat (7083_CR15) 2012; 5 7083_CR11 D Dey (7083_CR9) 2018; 28 KM Johnson (7083_CR25) 2019; 292 7083_CR10 7083_CR13 T Hastie (7083_CR21) 2009 |
References_xml | – volume: 231 start-page: 18 year: 2017 end-page: 25 ident: CR6 article-title: Long-term prognostic impact of CT-Leaman score in patients with non-obstructive CAD: results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) study publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2016.12.137 contributor: fullname: Mushtaq – volume: 50 start-page: 1161 year: 2007 end-page: 1170 ident: CR1 article-title: Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.03.067 contributor: fullname: Devereux – volume: 10 start-page: 458 year: 2016 end-page: 465 ident: CR2 article-title: Prognostic implications of coronary CT angiography-derived quantitative markers for the prediction of major adverse cardiac events publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2016.08.003 contributor: fullname: De Cecco – volume: 5 start-page: 1243 year: 2012 end-page: 1252 ident: CR15 article-title: The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2012.03.019 contributor: fullname: Alkadhi – ident: CR10 – volume: 55 start-page: 1017 year: 2010 end-page: 1028 ident: CR3 article-title: Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2009.10.039 contributor: fullname: Chen – ident: CR8 – volume: 3 start-page: Article37 year: 2004 ident: CR22 article-title: A compendium to ensure computational reproducibility in high-dimensional classification tasks publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1078 contributor: fullname: Mansmann – volume: 12 start-page: 204 year: 2018 end-page: 209 ident: CR20 article-title: Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2018.04.011 contributor: fullname: Kolli – volume: 292 start-page: 354 year: 2019 end-page: 362 ident: CR25 article-title: Scoring of coronary artery disease characteristics on coronary CT angiograms by using machine learning publication-title: Radiology doi: 10.1148/radiol.2019182061 contributor: fullname: Staib – volume: 40 start-page: 185 year: 2010 end-page: 197 ident: CR19 article-title: RUSBoost: a hybrid approach to alleviating class imbalance publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum doi: 10.1109/TSMCA.2009.2029559 contributor: fullname: Napolitano – ident: CR23 – volume: 26 start-page: 721 year: 2010 end-page: 728 ident: CR17 article-title: The prognostic value of multidetector coronary CT angiography for the prediction of major adverse cardiovascular events: a multicenter observational cohort study publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-010-9613-4 contributor: fullname: Sablayrolles – volume: 28 start-page: 2655 year: 2018 end-page: 2664 ident: CR9 article-title: Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study publication-title: Eur Radiol doi: 10.1007/s00330-017-5223-z contributor: fullname: Ovrehus – ident: CR13 – ident: CR11 – volume: 43 start-page: 842 year: 2004 end-page: 847 ident: CR14 article-title: Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2003.09.053 contributor: fullname: Hoffmann – volume: 117 start-page: 743 year: 2008 end-page: 753 ident: CR12 article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.699579 contributor: fullname: Pencina – year: 2009 ident: CR21 publication-title: The elements of statistical learning : data mining, inference, and prediction doi: 10.1007/978-0-387-84858-7 contributor: fullname: Friedman – volume: 73 start-page: 1317 year: 2019 end-page: 1335 ident: CR7 article-title: Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.12.054 contributor: fullname: Leeson – volume: 50 start-page: 319 year: 2007 end-page: 326 ident: CR5 article-title: Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.03.044 contributor: fullname: Sarai – volume: 12 start-page: 436 year: 2018 end-page: 443 ident: CR18 article-title: Coronary plaque characteristics in computed tomography and 2-year outcomes: the PREDICT study publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2018.07.001 contributor: fullname: Kitagawa – volume: 8 start-page: 1 year: 2015 end-page: 10 ident: CR16 article-title: Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2014.11.002 contributor: fullname: o Hartaigh – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: CR24 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 contributor: fullname: Clarke-Pearson – volume: 119 start-page: 712 year: 2017 end-page: 718 ident: CR26 article-title: Coronary computed tomography angiography-derived plaque quantification in patients with acute coronary syndrome publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2016.11.030 contributor: fullname: De Cecco – volume: 193 start-page: 410 year: 2009 end-page: 418 ident: CR4 article-title: Noncalcified atherosclerotic plaque burden at coronary CT angiography: a better predictor of ischemia at stress myocardial perfusion imaging than calcium score and stenosis severity publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.08.1277 contributor: fullname: Schoepf – ident: 7083_CR13 doi: 10.1016/j.jcct.2016.04.005 – volume: 44 start-page: 837 year: 1988 ident: 7083_CR24 publication-title: Biometrics doi: 10.2307/2531595 contributor: fullname: ER DeLong – volume: 231 start-page: 18 year: 2017 ident: 7083_CR6 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2016.12.137 contributor: fullname: D Andreini – volume: 43 start-page: 842 year: 2004 ident: 7083_CR14 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2003.09.053 contributor: fullname: S Achenbach – volume: 292 start-page: 354 year: 2019 ident: 7083_CR25 publication-title: Radiology doi: 10.1148/radiol.2019182061 contributor: fullname: KM Johnson – ident: 7083_CR11 – volume: 50 start-page: 319 year: 2007 ident: 7083_CR5 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.03.044 contributor: fullname: S Motoyama – volume: 119 start-page: 712 year: 2017 ident: 7083_CR26 publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2016.11.030 contributor: fullname: C Tesche – ident: 7083_CR23 doi: 10.1186/1758-2946-6-10 – volume: 12 start-page: 204 year: 2018 ident: 7083_CR20 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2018.04.011 contributor: fullname: AR van Rosendael – volume: 50 start-page: 1161 year: 2007 ident: 7083_CR1 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.03.067 contributor: fullname: JK Min – volume: 26 start-page: 721 year: 2010 ident: 7083_CR17 publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-010-9613-4 contributor: fullname: JK Min – volume: 10 start-page: 458 year: 2016 ident: 7083_CR2 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2016.08.003 contributor: fullname: C Tesche – volume: 8 start-page: 1 year: 2015 ident: 7083_CR16 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2014.11.002 contributor: fullname: HB Park – volume: 40 start-page: 185 year: 2010 ident: 7083_CR19 publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum doi: 10.1109/TSMCA.2009.2029559 contributor: fullname: C Seiffert – volume-title: The elements of statistical learning : data mining, inference, and prediction year: 2009 ident: 7083_CR21 doi: 10.1007/978-0-387-84858-7 contributor: fullname: T Hastie – volume: 55 start-page: 1017 year: 2010 ident: 7083_CR3 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2009.10.039 contributor: fullname: BJ Chow – volume: 73 start-page: 1317 year: 2019 ident: 7083_CR7 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.12.054 contributor: fullname: D Dey – volume: 5 start-page: 1243 year: 2012 ident: 7083_CR15 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2012.03.019 contributor: fullname: P Maurovich-Horvat – ident: 7083_CR8 doi: 10.1093/eurheartj/ehy404 – volume: 12 start-page: 436 year: 2018 ident: 7083_CR18 publication-title: J Cardiovasc Comput Tomogr doi: 10.1016/j.jcct.2018.07.001 contributor: fullname: H Yamamoto – volume: 117 start-page: 743 year: 2008 ident: 7083_CR12 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.699579 contributor: fullname: RB D’Agostino Sr – volume: 3 start-page: Article37 year: 2004 ident: 7083_CR22 publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1078 contributor: fullname: M Ruschhaupt – volume: 193 start-page: 410 year: 2009 ident: 7083_CR4 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.08.1277 contributor: fullname: RW Bauer – volume: 28 start-page: 2655 year: 2018 ident: 7083_CR9 publication-title: Eur Radiol doi: 10.1007/s00330-017-5223-z contributor: fullname: D Dey – ident: 7083_CR10 |
SSID | ssj0009147 |
Score | 2.477128 |
Snippet | Objectives
To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse... To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events... ObjectivesTo evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac... OBJECTIVESTo evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 486 |
SubjectTerms | Algorithms Angiography Calcium Cardiac Cardiovascular disease Cardiovascular diseases Computed Tomography Angiography Coronary Angiography Coronary artery Coronary artery disease Coronary Artery Disease - diagnostic imaging Coronary Stenosis - diagnostic imaging Decision trees Diagnostic Radiology Diagnostic systems Female Health risks Heart Heart diseases Humans Imaging Integration Internal Medicine Interventional Radiology Learning algorithms Machine Learning Male Medical imaging Medicine Medicine & Public Health Neuroradiology Parameters Plaque, Atherosclerotic - diagnostic imaging Predictions Predictive Value of Tests Prognosis Radiology Regression analysis Regression models Retrospective Studies Risk analysis Risk Assessment Risk factors Segments Stenosis Tomography, X-Ray Computed Ultrasound |
Title | Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning |
URI | https://link.springer.com/article/10.1007/s00330-020-07083-2 https://www.ncbi.nlm.nih.gov/pubmed/32725337 https://www.proquest.com/docview/2473395237 https://search.proquest.com/docview/2428418111 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAXWt5bChokbmCUtZM4OVZlqxUCLhSJW-TY4xVq16ma3QP_pj-1M3lVqHAoUm6xndj-bM94Zr4R4h0m3mZsZCXZ3pCCUhtZk5YhlVFeeZtkmHA08vK7-faz-LRgmhw9XV3Es4-jRbLbqKdYN846lkjWdgilhZa07-7S2ZMRuHePFp-XX264duddXjHS1QtpyjIdYmX-3sqf59EtIfOWgbQ7d072_uuP98WjQcyEox4Xj8U9jE_Eg6-DIf2puOovE9DDeRNXkvdnYFet2DBvMzAFOEITwDHBgb38DcenYOPq10BwLT0Bl2tfnFvqCaz7m8aWyngYgy2BacXX7G7TQhPBcurnFsF1mHTQbDfUDwT2vF_BunPqRBiyWKyeiR8ni9PjpRySNUinTbaR6LytmTy_MCbBPBQk54RS58GmPlFlXYe6NtoVvnapDcGiLxNChtLW5XmSOv1c7MQm4ksBWJJq62zqfCD1L7dlyJxDgyq3aUZa9Ey8H6esuug5OaqJfbkb9IoGveoGvVIzcTjOajWsz7YiYGpdkhJuZuLt9JpWFptLbMRmy2Xo6CYBaD6fiRc9GqbPacIyCcpU-8M49zeN__tfDu5W_JV4qFTnIU7PodjZXG7xtbjf-u2bAfPX0zv9IA |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoSLSXltLXttAOUm-tpWzsxPERUZZFBS5spd4ix48VEpsgsnvg3_BTO-MkiyraQ3uO7fjx2Z7xzHzD2GefOJORkRVle4UKSqV4hVoGT1XqUmeSzCcUjTy9VBc_i2_HRJMjh1iY6O0-mCTjSb0OdqO0YwkndQdhWgiOB--W1LlELG8dns5OJg9ku-OYWAyV9YIrrWUfLPPnVn6_kB5JmY8spPHimbz4vy7vsOe9oAmHHTJesg1f77Lt896U_ordd88J3sF1U885ndBAzlp1Q8zNQCTgHpoAligOzO0dHM3A1POrnuKaO4Qu1b65NjgUWHRvjS2WcTCEWwIRiy_I4aaFpgZDyZ9bDzai0kKzWuI4PJDv_RwW0a3TQ5_HYv6a_Zgcz46mvE_XwK1Q2ZJ760xF9PmFUonPQ4GSTtAiD0a6JNVVFapKCVu4ykoTgvFOJ4iNVBib54m04g3brJvav2PgNSq31kjrAiqAudEhs9Yrn-ZGZqhHj9iXYc3Km46Vo1zzL8dJL3HSyzjpZTpie8Oylv0ObUuEphAa1XA1Ygfrz7i3yGBiat-sqAxe3igCjccj9raDw_p3AtGMojLW_jqs_UPjf-_L-38r_ok9nc7Oz8qz04vvH9izlBxq4vvPHttc3q78PnvSutXHfgP8Av6iAR4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BK1VceD8WCgwSN7CajZM4OVbtrhYoFRJF4hY5fqwqdZ1Vs3vg3_SndiavChUOiHMcPz_bM56ZbwDeu8jqlI2sJNsrUlAqJSrSMkSsYhtbHaUu4mjkxXd1-jM_njFNzhjF33q7DybJLqaBWZrC5mBt_cEY-MYpyCLBqg9BNpeCDuHdhNogpO8ezj4vTm6Id6dtkjFS3HOhiiLpA2f-XMvvl9MtifOWtbS9hOYP_r_7D-F-L4DiYYeYR3DHhcew97U3sT-Bq-6ZwVm8qMNS8MmN7MQVamZ0RiYHd1h7NEx9oC9_4dEZ6rA876mvhSVI89_rC03DwlX3BtlQGYtDGCYy4fiKHXEarANqTgrdODQtWg3W2w2NySH75C9x1bp7OuzzWyyfwo_57OxoIfo0DsJIlW6EM1ZXTKufKxW5zOckAflCZl4nNoqLqvJVpaTJbWUS7b12togIM7HUJsuixMhnsBPq4F4AuoKUXqMTYz0phpkufGqMUy7OdJKSfj2BD8P6leuOraMceZnbSS9p0st20st4AvvDEpf9zm1KgqyUBannagLvxs-059iQooOrt1yGLnUSjabTCTzvoDE2JwnlJELT3x8HHNxU_ve-vPy34m9h79vxvDz5dPrlFdyL2c-mfRbah53N5da9hruN3b7p98I1KmIJ4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+long-term+prognostic+value+of+coronary+CT+angiography-derived+plaque+measures+and+clinical+parameters+on+adverse+cardiac+outcome+using+machine+learning&rft.jtitle=European+radiology&rft.au=Tesche%2C+Christian&rft.au=Bauer%2C+Maximilian+J.&rft.au=Baquet%2C+Moritz&rft.au=Hedels%2C+Benedikt&rft.date=2021-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=31&rft.issue=1&rft.spage=486&rft.epage=493&rft_id=info:doi/10.1007%2Fs00330-020-07083-2&rft.externalDocID=10_1007_s00330_020_07083_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |