Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons
Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many applications. By using a chemical doping method, armchair graphene nanoribbons (AGNRs) can have thermoelectric properties that are tunable. We pr...
Saved in:
Published in: | Journal of molecular modeling Vol. 29; no. 5; p. 145 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-05-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract |
Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many applications. By using a chemical doping method, armchair graphene nanoribbons (AGNRs) can have thermoelectric properties that are tunable. We predicted that changing the number and geometrical pattern of zinc oxide (ZnO) dimers in an AGNR can engineer thermoelectric properties, so we used density functional-based tight binding (DFTB) combined with the non-equilibrium Green’s function (NEGF) to investigate the geometric, electronic, and thermoelectric properties of the AGNR with and without various dopants of ZnO dimers. With three forms of ZnO dimers, ortho, meta, and para dimers, different concentration ratios of Zn and O atoms are used. Our results indicate that the electronic features of AGNR are influenced not only by the concentrations of ZnO dimers but also by the geometrical pattern of ZnO dimers in the AGNR. These results are helpful in better understanding the effect of chemical doping on the transport properties of AGNRs and in motivating nanodevices to improve their thermoelectric performance. |
---|---|
AbstractList | Abstract Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many applications. By using a chemical doping method, armchair graphene nanoribbons (AGNRs) can have thermoelectric properties that are tunable. We predicted that changing the number and geometrical pattern of zinc oxide (ZnO) dimers in an AGNR can engineer thermoelectric properties, so we used density functional-based tight binding (DFTB) combined with the non-equilibrium Green’s function (NEGF) to investigate the geometric, electronic, and thermoelectric properties of the AGNR with and without various dopants of ZnO dimers. With three forms of ZnO dimers, ortho, meta, and para dimers, different concentration ratios of Zn and O atoms are used. Our results indicate that the electronic features of AGNR are influenced not only by the concentrations of ZnO dimers but also by the geometrical pattern of ZnO dimers in the AGNR. These results are helpful in better understanding the effect of chemical doping on the transport properties of AGNRs and in motivating nanodevices to improve their thermoelectric performance. Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many applications. By using a chemical doping method, armchair graphene nanoribbons (AGNRs) can have thermoelectric properties that are tunable. We predicted that changing the number and geometrical pattern of zinc oxide (ZnO) dimers in an AGNR can engineer thermoelectric properties, so we used density functional-based tight binding (DFTB) combined with the non-equilibrium Green's function (NEGF) to investigate the geometric, electronic, and thermoelectric properties of the AGNR with and without various dopants of ZnO dimers. With three forms of ZnO dimers, ortho, meta, and para dimers, different concentration ratios of Zn and O atoms are used. Our results indicate that the electronic features of AGNR are influenced not only by the concentrations of ZnO dimers but also by the geometrical pattern of ZnO dimers in the AGNR. These results are helpful in better understanding the effect of chemical doping on the transport properties of AGNRs and in motivating nanodevices to improve their thermoelectric performance. Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many applications. By using a chemical doping method, armchair graphene nanoribbons (AGNRs) can have thermoelectric properties that are tunable. We predicted that changing the number and geometrical pattern of zinc oxide (ZnO) dimers in an AGNR can engineer thermoelectric properties, so we used density functional-based tight binding (DFTB) combined with the non-equilibrium Green’s function (NEGF) to investigate the geometric, electronic, and thermoelectric properties of the AGNR with and without various dopants of ZnO dimers. With three forms of ZnO dimers, ortho, meta, and para dimers, different concentration ratios of Zn and O atoms are used. Our results indicate that the electronic features of AGNR are influenced not only by the concentrations of ZnO dimers but also by the geometrical pattern of ZnO dimers in the AGNR. These results are helpful in better understanding the effect of chemical doping on the transport properties of AGNRs and in motivating nanodevices to improve their thermoelectric performance. |
ArticleNumber | 145 |
Author | Ajeel, Fouad N. Ahmed, Ali ben |
Author_xml | – sequence: 1 givenname: Fouad N. surname: Ajeel fullname: Ajeel, Fouad N. email: fouadnimr2@gmail.com organization: Department of Physic, College of Science, University of Sfax, Department of Physics, College of Science, University of Sumer – sequence: 2 givenname: Ali ben surname: Ahmed fullname: Ahmed, Ali ben organization: Department of Physic, College of Science, University of Sfax |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37067639$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKBDEQRYMoOo7-gAtpcOOmtfLqx1LEFwhuFMFNSNIVp2U6GZOZhX9vxh4VXLjIDaRO3UrdfbLtg0dCjiicUYD6PAE0rSiB8RKkFLKELTKBVjSlzG_bZEIrCiVrBeyRw5TeAIAyWUnGdsker6GqK95OyPOVc2iXRXDFi38oun7AmIrgi-UM1ycOAecZiL0tFhhdiIP2Fte8joOd6T4Wr1EvZuix8NqH2BsTfDogO07PEx5u7il5ur56vLwt7x9u7i4v7kvLa7nMyrkBlNoJLlCLhnVN3VLacVMbrExrm7wGOMY6Y4x0sqVOtKazndBVY2s-Jaej7yKG9xWmpRr6ZHE-1x7DKinWABOMs1pk9OQP-hZW0effjVSThWeKjZSNIaWITi1iP-j4oSiodfJqTF5lWH0lryA3HW-sV2bA7qflO-cM8BFIueRfMf7O_sf2E46mj7o |
CitedBy_id | crossref_primary_10_1016_j_chphi_2023_100413 crossref_primary_10_1007_s11051_024_05963_y crossref_primary_10_1007_s12668_024_01422_z crossref_primary_10_1016_j_nanoso_2024_101164 crossref_primary_10_1016_j_chphi_2023_100367 crossref_primary_10_1016_j_chphi_2023_100364 |
Cites_doi | 10.3762/bjnano.6.119 10.1016/j.rinp.2020.103282 10.1126/science.285.5428.703 10.1038/nmat2090 10.1126/science.1158899 10.1021/nl903451y 10.1371/journal.pone.0257228 10.1103/PhysRevLett.102.096803 10.1063/1.3435465 10.1016/j.mtcomm.2022.103737 10.1103/PhysRevMaterials.3.095401 10.1016/j.cplett.2020.137280 10.1088/1674-1056/26/2/027303 10.1103/PhysRevLett.102.096601 10.1016/j.physe.2020.114160 10.1021/acs.nanolett.5b05288 10.1016/S1369-7021(12)70117-7 10.1088/2053-1583/aa57fc 10.1063/1.3689780 10.1103/PhysRevB.83.235426 10.1103/PhysRevB.89.245403 10.1016/j.physe.2020.114418 10.1155/2021/8110754 10.1038/srep13706 10.1007/s11664-020-08637-2 10.2307/2683905 10.1103/PhysRevB.59.8271 10.1021/nn200114p 10.1021/acsomega.1c01538 10.1103/PhysRevB.65.165401 10.1007/s11664-016-4725-9 10.1038/s41598-019-56847-4 10.3389/fchem.2022.865281 10.1038/nmat1849 10.1017/CBO9780511805776 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1007/s00894-023-05545-0 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 0948-5023 |
EndPage | 145 |
ExternalDocumentID | 10_1007_s00894_023_05545_0 37067639 |
Genre | Journal Article |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S27 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z83 Z86 Z87 Z8M Z8O Z8P Z8Q Z8S Z8W Z91 ZMTXR ~KM AACDK AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU NPM AAEOY AAYXX AGJZZ CITATION H13 7X8 |
ID | FETCH-LOGICAL-c375t-c333b0e5af434ea482d87911d3b7be6b9c86100f22dbbb5f591f49bdcd4a68c73 |
IEDL.DBID | AEJHL |
ISSN | 1610-2940 |
IngestDate | Fri Oct 25 00:21:27 EDT 2024 Thu Oct 10 19:47:38 EDT 2024 Thu Nov 21 23:05:06 EST 2024 Wed Oct 16 00:39:25 EDT 2024 Sat Dec 16 12:07:21 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | NEGF Thermoelectric DFT Graphene nanoribbon Figure of merit |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-c333b0e5af434ea482d87911d3b7be6b9c86100f22dbbb5f591f49bdcd4a68c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 37067639 |
PQID | 2802488023 |
PQPubID | 2043656 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2802423274 proquest_journals_2802488023 crossref_primary_10_1007_s00894_023_05545_0 pubmed_primary_37067639 springer_journals_10_1007_s00894_023_05545_0 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Computational Chemistry - Life Science - Advanced Materials - New Methods |
PublicationTitle | Journal of molecular modeling |
PublicationTitleAbbrev | J Mol Model |
PublicationTitleAlternate | J Mol Model |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Bell (CR1) 2008; 321 Adhidewata, Nugraha, Hasdeo, Estellé, Gunara (CR6) 2022; 31 Snyder, Toberer (CR7) 2008; 7 Tornqvist, Vartia, Vartia (CR36) 1985; 39 Nika, Balandin (CR28) 2012; 24 Anno, Imakita, Takei, Akita, Arie (CR13) 2017; 4 Dutta, Manna, Pati (CR20) 2009; 102 Zheng (CR14) 2012; 100 MadadiAsl, RamezaniAkbarabadi (CR19) 2021; 16 Cakır, Peeters (CR24) 2014; 89 DiSalvo (CR2) 1999; 285 Suman, Srivastava, Shrivastava, Srivastava, Jacob, Malvi (CR12) 2020; 745 CR33 Deb, Mondal, Sarkar, Sadeghi (CR18) 2021; 6 Arab, Davydov, Papaconstantopoulos, Li (CR25) 2016; 45 Kharwar, Singh, Jaiswal (CR34) 2021; 50 Mazzamuto (CR3) 2011; 83 RamezaniAkbarabadi, RahimpourSoleimani, Golsanamlou, BagheriTagani (CR4) 2020; 10 Evans, Hu, Keblinski (CR31) 2010; 96 Salih, Ayesh (CR35) 2021; 125 Abdullah, Abdalla, Ahmed, Abdulqadr, Rashid (CR17) 2020; 18 CR9 Kim, Park, Marzari (CR8) 2016; 16 Balandin, Nika (CR29) 2012; 15 Wakabayashi, Fujita, Ajiki, Sigrist (CR10) 1999; 59 Peng (CR27) 2020; 122 Haskins, Kınacı, Sevik, Sevinçli, Cuniberti, Çağın (CR32) 2011; 5 CR23 Arab, Li (CR26) 2015; 5 Xu, Gabor, Alden, Van Der Zande, McEuen (CR16) 2010; 10 Ramezani Akbarabadi, Madadi Asl (CR11) 2021 Biel, Blase, Triozon, Roche (CR21) 2009; 102 Markov, Rezaei, Sadeghi, Esfarjani, Zebarjadi (CR5) 2019; 3 Sadeghi, Sangtarash, Lambert (CR30) 2015; 6 Akbarabadi, Soleimani, Tagani, Golsanamlou (CR15) 2017; 26 Brandbyge, Mozos, Ordejón, Taylor, Stokbro (CR22) 2002; 65 M Brandbyge (5545_CR22) 2002; 65 TY Kim (5545_CR8) 2016; 16 F Mazzamuto (5545_CR3) 2011; 83 D Cakır (5545_CR24) 2014; 89 J Deb (5545_CR18) 2021; 6 S Dutta (5545_CR20) 2009; 102 H Sadeghi (5545_CR30) 2015; 6 S Ramezani Akbarabadi (5545_CR11) 2021 NR Abdullah (5545_CR17) 2020; 18 S Kharwar (5545_CR34) 2021; 50 AA Balandin (5545_CR29) 2012; 15 5545_CR23 L Tornqvist (5545_CR36) 1985; 39 5545_CR9 WJ Evans (5545_CR31) 2010; 96 JM Adhidewata (5545_CR6) 2022; 31 A Arab (5545_CR25) 2016; 45 A Arab (5545_CR26) 2015; 5 E Salih (5545_CR35) 2021; 125 GJ Snyder (5545_CR7) 2008; 7 M Markov (5545_CR5) 2019; 3 SR Akbarabadi (5545_CR15) 2017; 26 Y Anno (5545_CR13) 2017; 4 K Wakabayashi (5545_CR10) 1999; 59 H Suman (5545_CR12) 2020; 745 S RamezaniAkbarabadi (5545_CR4) 2020; 10 DL Nika (5545_CR28) 2012; 24 X Xu (5545_CR16) 2010; 10 J Haskins (5545_CR32) 2011; 5 B Biel (5545_CR21) 2009; 102 LE Bell (5545_CR1) 2008; 321 5545_CR33 FJ DiSalvo (5545_CR2) 1999; 285 H Zheng (5545_CR14) 2012; 100 Y-N Peng (5545_CR27) 2020; 122 M MadadiAsl (5545_CR19) 2021; 16 |
References_xml | – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 13 ident: CR4 article-title: Enhanced thermoelectric properties in anthracene molecular device with graphene electrodes: the role of phononic thermal conductance publication-title: Sci Rep contributor: fullname: BagheriTagani – volume: 6 start-page: 1176 issue: 1 year: 2015 end-page: 1182 ident: CR30 article-title: Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons publication-title: Beilstein J Nanotechnol doi: 10.3762/bjnano.6.119 contributor: fullname: Lambert – volume: 18 start-page: 103282 year: 2020 ident: CR17 article-title: Effect of bn dimers on the stability, electronic, and thermal properties of monolayer graphene publication-title: Results Physics doi: 10.1016/j.rinp.2020.103282 contributor: fullname: Rashid – volume: 285 start-page: 703 issue: 5428 year: 1999 end-page: 706 ident: CR2 article-title: Thermoelectric cooling and power generation publication-title: Science doi: 10.1126/science.285.5428.703 contributor: fullname: DiSalvo – volume: 7 start-page: 105 issue: 2 year: 2008 end-page: 114 ident: CR7 article-title: Complex thermoelectric materials publication-title: Nat Mater doi: 10.1038/nmat2090 contributor: fullname: Toberer – volume: 321 start-page: 1457 issue: 5895 year: 2008 end-page: 1461 ident: CR1 article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems publication-title: Science doi: 10.1126/science.1158899 contributor: fullname: Bell – volume: 10 start-page: 562 issue: 2 year: 2010 end-page: 566 ident: CR16 article-title: Photo-thermoelectric effect at a graphene interface junction publication-title: Nano Lett doi: 10.1021/nl903451y contributor: fullname: McEuen – volume: 16 start-page: e0257228 issue: 9 year: 2021 ident: CR19 article-title: Voltage-dependent plasticity of spin-polarized conductance in phenyl-based single-molecule magnetic tunnel junctions," publication-title: Plos one doi: 10.1371/journal.pone.0257228 contributor: fullname: RamezaniAkbarabadi – volume: 102 start-page: 096803 issue: 9 year: 2009 ident: CR21 article-title: Anomalous doping effects on charge transport in graphene nanoribbons publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.102.096803 contributor: fullname: Roche – volume: 24 start-page: 233203 issue: 23 year: 2012 ident: CR28 article-title: Two-dimensional phonon transport in graphene publication-title: J Phys: Condens Matter contributor: fullname: Balandin – volume: 96 start-page: 203112 issue: 20 year: 2010 ident: CR31 article-title: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination publication-title: Appl Phys Lett doi: 10.1063/1.3435465 contributor: fullname: Keblinski – volume: 31 start-page: 103737 year: 2022 ident: CR6 article-title: Thermoelectric properties of semiconducting materials with parabolic and pudding-mold band structures publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2022.103737 contributor: fullname: Gunara – volume: 3 start-page: 095401 issue: 9 year: 2019 ident: CR5 article-title: Thermoelectric properties of semimetals publication-title: Phys Rev Mater doi: 10.1103/PhysRevMaterials.3.095401 contributor: fullname: Zebarjadi – ident: CR33 – volume: 745 start-page: 137280 year: 2020 ident: CR12 article-title: DFT analysis of H2S adsorbed zigzag and armchair graphene nanoribbons publication-title: Chemical Physics Letters doi: 10.1016/j.cplett.2020.137280 contributor: fullname: Malvi – volume: 26 start-page: 027303 issue: 2 year: 2017 ident: CR15 article-title: Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor publication-title: Chin Phys B doi: 10.1088/1674-1056/26/2/027303 contributor: fullname: Golsanamlou – volume: 102 start-page: 096601 issue: 9 year: 2009 ident: CR20 article-title: Intrinsic half-metallicity in modified graphene nanoribbons publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.102.096601 contributor: fullname: Pati – volume: 122 start-page: 114160 year: 2020 ident: CR27 article-title: "An efficient mechanism for enhancing the thermoelectricity of twin graphene nanoribbons by introducing defects publication-title: Physica E: Low-dimensional Syst Nanostructures doi: 10.1016/j.physe.2020.114160 contributor: fullname: Peng – volume: 16 start-page: 2439 issue: 4 year: 2016 end-page: 2443 ident: CR8 article-title: The electronic thermal conductivity of graphene publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b05288 contributor: fullname: Marzari – volume: 15 start-page: 266 issue: 6 year: 2012 end-page: 275 ident: CR29 article-title: Phononics in low-dimensional materials publication-title: Mater Today doi: 10.1016/S1369-7021(12)70117-7 contributor: fullname: Nika – volume: 4 start-page: 025019 issue: 2 year: 2017 ident: CR13 article-title: Enhancement of graphene thermoelectric performance through defect engineering publication-title: 2D Materials doi: 10.1088/2053-1583/aa57fc contributor: fullname: Arie – ident: CR23 – volume: 100 start-page: 093104 issue: 9 year: 2012 ident: CR14 article-title: Enhanced thermoelectric performance of graphene nanoribbons publication-title: Appl Phys Lett doi: 10.1063/1.3689780 contributor: fullname: Zheng – volume: 83 start-page: 235426 issue: 23 year: 2011 ident: CR3 article-title: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons publication-title: Phys Rev B doi: 10.1103/PhysRevB.83.235426 contributor: fullname: Mazzamuto – volume: 89 start-page: 245403 issue: 24 year: 2014 ident: CR24 article-title: Dependence of the electronic and transport properties of metal-MoSe 2 interfaces on contact structures publication-title: Phys Rev B doi: 10.1103/PhysRevB.89.245403 contributor: fullname: Peeters – volume: 125 start-page: 114418 year: 2021 ident: CR35 article-title: Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study publication-title: Physica E: Low-dimensional Syst Nanostruct doi: 10.1016/j.physe.2020.114418 contributor: fullname: Ayesh – year: 2021 ident: CR11 article-title: Impurity substitution enhances thermoelectric figure of merit in zigzag graphene nanoribbons publication-title: Advances in Condensed Matter Physics doi: 10.1155/2021/8110754 contributor: fullname: Madadi Asl – volume: 5 start-page: 1 issue: 1 year: 2015 end-page: 12 ident: CR26 article-title: Anisotropic thermoelectric behavior in armchair and zigzag mono-and fewlayer MoS2 in thermoelectric generator applications publication-title: Sci Rep doi: 10.1038/srep13706 contributor: fullname: Li – volume: 50 start-page: 1196 issue: 3 year: 2021 end-page: 1206 ident: CR34 article-title: First-principles investigation of Pd-doped armchair graphene nanoribbons as a potential rectifier publication-title: J Electron Mater doi: 10.1007/s11664-020-08637-2 contributor: fullname: Jaiswal – ident: CR9 – volume: 39 start-page: 43 issue: 1 year: 1985 end-page: 46 ident: CR36 article-title: How should relative changes be measured publication-title: Am Stat doi: 10.2307/2683905 contributor: fullname: Vartia – volume: 59 start-page: 8271 issue: 12 year: 1999 ident: CR10 article-title: Electronic and magnetic properties of nanographite ribbons publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.8271 contributor: fullname: Sigrist – volume: 5 start-page: 3779 issue: 5 year: 2011 end-page: 3787 ident: CR32 article-title: Control of thermal and electronic transport in defect-engineered graphene nanoribbons publication-title: ACS Nano doi: 10.1021/nn200114p contributor: fullname: Çağın – volume: 6 start-page: 20149 issue: 31 year: 2021 end-page: 20157 ident: CR18 article-title: Thermoelectric properties of pristine graphyne and the BN-doped graphyne family publication-title: ACS Omega doi: 10.1021/acsomega.1c01538 contributor: fullname: Sadeghi – volume: 65 start-page: 165401 issue: 16 year: 2002 ident: CR22 article-title: Density-functional method for nonequilibrium electron transport publication-title: Physical Review B doi: 10.1103/PhysRevB.65.165401 contributor: fullname: Stokbro – volume: 45 start-page: 5253 issue: 10 year: 2016 end-page: 5263 ident: CR25 article-title: Monolayer MoS2 nanoribbons as a promising material for both n-type and p-type legs in thermoelectric generators publication-title: J Electron Mater doi: 10.1007/s11664-016-4725-9 contributor: fullname: Li – volume: 3 start-page: 095401 issue: 9 year: 2019 ident: 5545_CR5 publication-title: Phys Rev Mater doi: 10.1103/PhysRevMaterials.3.095401 contributor: fullname: M Markov – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 5545_CR26 publication-title: Sci Rep doi: 10.1038/srep13706 contributor: fullname: A Arab – volume: 16 start-page: e0257228 issue: 9 year: 2021 ident: 5545_CR19 publication-title: Plos one doi: 10.1371/journal.pone.0257228 contributor: fullname: M MadadiAsl – volume: 15 start-page: 266 issue: 6 year: 2012 ident: 5545_CR29 publication-title: Mater Today doi: 10.1016/S1369-7021(12)70117-7 contributor: fullname: AA Balandin – volume: 6 start-page: 20149 issue: 31 year: 2021 ident: 5545_CR18 publication-title: ACS Omega doi: 10.1021/acsomega.1c01538 contributor: fullname: J Deb – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 5545_CR4 publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 contributor: fullname: S RamezaniAkbarabadi – volume: 16 start-page: 2439 issue: 4 year: 2016 ident: 5545_CR8 publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b05288 contributor: fullname: TY Kim – volume: 89 start-page: 245403 issue: 24 year: 2014 ident: 5545_CR24 publication-title: Phys Rev B doi: 10.1103/PhysRevB.89.245403 contributor: fullname: D Cakır – volume: 83 start-page: 235426 issue: 23 year: 2011 ident: 5545_CR3 publication-title: Phys Rev B doi: 10.1103/PhysRevB.83.235426 contributor: fullname: F Mazzamuto – volume: 59 start-page: 8271 issue: 12 year: 1999 ident: 5545_CR10 publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.8271 contributor: fullname: K Wakabayashi – ident: 5545_CR33 doi: 10.3389/fchem.2022.865281 – volume: 125 start-page: 114418 year: 2021 ident: 5545_CR35 publication-title: Physica E: Low-dimensional Syst Nanostruct doi: 10.1016/j.physe.2020.114418 contributor: fullname: E Salih – volume: 4 start-page: 025019 issue: 2 year: 2017 ident: 5545_CR13 publication-title: 2D Materials doi: 10.1088/2053-1583/aa57fc contributor: fullname: Y Anno – volume: 285 start-page: 703 issue: 5428 year: 1999 ident: 5545_CR2 publication-title: Science doi: 10.1126/science.285.5428.703 contributor: fullname: FJ DiSalvo – ident: 5545_CR9 doi: 10.1038/nmat1849 – volume: 102 start-page: 096601 issue: 9 year: 2009 ident: 5545_CR20 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.102.096601 contributor: fullname: S Dutta – volume: 18 start-page: 103282 year: 2020 ident: 5545_CR17 publication-title: Results Physics doi: 10.1016/j.rinp.2020.103282 contributor: fullname: NR Abdullah – volume: 50 start-page: 1196 issue: 3 year: 2021 ident: 5545_CR34 publication-title: J Electron Mater doi: 10.1007/s11664-020-08637-2 contributor: fullname: S Kharwar – volume: 321 start-page: 1457 issue: 5895 year: 2008 ident: 5545_CR1 publication-title: Science doi: 10.1126/science.1158899 contributor: fullname: LE Bell – volume: 6 start-page: 1176 issue: 1 year: 2015 ident: 5545_CR30 publication-title: Beilstein J Nanotechnol doi: 10.3762/bjnano.6.119 contributor: fullname: H Sadeghi – volume: 5 start-page: 3779 issue: 5 year: 2011 ident: 5545_CR32 publication-title: ACS Nano doi: 10.1021/nn200114p contributor: fullname: J Haskins – volume: 45 start-page: 5253 issue: 10 year: 2016 ident: 5545_CR25 publication-title: J Electron Mater doi: 10.1007/s11664-016-4725-9 contributor: fullname: A Arab – volume: 745 start-page: 137280 year: 2020 ident: 5545_CR12 publication-title: Chemical Physics Letters doi: 10.1016/j.cplett.2020.137280 contributor: fullname: H Suman – volume: 39 start-page: 43 issue: 1 year: 1985 ident: 5545_CR36 publication-title: Am Stat doi: 10.2307/2683905 contributor: fullname: L Tornqvist – volume: 31 start-page: 103737 year: 2022 ident: 5545_CR6 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2022.103737 contributor: fullname: JM Adhidewata – volume: 65 start-page: 165401 issue: 16 year: 2002 ident: 5545_CR22 publication-title: Physical Review B doi: 10.1103/PhysRevB.65.165401 contributor: fullname: M Brandbyge – volume: 96 start-page: 203112 issue: 20 year: 2010 ident: 5545_CR31 publication-title: Appl Phys Lett doi: 10.1063/1.3435465 contributor: fullname: WJ Evans – year: 2021 ident: 5545_CR11 publication-title: Advances in Condensed Matter Physics doi: 10.1155/2021/8110754 contributor: fullname: S Ramezani Akbarabadi – volume: 100 start-page: 093104 issue: 9 year: 2012 ident: 5545_CR14 publication-title: Appl Phys Lett doi: 10.1063/1.3689780 contributor: fullname: H Zheng – ident: 5545_CR23 doi: 10.1017/CBO9780511805776 – volume: 7 start-page: 105 issue: 2 year: 2008 ident: 5545_CR7 publication-title: Nat Mater doi: 10.1038/nmat2090 contributor: fullname: GJ Snyder – volume: 26 start-page: 027303 issue: 2 year: 2017 ident: 5545_CR15 publication-title: Chin Phys B doi: 10.1088/1674-1056/26/2/027303 contributor: fullname: SR Akbarabadi – volume: 122 start-page: 114160 year: 2020 ident: 5545_CR27 publication-title: Physica E: Low-dimensional Syst Nanostructures doi: 10.1016/j.physe.2020.114160 contributor: fullname: Y-N Peng – volume: 10 start-page: 562 issue: 2 year: 2010 ident: 5545_CR16 publication-title: Nano Lett doi: 10.1021/nl903451y contributor: fullname: X Xu – volume: 24 start-page: 233203 issue: 23 year: 2012 ident: 5545_CR28 publication-title: J Phys: Condens Matter contributor: fullname: DL Nika – volume: 102 start-page: 096803 issue: 9 year: 2009 ident: 5545_CR21 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.102.096803 contributor: fullname: B Biel |
SSID | ssj0001256522 |
Score | 2.4227574 |
Snippet |
Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many... Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many... Abstract Enhancing the thermoelectric performance in engineered graphene nanoribbons is used to produce thermoelectric nanodevices, which are important in many... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 145 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Dimers Doping Graphene Green's functions Molecular Medicine Nanoribbons Nanotechnology devices Original Paper Theoretical and Computational Chemistry Thermoelectricity Transport properties Zinc oxide Zinc oxides |
Title | Effect of ZnO dimers on the thermoelectric performance of armchair graphene nanoribbons |
URI | https://link.springer.com/article/10.1007/s00894-023-05545-0 https://www.ncbi.nlm.nih.gov/pubmed/37067639 https://www.proquest.com/docview/2802488023 https://search.proquest.com/docview/2802423274 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT90wDLcYHLbL-NhgHTAFabetU16SNu0RwUNP0zQOgAa7VPkUT4gUFd7_P6dfgBgHOPRDapRatms7cf0zwFeFLpF6o1LvYwuzCd4px02qc84tK4wtaKwdnp3I3-fF4TTC5PBx6yJc_Rgykq2hHmvd0FlFFFsWfzdDt5_iOn0FfU-Gyr2yP_05-_VgawWjlDZ_gOEMTVkpaF8u8_-JHrukJ3Hmkxxp63qOVl9F9Bq87yNNst-pxjosubABbw-GBm8f4E-HXExqT_6GY2LncQub1IFgTBiP5rrumuTMDbm5ry-I41VzbS7VvCEt3jWaSxJUqJu51qjEH-HsaHp6MEv7Pgup4TK7wzPnmrpMecGFU6JgtpBoBC3XUrtcl6ZAPlLPmNVaZz4rJ16U2horVF4YyTdhOdTBfQIic8clZT63hgpPUU0nXBumRcxvy8wn8G1gdXXTwWlUI3Byy6wKmVW1zKpoAjuDNKr-07qtWBFh2CJuXQJ742NkXcx0qODqRT8GY0UpEtjqpDi-DunL0aiWCXwfZHY_-fO0fH7Z8G14xzqxp3SyA8t3zcLtwptbu_jSq2u8nl9cHP4DVsTkag |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtwwDCXSySG9NHvrrCqQW2pAI8mWfRxkwRTZDk2Q5WJoRecQO3Bm_j-Ul0mLpIf0YMOABZkgaZISxUeAA4UukXqjYu9DC7MhPinHTaxTzi3LjM1oqB0e_5KXd9nxSYDJEX0tTHPavU9JNpZ6XuyG3irA2LJw3gz9fowL9cWAds4GsDi6u78__mNvBcOUJoGA8QyNWS5oVy_z_kR_-6Q3geabJGnje06X_4_qFfjSxZpk1CrHKiy4cg2WjvoWb-tw22IXk8qTh_KK2EnYxCZVSTAqDFf9WLVtciaGPL1WGITxqn40v9WkJg3iNRpMUqqyqidaoxpvwM3pyfXROO46LcSGy2SKd841dYnyggunRMZsJtEMWq6ldqnOTYaMpJ4xq7VOfJIPvci1NVaoNDOSb8KgrEr3DYhMHZeU-dQaKjxFRR1ybZgWIcMtEx_BYc_r4qkF1Cjm0MkNswpkVtEwq6AR7PTiKLqf67lgWQBiC8h1EXyfv0bWhVyHKl0168ZgtChFBF9bMc4_h_SlaFbzCH70Mnud_N-0bH1s-D4sja8vzovzn5dn2_CZtSoQ0-EODKb1zO3Cp2c72-t09wU40Obq |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRWp7aek7LbRG6q2N8NpOnBwRsICKAKlUrXqJ_FT3gLMKu_-_47wogh4Qh0SRYjnOeOL5MuP5BuCzQpNIvVGp97GE2RSvlOMm1TnnlhXGFjTmDh99l6e_iv2DSJMzZvG3u92HkGSX0xBZmsJyZ2H9zpj4hpYrUtqyuPcMMUCKP-3r0S0mJrC-e3xxOPvHz4KQpQ0mILahKSsF7XNn7u7opn26BTpvBUxbOzR7_vA32IBnPQYlu53SvIA1F17Ck72h9Nsr-NlxGpPak9_hjNh5dG6TOhBEi_FoLuuufM7ckMV15kFsr5pL80fNG9IyYeNCSoIKdTPXGtX7NfyYHVzsHaV9BYbUcJkt8cy5pi5TXnDhlCiYLSQuj5ZrqV2uS1OgUKlnzGqtM5-VUy9KbY0VKi-M5G9gEurg3gGRueOSMp9bQ4WnqMBTrg3TIka-ZeYT-DLIvVp0RBvVSKncCqtCYVWtsCqawOYwNVX_0V1VrIgEbZHRLoHt8TaKLsZAVHD1qm-DKFKKBN52Uzo-DseX43JbJvB1mL_rzv8_lvf3a_4JHp_vz6qT49NvH-Ap6zQgpdNNmCyblduCR1d29bFX47_0-u-B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+ZnO+dimers+on+the+thermoelectric+performance+of+armchair+graphene+nanoribbons&rft.jtitle=Journal+of+molecular+modeling&rft.au=Ajeel%2C+Fouad+N.&rft.au=Ahmed%2C+Ali+ben&rft.date=2023-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1610-2940&rft.eissn=0948-5023&rft.volume=29&rft.issue=5&rft_id=info:doi/10.1007%2Fs00894-023-05545-0&rft.externalDocID=10_1007_s00894_023_05545_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon |