Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning

Objectives To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). Methods Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery di...

Full description

Saved in:
Bibliographic Details
Published in:European radiology Vol. 31; no. 1; pp. 486 - 493
Main Authors: Tesche, Christian, Bauer, Maximilian J., Baquet, Moritz, Hedels, Benedikt, Straube, Florian, Hartl, Stefan, Gray, Hunter N., Jochheim, David, Aschauer, Theresia, Rogowski, Sebastian, Schoepf, U. Joseph, Massberg, Steffen, Hoffmann, Ellen, Ebersberger, Ullrich
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objectives To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). Methods Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC). Results MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93–0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80–0.87]), segment involvement score (AUC 0.88 [95%CI 0.84–0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86–0.92], all p  < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72–0.82, all p  < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71–0.76, all p  < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p  = 0.024). Conclusion Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient’s information to enhance risk stratification. Key Points • A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE.
AbstractList ObjectivesTo evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML).MethodsDatasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC).ResultsMACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93–0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80–0.87]), segment involvement score (AUC 0.88 [95%CI 0.84–0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86–0.92], all p < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72–0.82, all p < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71–0.76, all p < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p = 0.024).ConclusionIntegration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient’s information to enhance risk stratification.Key Points• A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE).• ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone.• A ML model outperforms conventional logistic regression analysis for the prediction of MACE.
Objectives To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). Methods Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC). Results MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93–0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80–0.87]), segment involvement score (AUC 0.88 [95%CI 0.84–0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86–0.92], all p  < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72–0.82, all p  < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71–0.76, all p  < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p  = 0.024). Conclusion Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient’s information to enhance risk stratification. Key Points • A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE.
To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC). MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93-0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80-0.87]), segment involvement score (AUC 0.88 [95%CI 0.84-0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86-0.92], all p < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72-0.82, all p < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71-0.76, all p < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p = 0.024). Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient's information to enhance risk stratification. • A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE.
Author Straube, Florian
Hartl, Stefan
Tesche, Christian
Gray, Hunter N.
Jochheim, David
Ebersberger, Ullrich
Rogowski, Sebastian
Baquet, Moritz
Aschauer, Theresia
Schoepf, U. Joseph
Hoffmann, Ellen
Hedels, Benedikt
Massberg, Steffen
Bauer, Maximilian J.
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0002-3584-4284
  surname: Tesche
  fullname: Tesche, Christian
  email: tesche.christian@gmail.com
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University, Department of Internal Medicine, Cardiology, St. Johannes Hospital, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina
– sequence: 2
  givenname: Maximilian J.
  surname: Bauer
  fullname: Bauer, Maximilian J.
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina
– sequence: 3
  givenname: Moritz
  surname: Baquet
  fullname: Baquet, Moritz
  organization: Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University
– sequence: 4
  givenname: Benedikt
  surname: Hedels
  fullname: Hedels, Benedikt
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen
– sequence: 5
  givenname: Florian
  surname: Straube
  fullname: Straube, Florian
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen
– sequence: 6
  givenname: Stefan
  surname: Hartl
  fullname: Hartl, Stefan
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen
– sequence: 7
  givenname: Hunter N.
  surname: Gray
  fullname: Gray, Hunter N.
  organization: Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina
– sequence: 8
  givenname: David
  surname: Jochheim
  fullname: Jochheim, David
  organization: Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University
– sequence: 9
  givenname: Theresia
  surname: Aschauer
  fullname: Aschauer, Theresia
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen
– sequence: 10
  givenname: Sebastian
  surname: Rogowski
  fullname: Rogowski, Sebastian
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen
– sequence: 11
  givenname: U. Joseph
  surname: Schoepf
  fullname: Schoepf, U. Joseph
  organization: Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Division of Cardiology, Medical University of South Carolina
– sequence: 12
  givenname: Steffen
  surname: Massberg
  fullname: Massberg, Steffen
  organization: Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University
– sequence: 13
  givenname: Ellen
  surname: Hoffmann
  fullname: Hoffmann, Ellen
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen
– sequence: 14
  givenname: Ullrich
  surname: Ebersberger
  fullname: Ebersberger, Ullrich
  organization: Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University, Kardiologie MVZ München-Nord
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32725337$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URG8LL8ACWWLDJjD-uXGyRFf8VKrEpqyjiT1JXSV2sJMr9W36qLjcAhILFpat8XfOeHwu2FmIgRh7LeC9ADAfMoBSUIEsy0CjKvmM7YRWshLQ6DO2g1Y1lWlbfc4ucr4DgFZo84KdK2nkXimzYw9X85LikRyfYhirldLMS2EMMa_e8iNOG_E4cBtTDJju-eGGYxh9HBMut_eVo-Qf1cuEPwo5E-YtUS6M43bywVuc-IIJZyremcfA0R3LibjF5DxaHrfVxpn4ln0Y-Yz21gfiE2EKpfCSPR9wyvTqab9k3z9_ujl8ra6_fbk6fLyurDL7tSLrsJeN0Y0xQPXQtKYeWlUPqB3Itu-HvjfKNq63GocBybUAvZEKbV2DtuqSvTv5lunLJHntZp8tTRMGilvupJaNFo0QoqBv_0Hv4pZCeV2hjFLtXipTKHmibIo5Jxq6Jfm5fGEnoHvMrzvl15X8ul_5dbKI3jxZb_1M7o_kd2AFUCcgl6swUvrb-z-2PwH1uqvC
CitedBy_id crossref_primary_10_1097_RTI_0000000000000626
crossref_primary_10_3390_healthcare10020232
crossref_primary_10_1016_j_ejrad_2021_109767
crossref_primary_10_1155_2020_6649410
crossref_primary_10_1016_j_medp_2023_100001
crossref_primary_10_1055_a_1395_2301
crossref_primary_10_3390_jcdd10010025
crossref_primary_10_1148_ryct_220107
crossref_primary_10_1093_ehjopen_oeac018
crossref_primary_10_1007_s12410_020_09549_9
crossref_primary_10_1016_j_ejrad_2023_111133
crossref_primary_10_3389_fcvm_2022_896366
crossref_primary_10_1002_mp_15616
crossref_primary_10_1016_j_pcad_2023_09_001
crossref_primary_10_1186_s12916_024_03273_7
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_1016_j_crad_2022_02_021
crossref_primary_10_1016_j_crad_2023_08_024
crossref_primary_10_1097_RTI_0000000000000709
crossref_primary_10_2196_47645
crossref_primary_10_1016_j_ejrad_2022_110164
Cites_doi 10.1016/j.ijcard.2016.12.137
10.1016/j.jacc.2007.03.067
10.1016/j.jcct.2016.08.003
10.1016/j.jcmg.2012.03.019
10.1016/j.jacc.2009.10.039
10.2202/1544-6115.1078
10.1016/j.jcct.2018.04.011
10.1148/radiol.2019182061
10.1109/TSMCA.2009.2029559
10.1007/s10554-010-9613-4
10.1007/s00330-017-5223-z
10.1016/j.jacc.2003.09.053
10.1161/CIRCULATIONAHA.107.699579
10.1007/978-0-387-84858-7
10.1016/j.jacc.2018.12.054
10.1016/j.jacc.2007.03.044
10.1016/j.jcct.2018.07.001
10.1016/j.jcmg.2014.11.002
10.2307/2531595
10.1016/j.amjcard.2016.11.030
10.2214/AJR.08.1277
10.1016/j.jcct.2016.04.005
10.1186/1758-2946-6-10
10.1093/eurheartj/ehy404
ContentType Journal Article
Copyright European Society of Radiology 2020
European Society of Radiology 2020.
Copyright_xml – notice: European Society of Radiology 2020
– notice: European Society of Radiology 2020.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-020-07083-2
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 493
ExternalDocumentID 10_1007_s00330_020_07083_2
32725337
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAKSU
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIGE
ACIHN
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACUDM
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFAFS
AFEXP
AFJLC
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGKHE
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z85
Z86
Z87
Z88
Z8M
Z8O
Z8P
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AACDK
AAEOY
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
ADOJX
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
AJOOF
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-ecdab28748770e6f8976f936fa4d029bbfbb73c8dbc4affaed900b723ac6604c3
IEDL.DBID AEJHL
ISSN 0938-7994
IngestDate Fri Oct 25 23:09:06 EDT 2024
Thu Oct 10 22:57:44 EDT 2024
Thu Nov 21 22:36:18 EST 2024
Wed Oct 16 00:43:41 EDT 2024
Sat Dec 16 12:01:10 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Outcome measures
Coronary artery disease
Machine learning
Multidetector computed tomography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-ecdab28748770e6f8976f936fa4d029bbfbb73c8dbc4affaed900b723ac6604c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3584-4284
PMID 32725337
PQID 2473395237
PQPubID 54162
PageCount 8
ParticipantIDs proquest_miscellaneous_2428418111
proquest_journals_2473395237
crossref_primary_10_1007_s00330_020_07083_2
pubmed_primary_32725337
springer_journals_10_1007_s00330_020_07083_2
PublicationCentury 2000
PublicationDate 1-2021
2021-Jan
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 1-2021
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hastie, Tibshirani, Friedman (CR21) 2009
Tesche, Caruso, De Cecco (CR26) 2017; 119
Min, Feignoux, Treutenaere, Laperche, Sablayrolles (CR17) 2010; 26
Seiffert, Khoshgoftaar, Van Hulse, Napolitano (CR19) 2010; 40
DeLong, DeLong, Clarke-Pearson (CR24) 1988; 44
Yamamoto, Kihara, Kitagawa (CR18) 2018; 12
Johnson, Johnson, Zhao, Dowe, Staib (CR25) 2019; 292
Park, Heo, o Hartaigh (CR16) 2015; 8
Achenbach, Ropers, Hoffmann (CR14) 2004; 43
Bauer, Thilo, Chiaramida, Vogl, Costello, Schoepf (CR4) 2009; 193
CR13
CR11
CR10
van Rosendael, Maliakal, Kolli (CR20) 2018; 12
Tesche, Plank, De Cecco (CR2) 2016; 10
Maurovich-Horvat, Schlett, Alkadhi (CR15) 2012; 5
Ruschhaupt, Huber, Poustka, Mansmann (CR22) 2004; 3
Chow, Wells, Chen (CR3) 2010; 55
Motoyama, Kondo, Sarai (CR5) 2007; 50
CR8
Dey, Gaur, Ovrehus (CR9) 2018; 28
CR23
Andreini, Pontone, Mushtaq (CR6) 2017; 231
Dey, Slomka, Leeson (CR7) 2019; 73
D’Agostino, Vasan, Pencina (CR12) 2008; 117
Min, Shaw, Devereux (CR1) 2007; 50
H Yamamoto (7083_CR18) 2018; 12
JK Min (7083_CR17) 2010; 26
C Tesche (7083_CR2) 2016; 10
M Ruschhaupt (7083_CR22) 2004; 3
7083_CR23
JK Min (7083_CR1) 2007; 50
RW Bauer (7083_CR4) 2009; 193
D Andreini (7083_CR6) 2017; 231
RB D’Agostino Sr (7083_CR12) 2008; 117
S Motoyama (7083_CR5) 2007; 50
D Dey (7083_CR7) 2019; 73
C Tesche (7083_CR26) 2017; 119
HB Park (7083_CR16) 2015; 8
S Achenbach (7083_CR14) 2004; 43
7083_CR8
AR van Rosendael (7083_CR20) 2018; 12
C Seiffert (7083_CR19) 2010; 40
BJ Chow (7083_CR3) 2010; 55
ER DeLong (7083_CR24) 1988; 44
P Maurovich-Horvat (7083_CR15) 2012; 5
7083_CR11
D Dey (7083_CR9) 2018; 28
KM Johnson (7083_CR25) 2019; 292
7083_CR10
7083_CR13
T Hastie (7083_CR21) 2009
References_xml – volume: 231
  start-page: 18
  year: 2017
  end-page: 25
  ident: CR6
  article-title: Long-term prognostic impact of CT-Leaman score in patients with non-obstructive CAD: results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) study
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2016.12.137
  contributor:
    fullname: Mushtaq
– volume: 50
  start-page: 1161
  year: 2007
  end-page: 1170
  ident: CR1
  article-title: Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2007.03.067
  contributor:
    fullname: Devereux
– volume: 10
  start-page: 458
  year: 2016
  end-page: 465
  ident: CR2
  article-title: Prognostic implications of coronary CT angiography-derived quantitative markers for the prediction of major adverse cardiac events
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2016.08.003
  contributor:
    fullname: De Cecco
– volume: 5
  start-page: 1243
  year: 2012
  end-page: 1252
  ident: CR15
  article-title: The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2012.03.019
  contributor:
    fullname: Alkadhi
– ident: CR10
– volume: 55
  start-page: 1017
  year: 2010
  end-page: 1028
  ident: CR3
  article-title: Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2009.10.039
  contributor:
    fullname: Chen
– ident: CR8
– volume: 3
  start-page: Article37
  year: 2004
  ident: CR22
  article-title: A compendium to ensure computational reproducibility in high-dimensional classification tasks
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1078
  contributor:
    fullname: Mansmann
– volume: 12
  start-page: 204
  year: 2018
  end-page: 209
  ident: CR20
  article-title: Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2018.04.011
  contributor:
    fullname: Kolli
– volume: 292
  start-page: 354
  year: 2019
  end-page: 362
  ident: CR25
  article-title: Scoring of coronary artery disease characteristics on coronary CT angiograms by using machine learning
  publication-title: Radiology
  doi: 10.1148/radiol.2019182061
  contributor:
    fullname: Staib
– volume: 40
  start-page: 185
  year: 2010
  end-page: 197
  ident: CR19
  article-title: RUSBoost: a hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum
  doi: 10.1109/TSMCA.2009.2029559
  contributor:
    fullname: Napolitano
– ident: CR23
– volume: 26
  start-page: 721
  year: 2010
  end-page: 728
  ident: CR17
  article-title: The prognostic value of multidetector coronary CT angiography for the prediction of major adverse cardiovascular events: a multicenter observational cohort study
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-010-9613-4
  contributor:
    fullname: Sablayrolles
– volume: 28
  start-page: 2655
  year: 2018
  end-page: 2664
  ident: CR9
  article-title: Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5223-z
  contributor:
    fullname: Ovrehus
– ident: CR13
– ident: CR11
– volume: 43
  start-page: 842
  year: 2004
  end-page: 847
  ident: CR14
  article-title: Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2003.09.053
  contributor:
    fullname: Hoffmann
– volume: 117
  start-page: 743
  year: 2008
  end-page: 753
  ident: CR12
  article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.699579
  contributor:
    fullname: Pencina
– year: 2009
  ident: CR21
  publication-title: The elements of statistical learning : data mining, inference, and prediction
  doi: 10.1007/978-0-387-84858-7
  contributor:
    fullname: Friedman
– volume: 73
  start-page: 1317
  year: 2019
  end-page: 1335
  ident: CR7
  article-title: Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.12.054
  contributor:
    fullname: Leeson
– volume: 50
  start-page: 319
  year: 2007
  end-page: 326
  ident: CR5
  article-title: Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2007.03.044
  contributor:
    fullname: Sarai
– volume: 12
  start-page: 436
  year: 2018
  end-page: 443
  ident: CR18
  article-title: Coronary plaque characteristics in computed tomography and 2-year outcomes: the PREDICT study
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2018.07.001
  contributor:
    fullname: Kitagawa
– volume: 8
  start-page: 1
  year: 2015
  end-page: 10
  ident: CR16
  article-title: Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2014.11.002
  contributor:
    fullname: o Hartaigh
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR24
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
  contributor:
    fullname: Clarke-Pearson
– volume: 119
  start-page: 712
  year: 2017
  end-page: 718
  ident: CR26
  article-title: Coronary computed tomography angiography-derived plaque quantification in patients with acute coronary syndrome
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2016.11.030
  contributor:
    fullname: De Cecco
– volume: 193
  start-page: 410
  year: 2009
  end-page: 418
  ident: CR4
  article-title: Noncalcified atherosclerotic plaque burden at coronary CT angiography: a better predictor of ischemia at stress myocardial perfusion imaging than calcium score and stenosis severity
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.08.1277
  contributor:
    fullname: Schoepf
– ident: 7083_CR13
  doi: 10.1016/j.jcct.2016.04.005
– volume: 44
  start-page: 837
  year: 1988
  ident: 7083_CR24
  publication-title: Biometrics
  doi: 10.2307/2531595
  contributor:
    fullname: ER DeLong
– volume: 231
  start-page: 18
  year: 2017
  ident: 7083_CR6
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2016.12.137
  contributor:
    fullname: D Andreini
– volume: 43
  start-page: 842
  year: 2004
  ident: 7083_CR14
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2003.09.053
  contributor:
    fullname: S Achenbach
– volume: 292
  start-page: 354
  year: 2019
  ident: 7083_CR25
  publication-title: Radiology
  doi: 10.1148/radiol.2019182061
  contributor:
    fullname: KM Johnson
– ident: 7083_CR11
– volume: 50
  start-page: 319
  year: 2007
  ident: 7083_CR5
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2007.03.044
  contributor:
    fullname: S Motoyama
– volume: 119
  start-page: 712
  year: 2017
  ident: 7083_CR26
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2016.11.030
  contributor:
    fullname: C Tesche
– ident: 7083_CR23
  doi: 10.1186/1758-2946-6-10
– volume: 12
  start-page: 204
  year: 2018
  ident: 7083_CR20
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2018.04.011
  contributor:
    fullname: AR van Rosendael
– volume: 50
  start-page: 1161
  year: 2007
  ident: 7083_CR1
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2007.03.067
  contributor:
    fullname: JK Min
– volume: 26
  start-page: 721
  year: 2010
  ident: 7083_CR17
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-010-9613-4
  contributor:
    fullname: JK Min
– volume: 10
  start-page: 458
  year: 2016
  ident: 7083_CR2
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2016.08.003
  contributor:
    fullname: C Tesche
– volume: 8
  start-page: 1
  year: 2015
  ident: 7083_CR16
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2014.11.002
  contributor:
    fullname: HB Park
– volume: 40
  start-page: 185
  year: 2010
  ident: 7083_CR19
  publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum
  doi: 10.1109/TSMCA.2009.2029559
  contributor:
    fullname: C Seiffert
– volume-title: The elements of statistical learning : data mining, inference, and prediction
  year: 2009
  ident: 7083_CR21
  doi: 10.1007/978-0-387-84858-7
  contributor:
    fullname: T Hastie
– volume: 55
  start-page: 1017
  year: 2010
  ident: 7083_CR3
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2009.10.039
  contributor:
    fullname: BJ Chow
– volume: 73
  start-page: 1317
  year: 2019
  ident: 7083_CR7
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.12.054
  contributor:
    fullname: D Dey
– volume: 5
  start-page: 1243
  year: 2012
  ident: 7083_CR15
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2012.03.019
  contributor:
    fullname: P Maurovich-Horvat
– ident: 7083_CR8
  doi: 10.1093/eurheartj/ehy404
– volume: 12
  start-page: 436
  year: 2018
  ident: 7083_CR18
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2018.07.001
  contributor:
    fullname: H Yamamoto
– volume: 117
  start-page: 743
  year: 2008
  ident: 7083_CR12
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.699579
  contributor:
    fullname: RB D’Agostino Sr
– volume: 3
  start-page: Article37
  year: 2004
  ident: 7083_CR22
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1078
  contributor:
    fullname: M Ruschhaupt
– volume: 193
  start-page: 410
  year: 2009
  ident: 7083_CR4
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.08.1277
  contributor:
    fullname: RW Bauer
– volume: 28
  start-page: 2655
  year: 2018
  ident: 7083_CR9
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5223-z
  contributor:
    fullname: D Dey
– ident: 7083_CR10
SSID ssj0009147
Score 2.477128
Snippet Objectives To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse...
To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events...
ObjectivesTo evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac...
OBJECTIVESTo evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 486
SubjectTerms Algorithms
Angiography
Calcium
Cardiac
Cardiovascular disease
Cardiovascular diseases
Computed Tomography Angiography
Coronary Angiography
Coronary artery
Coronary artery disease
Coronary Artery Disease - diagnostic imaging
Coronary Stenosis - diagnostic imaging
Decision trees
Diagnostic Radiology
Diagnostic systems
Female
Health risks
Heart
Heart diseases
Humans
Imaging
Integration
Internal Medicine
Interventional Radiology
Learning algorithms
Machine Learning
Male
Medical imaging
Medicine
Medicine & Public Health
Neuroradiology
Parameters
Plaque, Atherosclerotic - diagnostic imaging
Predictions
Predictive Value of Tests
Prognosis
Radiology
Regression analysis
Regression models
Retrospective Studies
Risk analysis
Risk Assessment
Risk factors
Segments
Stenosis
Tomography, X-Ray Computed
Ultrasound
Title Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning
URI https://link.springer.com/article/10.1007/s00330-020-07083-2
https://www.ncbi.nlm.nih.gov/pubmed/32725337
https://www.proquest.com/docview/2473395237
https://search.proquest.com/docview/2428418111
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglRAXWt5bChokbmCUtZM4OVZlqxUCLhSJW-TY4xVq16ma3QP_pj-1M3lVqHAoUm6xndj-bM94Zr4R4h0m3mZsZCXZ3pCCUhtZk5YhlVFeeZtkmHA08vK7-faz-LRgmhw9XV3Es4-jRbLbqKdYN846lkjWdgilhZa07-7S2ZMRuHePFp-XX264duddXjHS1QtpyjIdYmX-3sqf59EtIfOWgbQ7d072_uuP98WjQcyEox4Xj8U9jE_Eg6-DIf2puOovE9DDeRNXkvdnYFet2DBvMzAFOEITwDHBgb38DcenYOPq10BwLT0Bl2tfnFvqCaz7m8aWyngYgy2BacXX7G7TQhPBcurnFsF1mHTQbDfUDwT2vF_BunPqRBiyWKyeiR8ni9PjpRySNUinTbaR6LytmTy_MCbBPBQk54RS58GmPlFlXYe6NtoVvnapDcGiLxNChtLW5XmSOv1c7MQm4ksBWJJq62zqfCD1L7dlyJxDgyq3aUZa9Ey8H6esuug5OaqJfbkb9IoGveoGvVIzcTjOajWsz7YiYGpdkhJuZuLt9JpWFptLbMRmy2Xo6CYBaD6fiRc9GqbPacIyCcpU-8M49zeN__tfDu5W_JV4qFTnIU7PodjZXG7xtbjf-u2bAfPX0zv9IA
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoSLSXltLXttAOUm-tpWzsxPERUZZFBS5spd4ix48VEpsgsnvg3_BTO-MkiyraQ3uO7fjx2Z7xzHzD2GefOJORkRVle4UKSqV4hVoGT1XqUmeSzCcUjTy9VBc_i2_HRJMjh1iY6O0-mCTjSb0OdqO0YwkndQdhWgiOB--W1LlELG8dns5OJg9ku-OYWAyV9YIrrWUfLPPnVn6_kB5JmY8spPHimbz4vy7vsOe9oAmHHTJesg1f77Lt896U_ordd88J3sF1U885ndBAzlp1Q8zNQCTgHpoAligOzO0dHM3A1POrnuKaO4Qu1b65NjgUWHRvjS2WcTCEWwIRiy_I4aaFpgZDyZ9bDzai0kKzWuI4PJDv_RwW0a3TQ5_HYv6a_Zgcz46mvE_XwK1Q2ZJ760xF9PmFUonPQ4GSTtAiD0a6JNVVFapKCVu4ykoTgvFOJ4iNVBib54m04g3brJvav2PgNSq31kjrAiqAudEhs9Yrn-ZGZqhHj9iXYc3Km46Vo1zzL8dJL3HSyzjpZTpie8Oylv0ObUuEphAa1XA1Ygfrz7i3yGBiat-sqAxe3igCjccj9raDw_p3AtGMojLW_jqs_UPjf-_L-38r_ok9nc7Oz8qz04vvH9izlBxq4vvPHttc3q78PnvSutXHfgP8Av6iAR4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BK1VceD8WCgwSN7CajZM4OVbtrhYoFRJF4hY5fqwqdZ1Vs3vg3_SndiavChUOiHMcPz_bM56ZbwDeu8jqlI2sJNsrUlAqJSrSMkSsYhtbHaUu4mjkxXd1-jM_njFNzhjF33q7DybJLqaBWZrC5mBt_cEY-MYpyCLBqg9BNpeCDuHdhNogpO8ezj4vTm6Id6dtkjFS3HOhiiLpA2f-XMvvl9MtifOWtbS9hOYP_r_7D-F-L4DiYYeYR3DHhcew97U3sT-Bq-6ZwVm8qMNS8MmN7MQVamZ0RiYHd1h7NEx9oC9_4dEZ6rA876mvhSVI89_rC03DwlX3BtlQGYtDGCYy4fiKHXEarANqTgrdODQtWg3W2w2NySH75C9x1bp7OuzzWyyfwo_57OxoIfo0DsJIlW6EM1ZXTKufKxW5zOckAflCZl4nNoqLqvJVpaTJbWUS7b12togIM7HUJsuixMhnsBPq4F4AuoKUXqMTYz0phpkufGqMUy7OdJKSfj2BD8P6leuOraMceZnbSS9p0st20st4AvvDEpf9zm1KgqyUBannagLvxs-059iQooOrt1yGLnUSjabTCTzvoDE2JwnlJELT3x8HHNxU_ve-vPy34m9h79vxvDz5dPrlFdyL2c-mfRbah53N5da9hruN3b7p98I1KmIJ4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+long-term+prognostic+value+of+coronary+CT+angiography-derived+plaque+measures+and+clinical+parameters+on+adverse+cardiac+outcome+using+machine+learning&rft.jtitle=European+radiology&rft.au=Tesche%2C+Christian&rft.au=Bauer%2C+Maximilian+J.&rft.au=Baquet%2C+Moritz&rft.au=Hedels%2C+Benedikt&rft.date=2021-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=31&rft.issue=1&rft.spage=486&rft.epage=493&rft_id=info:doi/10.1007%2Fs00330-020-07083-2&rft.externalDocID=10_1007_s00330_020_07083_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon